ANALOG DEVICES

FEATURES

Pin Selectable Gains of 10 and 100 **True Single-Supply Operation** Single-Supply Range of +2.4 V to +10 V Dual-Supply Range of ±1.2 V to ±6 V Wide Output Voltage Range of 30 mV to 4.7 V **Optional Low-Pass Filtering Excellent DC Performance** Low Input Offset Voltage: 500 µV Max Large Common-Mode Range: 0 V to +54 V Low Power: 1.2 mW ($V_s = +5 V$) Good CMR of 90 dB Typ **AC Performance** Fast Settling Time: 24 µs (0.01%) **Includes Input Protection** Series Resistive Inputs ($R_{IN} = 200 \text{ k}\Omega$) **RFI Filters Included** Allows 50 V Continuous Overload

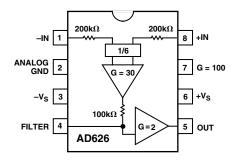
APPLICATIONS Current Sensing Interface for Pressure Transducers, Position Indicators, Strain Gages, and Other Low Level Signal Sources

PRODUCT DESCRIPTION

The AD626 is a low cost, true single-supply differential amplifier designed for amplifying and low-pass filtering small differential voltages from sources having a large common-mode voltage.

The AD626 can operate from either a single supply of ± 2.4 V to ± 10 V, or dual supplies of ± 1.2 V to ± 6 V. The input common-mode

Figure 1. Common-Mode Rejection vs. Frequency


REV. D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

Low Cost, Single-Supply Differential Amplifier

AD626

CONNECTION DIAGRAM 8-Lead Plastic Mini-DIP (N) and SOIC (R) Packages

range of this amplifier is equal to 6 $(+V_S - 1 V)$ which provides a +24 V CMR while operating from a +5 V supply. Furthermore, the AD626 features a CMR of 90 dB typ.

The amplifier's inputs are protected against continuous overload of up to 50 V, and RFI filters are included in the attenuator network. The output range is +0.03 V to +4.9 V using a +5 V supply. The amplifier provides a preset gain of 10, but gains between 10 and 100 can be easily configured with an external resistor. Furthermore, a gain of 100 is available by connecting the G = 100 pin to analog ground. The AD626 also offers low-pass filter capability by connecting a capacitor between the filter pin and analog ground.

The AD626A and AD626B operate over the industrial temperature range of -40°C to +85°C. The AD626 is available in two 8-lead packages: a plastic mini-DIP and SOIC.

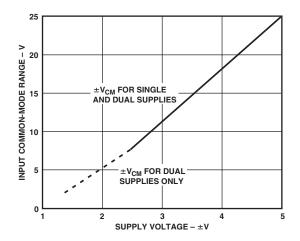


Figure 2. Input Common-Mode Range vs. Supply

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781/329-4700
 www.analog.com

 Fax: 781/326-8703
 © 2003 Analog Devices, Inc. All rights reserved.

AD626* Product Page Quick Links

Last Content Update: 08/30/2016

Comparable Parts

View a parametric search of comparable parts

Documentation 🖵

Application Notes

- AN-244: A User's Guide to I.C. Instrumentation Amplifiers
- AN-245: Instrumentation Amplifiers Solve Unusual Design Problems
- AN-282: Fundamentals of Sampled Data Systems
- AN-589: Ways to Optimize the Performance of a Difference Amplifier
- AN-671: Reducing RFI Rectification Errors in In-Amp Circuits

Data Sheet

• AD626: Low Cost, Single Supply Differential Amplifier Data Sheet

Technical Books

• A Designer's Guide to Instrumentation Amplifiers, 3rd Edition, 2006

Tools and Simulations

- Op Amp Stability with Capacitive Load
- AD626 SPICE Macro-Model

Reference Materials

Technical Articles

- Auto-Zero Amplifiers
- · High-performance Adder Uses Instrumentation Amplifiers
- Input Filter Prevents Instrumentation-amp RF-Rectification Errors
- The AD8221 Setting a New Industry Standard for Instrumentation Amplifiers

Design Resources 🖵

- AD626 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- · Symbols and Footprints

Discussions 🖵

View all AD626 EngineerZone Discussions

Sample and Buy

Visit the product page to see pricing options

Technical Support

Submit a technical question or find your regional support number

* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

IMPORTANT LINKS for the <u>AD626</u>*

Last content update 09/10/2013 07:55 pm

Newer Alternatives: AD8276 or the AD8278 difference amps for their faster speed, smaller foot print, wider supply voltage range, and lower costs.

