

Is Now Part of

ON Semiconductor®

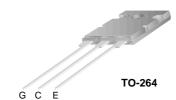
To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

July 2007 **IGBT**®

FGL40N120AN 1200V NPT IGBT

Features


- · High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.6 \text{ V} @ I_C = 40 \text{A}$
- High input impedance

Applications

Induction Heating, UPS, AC & DC motor controls and general purpose inverters.

Description

Employing NPT technology, Fairchild's AN series of IGBTs provides low conduction and switching losses. The AN series offers an solution for application such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

Absolute Maximum Ratings

Symbol	Parameter		FGL40N120AN	Units	
V _{CES}	Collector-Emitter Voltage		1200	V	
V _{GES}	Gate-Emitter Voltage		±25	V	
	Collector Current	@T _C = 25°C	64	A	
I _C	Collector Current	@T _C = 100°C	40	А	
I _{CM(1)}	Pulsed Collector Current		160	A	
	Maximum Power Dissipation	@T _C = 25°C	500	W	
P_D	Maximum Power Dissipation	@T _C = 100°C	200	W	
SCWT	Short Circuit Withstand Time, V _{CE} = 600V, V _{GE} = 15V, T _C = 125°C		10	μs	
T _J	Operating Junction Temperature		-55 to +150	°C	
T _{STG}	Storage Temperature Range		e Temperature Range -55 to +150		
T _L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 seconds		300	°C	

Notes:

(1) Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction-to-Case		0.25	°C/W
R _{0JA} Thermal Resistance, Junction-to-Ambient			25	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGL40N120AN	FGL40N120AN	TO-264	=	=	25

Electrical Characteristics of the IGBT $T_C = 25$ °C unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Off Charact	eristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V$, $I_C = 1mA$	1200			V
BV _{CES} / ΔT _J	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0V$, $I_C = 1mA$		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			1	mA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			±250	nA
On Charact	eristics					
V _{GE(th)}	G-E Threshold Voltage	$I_{C} = 250 \mu A, V_{CE} = V_{GE}$	3.5	5.5	7.5	V
()		I _C = 40A, V _{GE} = 15V		2.6	3.2	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 40A, V _{GE} = 15V, T _C = 125°C		2.9		V
		I _C = 64A, V _{GE} = 15V		3.15		V
Dynamic CI	naracteristics					
C _{ies}	Input Capacitance			3200		pF
C _{oes}	Output Capacitance	V _{CE} = 30V, V _{GE} = 0V f = 1MHz		370		pF
C _{res}	Reverse Transfer Capacitance	1 = 1101112		125		pF
Switching (Characteristics			•	•	1
t _{d(on)}	Turn-On Delay Time			15		ns
t _r	Rise Time			20		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 600V, I_{C} = 40A,$		110		ns
t _f	Fall Time	$R_G = 5\Omega$, $V_{GE} = 15V$,		40	80	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C		2.3	3.45	mJ
E _{off}	Turn-Off Switching Loss			1.1	1.65	mJ
E _{ts}	Total Switching Loss			3.4	5.1	mJ
t _{d(on)}	Turn-On Delay Time			20		ns
t _r	Rise Time			25		ns
t _{d(off)}	Turn-Off Delay Time	V_{CC} = 600V, I_{C} = 40A, R_{G} = 5 Ω , V_{GE} = 15V, Inductive Load, T_{C} = 125°C		120		ns
t _f	Fall Time			45		ns
E _{on}	Turn-On Switching Loss			2.5		mJ
E _{off}	Turn-Off Switching Loss			1.8		mJ
E _{ts}	Total Switching Loss			4.3		mJ
Qg	Total Gate charge	V 000V I 101		220	330	nC
Q _{ge}	Gate-Emitter Charge	$V_{CE} = 600V, I_{C} = 40A,$ $V_{GE} = 15V$		25	38	nC
Q _{gc}	Gate-Collector Charge	· GE = 10 *		130	195	nC

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

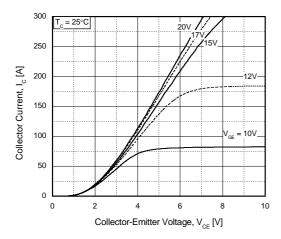


Figure 3. Saturation Voltage vs. Case
Temperature at Variant Current Level

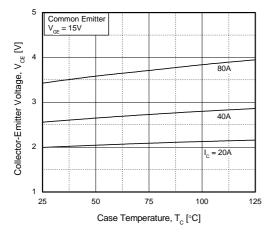


Figure 5. Saturation Voltage vs. V_{GE}

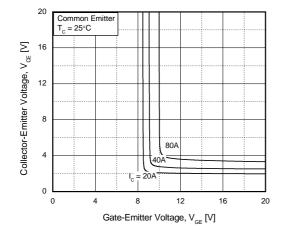


Figure 2. Typical Saturation Voltage Characteristics

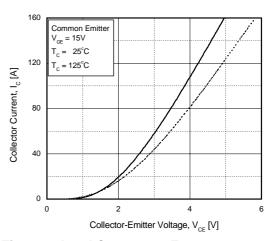


Figure 4. Load Current vs. Frequency

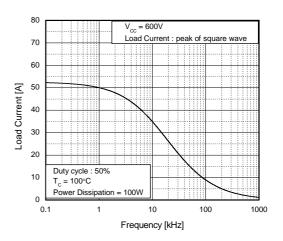
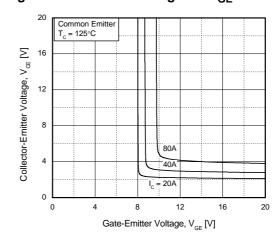



Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics (Continued)

