

Is Now Part of

ON Semiconductor®

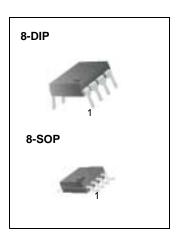
To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

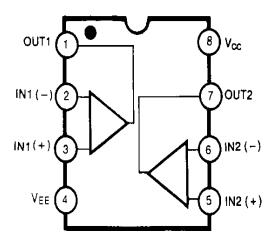
LF353

Dual Operational Amplifier (JFET)

Features

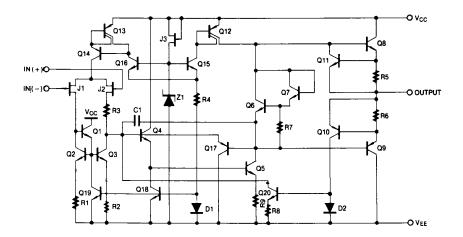

• Internally trimmed offset voltage: 10mV

Low input bias current: 50pA
Wide gain bandwidth: 4MHz
High slew rate: 13V/μs


• High Input impedance: $10^{12}\Omega$

Description

The LF353 is a JFET input operational amplifier with an internally compensated input offset voltage. The JFET input device provides wide bandwidth, low input bias currents and offset currents.



Internal Block Diagram

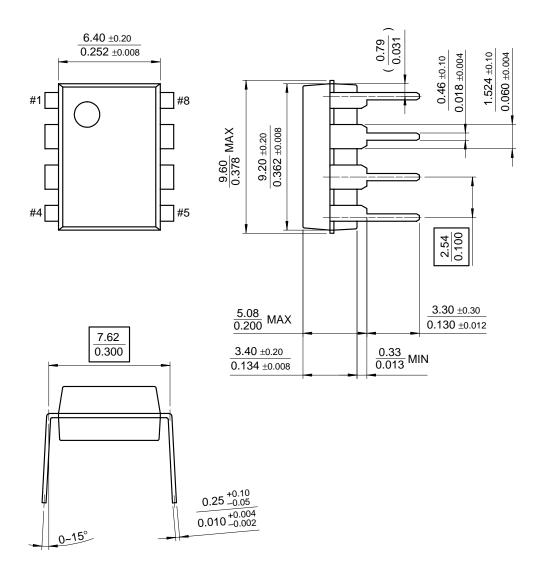
Schematic Diagram

(One Section Only)

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Power Supply Voltage	Vcc	±18	V	
Differential Input Voltage	VI(DIFF)	30	V	
Input Voltage Range	Vı	±15	V	
Output Short Circuit Duration	-	Continuous	-	
Power Dissipation	PD	500	mW	
Operating Temperature Range	Topr	0 ~ +70	°C	
Storage Temperature Range	TSTG	-65 ~ +150	°C	

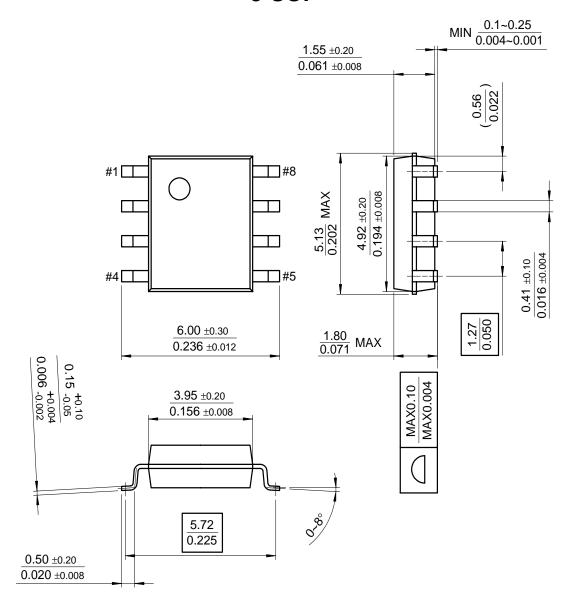
Electrical Characteristics


(VCC =+15V, VEE= -15V, TA=25 $^{\circ}$ C, unless otherwise specified)

Parameter	Symbol	Co	nditions	Min.	Тур.	Max.	Unit
Input Offset Voltage	Vio	R _S =10KΩ		-	5.0	10	mV
			0 °C≤TA≤+70 °C	-	-	-	-
Input Offset Voltage Drift	ΔV10/ΔΤ	Rs=10KΩ	0 °C≤T _A ≤+70 °C	-	10	-	μV/°C
Input Offset Current	lio			-	25	100	рА
			0 °C≤T _A ≤+70 °C	-	-	4	nA
Input Bias Current	Inivo	·		-	50	200	рА
	IBIAS		0 °C≤T _A ≤+70 °C	-	-	8	nA
Input Resistance	Rı	-		-	10 ¹²	-	Ω
Large Signal Voltage Gain	Gv	$VO(P-P) = \pm 10V$		25	100	-	V/mV
		$R_L = 2K\Omega$	0 °C≤T _A ≤+70 °C	15	-	-	-
Output Voltage Swing	VO(P_P)	RL = 10KΩ		±12	±13.5	-	V
Input Voltage Range	VI(R)	-		±11	±15/-12	-	V
Common Mode Rejection Ratio	CMRR	Rs≤10KΩ		70	100	-	dB
Power Supply Rejection Ratio	PSRR	Rs≤10KΩ		70	100	-	dB
Power Supply Current	Icc	-		-	3.6	6.5	mA
Slew Rate	SR	G _V = 1		-	13	-	V/μS
Gain-Bandwidth Product	GBW	-		-	4	-	MHz
Channel Seperation	CS	f = 1Hz ~ 20KHz (Input referenced)		-	120	-	dB
Equivalent Input Noise Voltage	VNI	$R_S = 100\Omega$ f = 1KHz		-	16	-	nV/ √Hz
Equivalent Input Noise Current	INI	f = 1KHz		-	0.01	-	pA/ √Hz

Mechanical Dimensions

Package


8-DIP

Mechanical Dimensions

Package

8-SOP

Ordering Information

Product Number	Package	Operating Temperature
LF353N	8-DIP	0 ~ + 70°C
LF353M	8-SOP	0~+70 C

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com