PARAMETRIC SELECTION TABLES Find Similar Products By Operating Parameters	DESIGN COLLABORATION COMMUNITY engineer zone community Collaborate Online with the ADI support team and other designer.
DOCUMENTATION AN-282: Fundamentals of Sampled Data Systems AN-244: A User's Guide to I.C. Instrumentation Amplifiers AN-245: Instrumentation Amplifiers Solve Unusual Design Problems	Follow us on Twitter: <u>www.twitter.com/ADL News</u> Like us on Facebook: <u>www.facebook.com/AnalogDevicesInc</u>
AN-671: Reducing RFI Rectification Errors in In-Amp Circuits AN-589: Ways to Optimize the Performance of a Difference Amplifier A Designer's Guide to Instrumentation Amplifiers Auto-Zero Amplifiers High-performance Adder Uses Instrumentation Amplifiers Input Filter Prevents Instrumentation-amp RF-Rectification Errors The AD8221 - Setting a New Industry Standard for Instrumentation Amplifiers Applying Instrumentation Amplifiers Effectively: The Importance of an Input Ground Return Leading Inside Advertorials: Applying Instrumentation Amplifiers Effectively—The Importance of an Input Ground Return	DESIGN SUPPORT Submit your support request here: Linear and Data Converters Embedded Processing and DSP Telephone our Customer Interaction Centers toll free: Americas: 1-800-262-5643 Europe: 00800-266-822-82 China: 4006-100-006 India: 1800-419-0108 Russia: 8-800-555-45-90 Ouality and Reliability Lead(Pb)-Free Data
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE AD626 SPICE Macro-Model AD626A SPICE Macro-Model AD626B SPICE Macro-Model EVALUATION KITS & SYMBOLS & FOOTPRINTS Symbols and Footprints	SAMPLE & BUY AD626 • View Price & Packaging • Request Evaluation Board • Request Samples • Check Inventory & Purchase Find Local Distributors

This content may be frequently modified.

AD626-SPECIFICATIONS

SINGLE SUPPLY (@+ V_s = +5 V and T_A = 25°C, unless otherwise noted.)

Model			AD626A			AD626B		
Parameter	Condition	Min	Тур	Max	Min	Тур	Max	Unit
GAIN								
Gain Accuracy	Total Error							
Gain = 10	$(a) V_{OUT} \ge 100 \text{ mV dc}$		0.4	1.0		0.2	0.6	%
Gain = 100	(a) V _{OUT} \geq 100 mV dc		0.1	1.0		0.5	0.6	%
Over Temperature, $T_A = T_{MIN}$ to T_{MAX}	G = 10		0.1	50		0.5	30	ppm/°C
over reinperature, TA TMIN to TMAX	G = 100			150			120	ppm/°C
Gain Linearity	G - 100			150			120	
Gain = 10	$@V_{OUT} \ge 100 \text{ mV dc}$		0.014	0.016		0.014	0.016	%
Gain = 100 Gain = 100	$@V_{OUT} \ge 100 \text{ mV dc}$ $@V_{OUT} \ge 100 \text{ mV dc}$		0.014	0.010		0.014	0.010	%
	@ voor 2 100 mv de		0.014	0.02		0.014	0.02	/0
OFFSET VOLTAGE								
Input Offset Voltage			1.9	2.5		1.9	2.5	mV
vs. Temperature	T_{MIN} to T_{MAX} , G = 10 or 100			2.9			2.9	mV
vs. Temperature	T_{MIN} to T_{MAX} , G = 10 or 100			6			6	μV/°C
vs. Supply Voltage (PSR)								
+PSR		74	80		74	80		dB
–PSR		64	66		64	66		dB
COMMON-MODE REJECTION	$R_L = 10 \text{ k}\Omega$							
+CMR Gain = 10, 100	$f = 100 \text{ Hz}, V_{CM} = +24 \text{ V}$	66	90		80	90		dB
\pm CMR Gain = 10, 100	$f = 10 \text{ kHz}, V_{CM} = +6 \text{ V}$	55	64		55	64		dB
-CMR Gain = 10, 100*	$f = 100 \text{ Hz}, V_{CM} = -2 \text{ V}$	60	85		73	85		dB
	$1 = 100 112, V_{CM} = 2.V$	00	0.5		15	05		ub
COMMON-MODE VOLTAGE RANGE								
+CMV Gain = 10	CMR > 85 dB		+24			+24		V
-CMV Gain = 10	CMR > 85 dB		-2			-2		V
INPUT								
Input Resistance								
Differential			200			200		kΩ
Common-Mode			100			100		kΩ
Input Voltage Range (Common-Mode)			6 (V _S –	1)		6 (V _S –	1)	V
OUTPUT								
Output Voltage Swing	$R_{\rm L} = 10 \ \rm k\Omega$							
Positive	$R_L = 10 RM$ Gain = 10	4.7	4.90		4.7	4.90		v
FOSILIVE	Gain = 10 Gain = 100	4.7	4.90		4.7	4.90		V
Nterretine			4.90			4.90		VV
Negative	Gain = 10	0.03			0.03			VV
Sharet Circuit Comment	Gain = 100	0.03			0.03			v
Short Circuit Current			10			10		
+I _{SC}			12			12		mA
NOISE								
Voltage Noise RTI								
Gain = 10	f = 0.1 Hz - 10 Hz		2			2		μV p-p
Gain = 100	f = 0.1 Hz - 10 Hz		2			2		μV p-p
Gain = 10	f = 1 kHz		0.25			0.25		µV/√Hz
Gain = 100	f = 1 kHz		0.25			0.25		µV/√Hz
DYNAMIC RESPONSE								
-3 dB Bandwidth	$V_{OUT} = +1 V dc$		100			100		kHz
	$v_{OUT} = +1 v dc$ Gain = 10	0.17	0.22		0.17			
Slew Rate, T_{MIN} to T_{MAX}	Gain = 10 Gain = 100	0.17				0.22		V/µs
SottlingTime		0.1	0.17		0.1	0.17		V/µs
Settling Time	to 0.01%, 1 V Step		24			22		μs
POWER SUPPLY								
Operating Range	$T_A = T_{MIN}$ to T_{MAX}	2.4	5	12	2.4	5	10	V
Quiescent Current	Gain = 10		0.16	0.20		0.16	0.20	mA
	Gain = 100		0.23	0.29		0.23	0.29	mA
TRANSISTOR COUNT	Number of Transistors					46		
I MAINSIS I UN GUUN I	INUMBER OF FRANSISTORS	1	46		1	40		

*At temperatures above 25°C, -CMV degrades at the rate of 12 mV/°C; i.e., @ 25°C CMV = -2 V, @ 85°C CMV = -1.28 V.

Specifications subject to change without notice.

DUAL SUPPLY (@+V_S = ± 5 V and T_A = 25°C, unless otherwise noted.)