Figure 7. Capacitance Characteristics

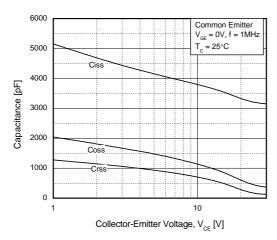


Figure 9. Turn-Off Characteristics vs. **Gate Resistance**

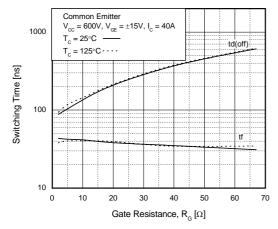


Figure 11. Turn-On Characteristics vs. **Collector Current**

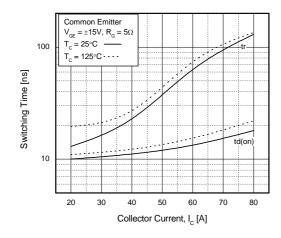


Figure 8. Turn-On Characteristics vs. Gate Resistance

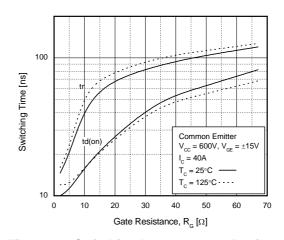


Figure 10. Switching Loss vs. Gate Resistance

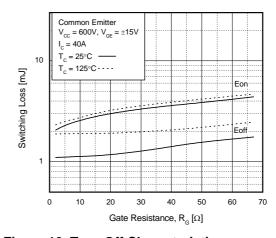
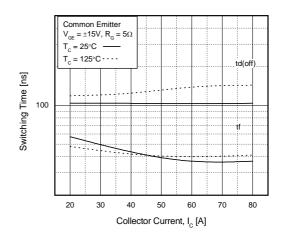



Figure 12. Turn-Off Characteristics vs. **Collector Current**

Typical Performance Characteristics (Continued)

Figure 13. Switching Loss vs. Collector Current

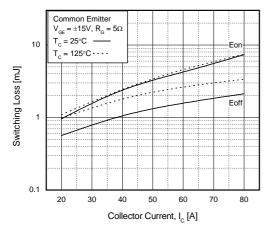


Figure 14. Gate Charge Characteristics

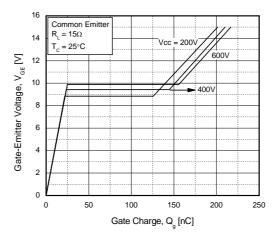


Figure 15. SOA Characteristics

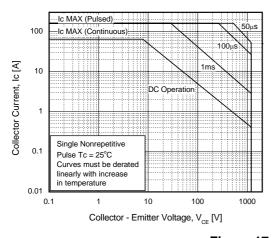
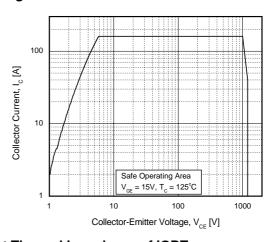
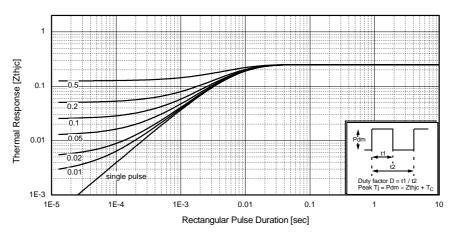
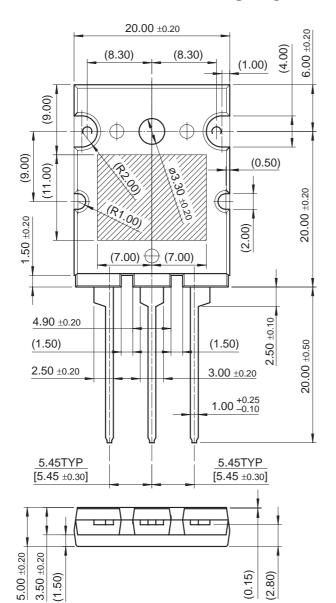
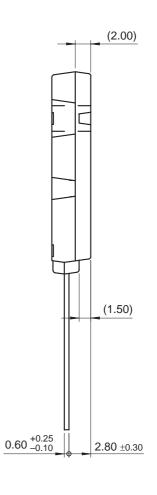


Figure 16. Turn-Off SOA


Figure 17. Transient Thermal Impedance of IGBT

Mechanical Dimensions

TO-264

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

POWEREDGE® Green FPS™ e-Series™ SuperSOT™-8 . SyncFET™ Build it Now™ GTO™ Power-SPM™ PowerTrench® The Power Franchise® CorePLUS™ i-Lo™ Programmable Active Droop™ $CROSSVOLT^{\text{\tiny TM}}$ IntelliMAX™ CTL™ QFET[®] ISOPLANAR™ TinvBoost™ $\mathsf{Q}\mathsf{S}^{\scriptscriptstyle\mathsf{TM}}$ Current Transfer Logic™ MegaBuck™ TinyBuck™ EcoSPARK® QT Optoelectronics™ TinyLogic[®] MICROCOUPLER™ FACT Quiet Series™ TINYOPTO™ Quiet Series™ MicroFET™ FACT® FAST® MicroPak™ RapidConfigure™ TinvPower™ TinyPWM™ Motion-SPM™ SMART START™ FastvCore™ OPTOLOGIC® SPM[®] TinyWire™ FPS™ OPTOPLANAR® STEALTH™ μSerDes™ FRFET® SuperFET™ UHC® PDP-SPM™ Global Power ResourceSM Power220® SuperSOT™-3 UniFET™ Green FPS™ Power247® SuperSOT™-6 VCX^{TM}

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification		Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete Not In Production		This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.		

Rev. 129

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative