X2-Class Power MOSFET

IXTN102N65X2

N-Channel Enhancement Mode
Avalanche Rated
Fast Intrinsic Diode

Symbol	Test Conditions	Characteristic Values
V_{DSS} | $T_J = 25^\circ C$ to $150^\circ C$ | 650 V
V_{DGR} | $T_J = 25^\circ C$ to $150^\circ C$, $R_{GS} = 1 \Omega$ | 650 V
V_{GSS} | Continuous | ± 30 V
V_{GSM} | Transient | ± 40 V
I_{DSS} | $T_C = 25^\circ C$ | 76 A
I_{DM} | $T_C = 25^\circ C$, Pulse Width Limited by T_{JM} | 204 A
I_A | $T_C = 25^\circ C$ | 25 A
E_{AS} | $T_C = 25^\circ C$ | 3 J
P_D | $T_C = 25^\circ C$ | 595 W
dv/dt | $I_s \leq I_{DM}$, $V_{DD} \leq V_{DSS}$, $T_J \leq 150^\circ C$ | 50 V/ns
T_J | $-55 \ldots +150^\circ C$
T_{JM} | 150°C
T_{SG} | $-55 \ldots +150^\circ C$
V_{ISOL} | 50/60 Hz, RMS, $t = 1$ minute | 2500 V~
I_{GOL} | $t = 1$ s | 3000 V~
M_d | Mounting Torque for Base Plate | 1.5/13 Nm/lb.in
Terminal Connection Torque | 1.3/11.5 Nm/lb.in
Weight | 30 g

Symbol	Test Conditions (Unless Otherwise Specified)	Characteristic Values
BV_{DSS} | $V_{GS} = 0$ V, $I_D = 1$ mA | 650 V
$V_{DS(SH)}$ | $V_{DS} = V_{GS}$, $I_D = 250 \mu$A | 3.0 V
I_{GSS} | $V_{GS} = \pm 30$ V, $V_{DS} = 0$ | ± 100 nA
I_{GSS} | $V_{DS} = V_{DSS}$, $V_{GS} = 0$ | 25μA, 350μA
$R_{DSS(on)}$ | $V_{GS} = 10$ V, $I_D = 51$ A, Note 1 | 30 mΩ

Features

- International Standard Package
- miniBLOC with Aluminum Nitride Isolation
- Low Q_g
- Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

© 2015 IXYS CORPORATION, All Rights Reserved
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXYS MOSFETs and IGBTs are covered by one or more of the following U.S. patents: 4,860,072, 5,017,508, 5,063,307, 5,381,025, 6,259,123, 6,534,343, 6,710,455, 6,759,692, 7,005,734, 7,157,338, 7,063,975.

Source-Drain Diode

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>g<sub>ds</sub></td>
<td></td>
<td></td>
<td>50</td>
<td>82</td>
<td>S</td>
</tr>
<tr>
<td>R<sub>gi</sub></td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>C<sub>iss</sub></td>
<td></td>
<td></td>
<td>10.9</td>
<td></td>
<td>nF</td>
</tr>
<tr>
<td>C<sub>oss</sub></td>
<td></td>
<td></td>
<td>6100</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C<sub>rss</sub></td>
<td></td>
<td></td>
<td>12.6</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C<sub>qer</sub></td>
<td>Energy related</td>
<td></td>
<td>367</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C<sub>qrt</sub></td>
<td>Time related</td>
<td></td>
<td>1420</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>t<sub>(on)</sub></td>
<td>Resistive Switching Times</td>
<td></td>
<td>37</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>t</sub></td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>(off)</sub></td>
<td></td>
<td></td>
<td>67</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>r</sub></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Q<sub>qon</sub></td>
<td></td>
<td></td>
<td>152</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Q<sub>gs</sub></td>
<td></td>
<td></td>
<td>57</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Q<sub>gd</sub></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>R<sub>RJJC</sub></td>
<td></td>
<td></td>
<td>0.21 °C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R<sub>RCGS</sub></td>
<td></td>
<td></td>
<td>0.05 °C/W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1. Pulse test, t ≤ 300µs, duty cycle, d ≤ 2%.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a “considered reflection” of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXYS MOSFETs and IGBTs are covered by the following U.S. patents: 4,835,592, 4,931,844, 5,049,961, 5,237,481, 6,162,665, 6,404,005 B1, 6,683,344, 6,727,585, 7,005,734 B2, 7,157,338.

by one or more of the following U.S. patents: 4,881,106, 5,034,796, 5,187,117, 5,486,715, 6,306,728 B1, 6,583,505, 6,771,478 B2, 7,071,537.
Fig. 1. Output Characteristics @ $T_J = 25^\circ C$

Fig. 2. Extended Output Characteristics @ $T_J = 25^\circ C$

Fig. 3. Output Characteristics @ $T_J = 125^\circ C$

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 51A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 51A$ Value vs. Drain Current

Fig. 6. Maximum Drain Current vs. Case Temperature
Fig. 13. Forward-Bias Safe Operating Area

- \(V_{DS} \) - Volts
- \(I_{D} \) - Amperes
- \(T_J = 150^\circ C \)
- \(T_C = 25^\circ C \)
- Single Pulse

Fig. 14. Maximum Transient Thermal Impedance

- \(Z(\theta_{JC}) \) - \(^\circ C / W\)
- Pulse Width - Seconds

R_{DS(on)} Limit