Model	0.111		AD626A			AD626B		** •
Parameter	Condition	Min	Тур	Max	Min	Тур	Max	Unit
GAIN								
Gain Accuracy	Total Error							
Gain = 10	$R_L = 10 \text{ k}\Omega$		0.2	0.5		0.1	0.3	%
Gain = 100			0.25	1.0		0.15	0.6	%
Over Temperature, $T_A = T_{MIN}$ to T_{MAX}	G = 10 G = 100			50 100			30 80	ppm/°C ppm/°C
Gain Linearity								
Gain = 10			0.045	0.055		0.045	0.055	%
Gain = 100			0.01	0.015		0.01	0.015	%
OFFSET VOLTAGE								
Input Offset Voltage			50	500		50	250	μV
vs. Temperature	T_{MIN} to T_{MAX} , G = 10 or 100			1.0			0.5	mV
vs. Temperature	T_{MIN} to T_{MAX} , G = 10 or 100		1.0			0.5		μV/°C
vs. Supply Voltage (PSR)								
+PSR		74	80		74	80		dB
–PSR		64	66		64	66		dB
COMMON-MODE REJECTION	$R_L = 10 \text{ k}\Omega$							
+CMR Gain = 10, 100	$f = 100 \text{ Hz}, V_{CM} = +24 \text{ V}$	66	90		80	90		dB
\pm CMR Gain = 10, 100	$f = 10 \text{ kHz}, V_{CM} = 6 \text{ V}$	55	60		55	60		dB
COMMON-MODE VOLTAGE RANGE								
+CMV Gain = 10	CMR > 85 dB		26.5			26.5		V
-CMV Gain = 10	CMR > 85 dB		32.5			32.5		V
INPUT								
Input Resistance								
Differential			200			200		kΩ
Common-Mode			110			110		kΩ
Input Voltage Range (Common-Mode)			6 (V _S –	1)		6 (V _S –	1)	V
OUTPUT								
Output Voltage Swing	$R_{L} = 10 \text{ k}\Omega$							
Positive	Gain = 10, 100	4.7	4.90		4.7	4.90		V
Negative	Gain = 10	-1.65	-2.1		-1.65	-2.1		v
8	Gain = 100	-1.45	-1.8		-1.45	-1.8		V
Short Circuit Current								
+I _{SC}			12			12		mA
$-I_{SC}$			0.5			0.5		mA
NOISE								
Voltage Noise RTI								
Gain = 10	f = 0.1 Hz - 10 Hz		2			2		μV p-p
Gain = 100	f = 0.1 Hz–10 Hz		2			2		μV p-p
Gain = 10	f = 1 kHz		0.25			0.25		μV/√Hz
Gain = 100	f = 1 kHz		0.25			0.25		μV/√Hz
DYNAMIC RESPONSE								
-3 dB Bandwidth	$V_{OUT} = +1 V dc$		100			100		kHz
Slew Rate, T_{MIN} to T_{MAX}	Gain = 10	0.17	0.22		0.17	0.22		V/µs
- HALL HALL	Gain = 100	0.1	0.17		0.1	0.17		V/μs
Settling Time	to 0.01%, 1 V Step		24			22		μs
POWER SUPPLY								
Operating Range	$T_A = T_{MIN}$ to T_{MAX}	±1.2	± 5	± 6	±1.2	± 5	± 6	V
Quiescent Current	Gain = 10		1.5	2		1.5	2	mA
	Gain = 100		1.5	2		1.5	2	mA
TRANSISTOR COUNT	Number of Transistors		46			46		
		I						I

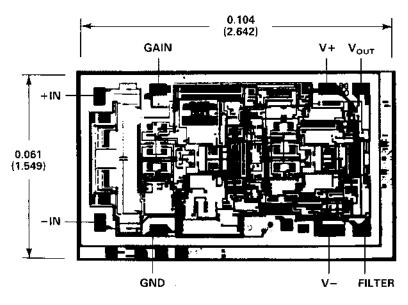
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage+36V
Internal Power Dissipation ²
Peak Input Voltage+60 V
Maximum Reversed Supply Voltage Limit
Output Short Circuit Duration Indefinite
Storage Temperature Range (N, R)65°C to +125°C
Operating Temperature Range
AD626A/AD626B40°C to +85°C
Lead Temperature Range (Soldering 60 sec) +300°C

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

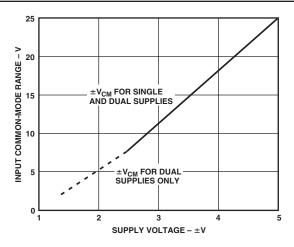

² 8-Lead Plastic Package: $\theta_{JA} = 100^{\circ}$ C/W; $\theta_{JC} = 50^{\circ}$ C/W. 8-Lead SOIC Package: $\theta_{JA} = 155^{\circ}$ C/W; $\theta_{JC} = 40^{\circ}$ C/W.

ORDERING GUIDE

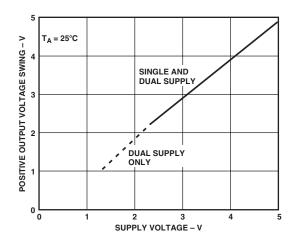
Model	Temperature Range	Package Description	Package Option		
AD626AN	-40°C to +85°C	Plastic DIP	N-8		
AD626AR	–40°C to +85°C	Small Outline IC	R-8		
AD626BN	–40°C to +85°C	Plastic DIP	N-8		
AD626AR-REEL	–40°C to +85°C	13" Tape and Reel			
AD626AR-REEL7	–40°C to +85°C	7" Tape and Reel			

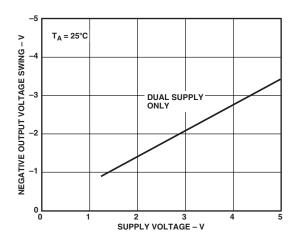
METALLIZATION PHOTOGRAPH

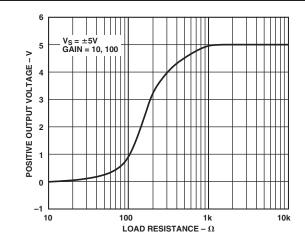
Dimensions shown in inches and (mm).

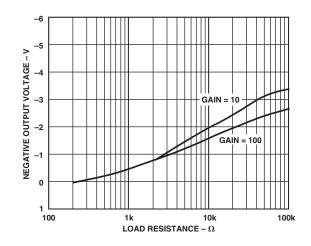


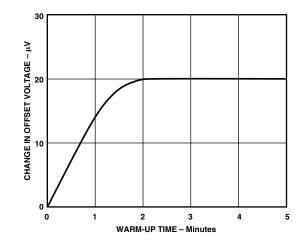
CAUTION

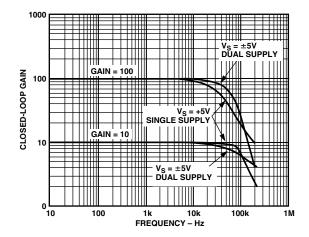

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD626 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

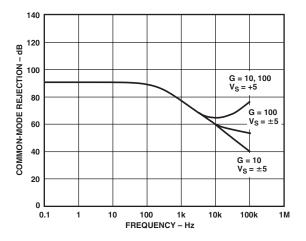

Typical Performance Characteristics-AD626

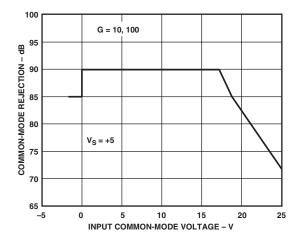

TPC 1. Input Common-Mode Range vs. Supply

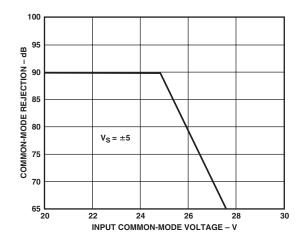

TPC 2. Positive Output Voltage Swing vs. Supply Voltage

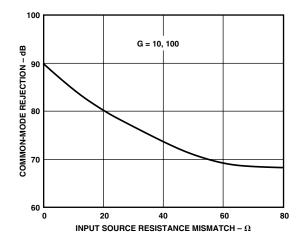

TPC 3. Negative Output Voltage Swing vs. Supply Voltage

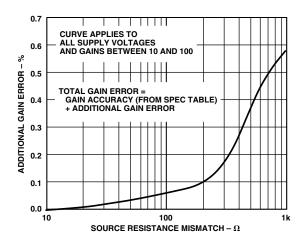

TPC 4. Positive Output Voltage Swing vs. Resistive Load

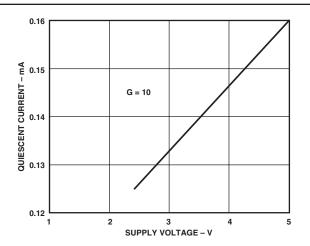

TPC 5. Negative Output Voltage Swing vs. Resistive Load

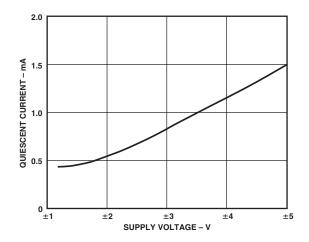

TPC 6. Change in Input Offset Voltage vs. Warm-Up Time

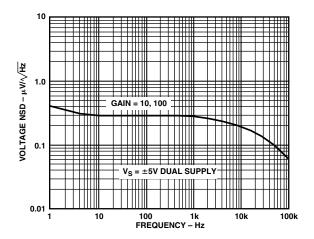

TPC 7. Closed-Loop Gain vs. Frequency

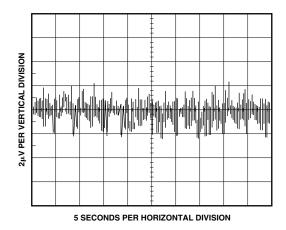

TPC 8. Common-Mode Rejection vs. Frequency

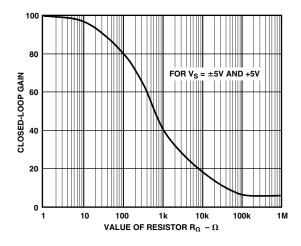

TPC 9. Common-Mode Rejection vs. Input Common-Mode Voltage for Single-Supply Operation

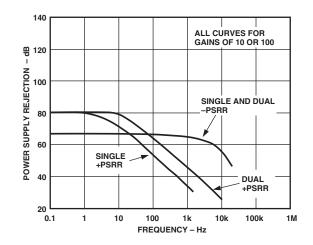

TPC 10. Common-Mode Rejection vs. Input Common-Mode Voltage for Dual-Supply Operation

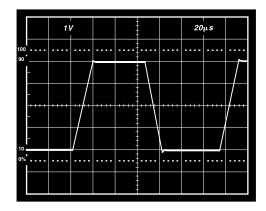

TPC 11. Common-Mode Rejection vs. Input Source Resistance Mismatch

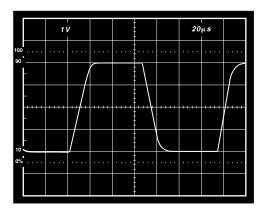

TPC 12. Additional Gain Error vs. Source Resistance Mismatch

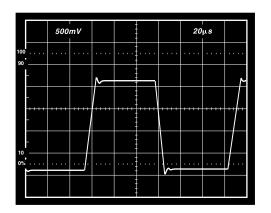

TPC 13. Quiescent Supply Current vs. Supply Voltage for Single-Supply Operation


TPC 14. Quiescent Supply Current vs. Supply Voltage for Dual-Supply Operation

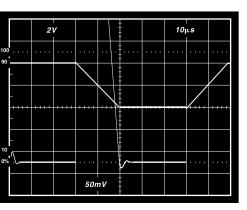

TPC 15. Noise Voltage Spectral Density vs. Frequency

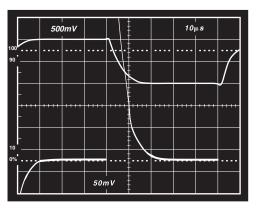

TPC 16. 0.1 Hz to 10 Hz RTI Voltage Noise. $V_S = \pm 5 V$, Gain = 100


TPC 17. Closed-Loop Gain vs. R_G

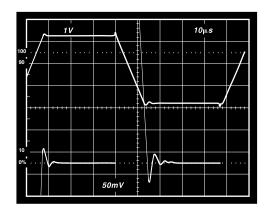

TPC 18. Power Supply Rejection vs. Frequency

TPC 19. Large Signal Pulse Response. $V_S = \pm 5 V$, G = 10


TPC 20. Large Signal Pulse Response. $V_S = \pm 5 V$, G = 100


TPC 21. Large Signal Pulse Response. $V_S = +5 V$, G = 10

		500	mν				20	μs	
100 90							 		
	-								
	- ••••			<u>_</u>		 	 		
10									
0%		• • • •	· · · J		• • • •		 		<i>.</i>


TPC 22. Large Signal Pulse Response. $V_S = +5 V$, G = 100

TPC 23. Settling Time. $V_S = \pm 5 V$, G = 10

TPC 24. Settling Time. $V_S = \pm 5 V$, G = 100

TPC 25. Settling Time. $V_S = +5 V$, G = 10

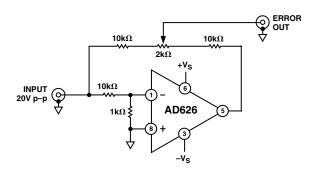
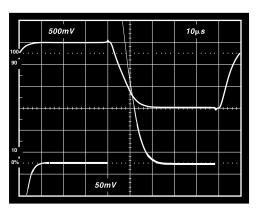



Figure 3. Settling Time Test Circuit

THEORY OF OPERATION

The AD626 is a differential amplifier consisting of a precision balanced attenuator, a very low drift preamplifier (A1), and an output buffer amplifier (A2). It has been designed so that small differential signals can be accurately amplified and filtered in the presence of large common-mode voltages (V_{CM}), without the use of any other active components.

TPC 26. Settling *Time*. $V_S = +5 V$, G = 100

Figure 4 shows the main elements of the AD626. The signal inputs at Pins 1 and 8 are first applied to dual resistive attenuators R1 through R4 whose purpose is to reduce the peak common-mode voltage at the input to the preamplifier—a feedback stage based on the very low drift op amp A1. This allows the differential input voltage to be accurately amplified in the presence of large common-mode voltages six times greater than that which can be tolerated by the actual input to A1. As a result, the input CMR extends to six times the quantity ($V_S - 1 V$). The overall common-mode error is minimized by precise laser-trimming of R3 and R4, thus giving the AD626 a common-mode rejection ratio (CMRR) of at least 10,000:1 (80 dB).

To minimize the effect of spurious RF signals at the inputs due to rectification at the input to A1, small filter capacitors C1 and C2 are included.

The output of A1 is connected to the input of A2 via a 100 k Ω (R12) resistor to facilitate the low-pass filtering of the signal of interest (see Low-Pass Filtering section).

The 200 k Ω input impedance of the AD626 requires that the source resistance driving this amplifier be low in value (<1 k Ω)—this is

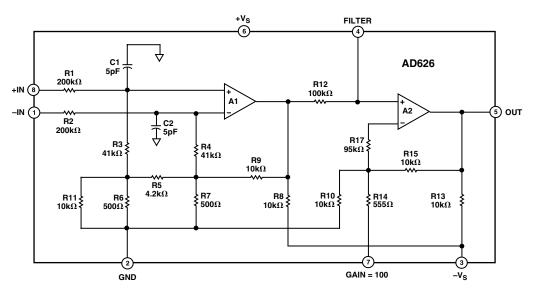


Figure 4. Simplified Schematic

necessary to minimize gain error. Also, any mismatch between the total source resistance at each input will affect gain accuracy and common-mode rejection (CMR). For example: when operating at a gain of 10, an 80 Ω mismatch in the source resistance between the inputs will degrade CMR to 68 dB.

The output buffer, A2, operates at a gain of 2 or 20, thus setting the overall, precalibrated gain of the AD626 (with no external components) at 10 or 100. The gain is set by the feedback network around amplifier A2.

The output of amplifier A2 relies on a 10 k Ω resistor to $-V_S$ for "pull-down." For single-supply operation, ($-V_S =$ "GND"), A2 can drive a 10 k Ω ground referenced load to at least +4.7 V. The minimum, nominally "zero," output voltage will be 30 mV. For dual-supply operation (± 5 V), the positive output voltage swing will be the same as for a single supply. The negative swing will be to -2.5 V, at G = 100, limited by the ratio:

$$-V_S \times \frac{R15 + R14}{R13 + R14 + R15}$$

The negative range can be extended to -3.3 V (G = 100) and -4 V (G = 10) by adding an external 10 k Ω pull-down from the output to $-\text{V}_{\text{S}}$. This will add 0.5 mA to the AD626's quiescent current, bringing the total to 2 mA.

The AD626's 100 kHz bandwidth at G = 10 and 100 (a 10 MHz gain bandwidth) is much higher than can be obtained with low power op amps in discrete differential amplifier circuits. Furthermore, the AD626 is stable driving capacitive loads up to 50 pF (G10) or 200 pF (G100). Capacitive load drive can be increased to 200 pF (G10) by connecting a 100 Ω resistor in series with the AD626's output and the load.

ADJUSTING THE GAIN OF THE AD626

The AD626 is easily configured for gains of 10 or 100. Figure 5 shows that for a gain of 10, Pin 7 is simply left unconnected; similarly, for a gain of 100, Pin 7 is grounded, as shown in Figure 6.

Gains between 10 and 100 are easily set by connecting a variable resistance between Pin 7 and Analog GND, as shown in Figure 7. Because the on-chip resistors have an absolute tolerance of $\pm 20\%$ (although they are ratio matched to within 0.1%), at least a 20% adjustment range must be provided. The values shown in the table in Figure 7 provide a good trade-off between gain set range and resolution, for gains from 11 to 90.

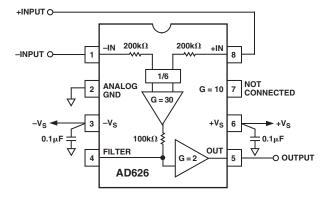


Figure 5. AD626 Configured for a Gain of 10

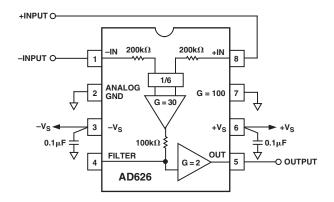


Figure 6. AD626 Configured for a Gain of 100

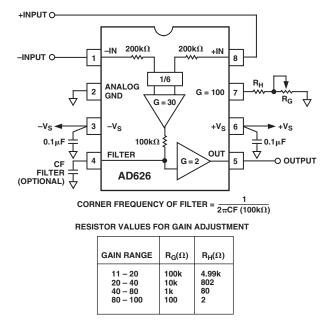


Figure 7. Recommended Circuit for Gain Adjustment

SINGLE-POLE LOW-PASS FILTERING

A low-pass filter can be easily implemented by using the features provided by the AD626.

By simply connecting a capacitor between Pin 4 and ground, a single-pole low-pass filter is created, as shown in Figure 8.

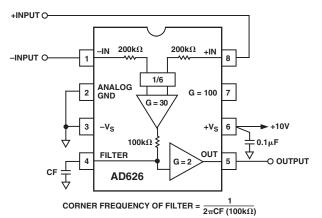


Figure 8. A One-Pole Low-Pass Filter Circuit Which Operates from a Single +10 V Supply

CURRENT SENSOR INTERFACE

A typical current sensing application, making use of the large common-mode range of the AD626, is shown in Figure 9. The current being measured is sensed across resistor R_s . The value of R_s should be less than 1 k Ω and should be selected so that the average differential voltage across this resistor is typically 100 mV.

To produce a full-scale output of +4 V, a gain of 40 is used adjustable by $\pm 20\%$ to absorb the tolerance in the sense resistor. Note that there is sufficient headroom to allow at least a 10% overrange (to +4.4 V).

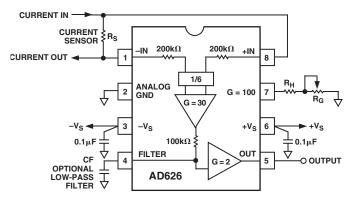
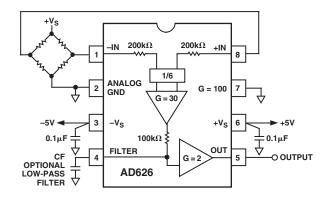
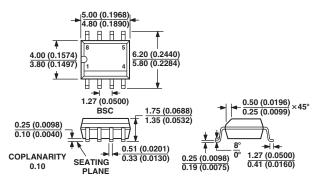


Figure 9. Current Sensor Interface

BRIDGE APPLICATION

Figure 10 shows the AD626 in a typical bridge application. Here, the AD626 is set to operate at a gain of 100, using dual-supply voltages and offering the option of low-pass filtering.

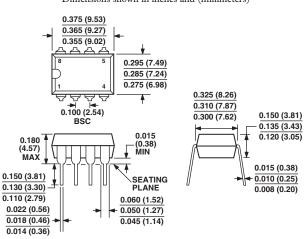



Figure 10. A Typical Bridge Application

OUTLINE DIMENSIONS

8-Lead Standard Small Outline Package [SOIC] Narrow Body

(**R-**8)


Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-012AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-095AA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Revision History

Location	Page
1/03—Data Sheet changed from REV. C to REV. D.	
Renumbered Figures and TPCs	Universal
Edits to Figure 1	1
Edits to SPECIFICATIONS, Output	
Edit to ORDERING GUIDE	4
Update to standard CAUTION/ESD Warning note and diagram	4
Edits to TPC 8	
Updated OUTLINE DIMENSIONS	

-12-