www.vishay.com

SE20AFB, SE20AFD, SE20AFG, SE20AFJ

Vishay General Semiconductor

Surface Mount ESD Capability Rectifiers

DO-221AC

PRIMARY CHARACTERISTICS					
I _{F(AV)}	2.0 A				
V _{RRM}	100 V, 200 V, 400 V, 600 V				
I _{FSM}	35 A				
V_F at I_F = 2.0 A (T_A = 125 °C)	0.86 V				
I _R	5 µA				
T _J max.	175 °C				
Package	DO-221AC (SlimSMA)				
Diode variations	Single die				

TYPICAL APPLICATIONS

General purpose, power line polarity protection, in both consumer and automotive applications.

FEATURES

- Very low profile typical height of 0.95 mm
- Ideal for automated placement
- Oxide planar chip junction
- Low forward voltage drop, low leakage current
- ESD capability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

MECHANICAL DATA

Case: DO-221AC (SlimSMA) Molding compound meets UL 94 V-0 flammability rating Base P/N-M3 - halogen-free, RoHS-compliant, and commercial grade

Base P/NHM3 - halogen-free, RoHS-compliant, and AEC-Q101 qualified

Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD 22-B102

M3 suffix meets JESD 201 class 1A whisker test, HM3 suffix meets JESD 201 class 2 whisker test

Polarity: Color band denotes the cathode end

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)						
PARAMETER	SYMBOL	SE20AFB	SE20AFD	SE20AFG	SE20AFJ	UNIT
Device marking code		S2B	S2D	S2G	S2J	
Maximum repetitive peak reverse voltage	V _{RRM}	100	200	400	600	V
Maximum DC forward current	I _F ⁽¹⁾	2.0				А
	I _F ⁽²⁾	1.3				
Peak forward surge current 10 ms single half sine-wave superimposed on rated load	I _{FSM}	35			А	
Operating junction and storage temperature range	T _J , T _{STG}	G -55 to +175				°C

Notes

⁽¹⁾ Mounted on 5.0 mm x 5.0 mm pad areas, 2 oz. FR4 PCB

⁽²⁾ Free air, mounted on recommended copper pad area

1

(Pb) RoHS

COMPLIANT

HALOGEN

FREE

SE20AFB, SE20AFD, SE20AFG, SE20AFJ

www.vishay.com

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)						
PARAMETER	TEST C	ONDITIONS	SYMBOL	TYP.	MAX.	UNIT
Instantaneous forward voltage	I _F = 1.0 A	– T _A = 25 °C		0.91	-	V
	I _F = 2.0 A		V _F (1)	0.96	1.1	
	I _F = 1.0 A	− T _A = 125 °C	VF	0.79	-	
	I _F = 2.0 A			0.86	0.98	
Reverse current	Rated V _R	T _A = 25 °C	– I _R ⁽²⁾ –	-	5.0	μA
	haled VR	T _A = 125 °C	'R (-/	8	100	
Typical reverse recovery time	$I_F = 0.5 \text{ A}, I_R = 1.0 \text{ A}, I_{rr} = 0.25 \text{ A}$		t _{rr}	1.2	-	μs
Typical junction capacitance	4.0 V, 1 MHz		CJ	12	-	pF

Notes

 $^{(1)}\,$ Pulse test: 300 μs pulse width, 1 % duty cycle

 $^{(2)}$ Pulse test: Pulse width $\leq 40\ ms$

THERMAL CHARACTERISTICS ($T_A = 25$ °c unless otherwise noted)						
PARAMETER SYMBOL SE20AFB SE20AFD SE20AFG SE20AFJ						UNIT
Typical thermal resistance	R _{0JA} ⁽¹⁾		°C/W			
	R _{0JM} ⁽²⁾	12				0/10

Notes

 $^{(1)}$ Free air, mounted on recommended PCB, 1 oz. pad area; thermal resistance $R_{\theta JA}$ - junction to ambient

 $^{(2)}$ Mounted on 5.0 mm x 5.0 mm pad areas, 2 oz. FR4 PCB; $R_{\theta JM}$ - junction to mount

IMMUNITY TO ELECTRICAL STATIC DISCHARGE TO THE FOLLOWING STANDARDS ($T_A = 25$ °C unless otherwise noted)							
STANDARD TEST TYPE TEST CONDITIONS SYMBOL CLASS VALUE							
$\label{eq:AEC-Q101-001} AEC-Q101-001 \qquad \mbox{Human body model (contact mode)} \qquad \mbox{C} = 100 \ \mbox{pF}, \mbox{R} = 1.5 \ \mbox{k}\Omega \qquad \mbox{V}_{C} \qquad \mbox{H3B} \qquad > 8 \ \mbox{kV}$							

ORDERING INFORMATION (Example)						
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE		
SE20AFJ-M3/6A	0.032	6A	3500	7" diameter plastic tape and reel		
SE20AFJ-M3/6B	0.032	6B	14 000	13" diameter plastic tape and reel		
SE20AFJHM3/6A (1)	0.032	6A	3500	7" diameter plastic tape and reel		
SE20AFJHM3/6B ⁽¹⁾	0.032	6B	14 000	13" diameter plastic tape and reel		

Note

(1) AEC-Q101 qualified

SE20AFB, SE20AFD, SE20AFG, SE20AFJ

Vishay General Semiconductor

RATINGS AND CHARACTERISTICS CURVES (T_A = 25 °C unless otherwise noted)

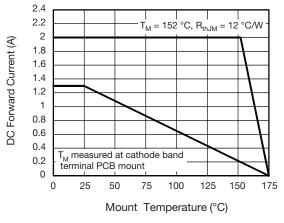


Fig. 1 - Maximum Forward Current Derating Curve

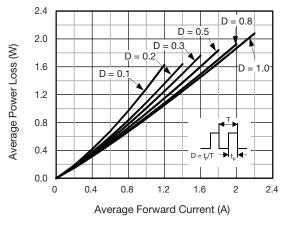
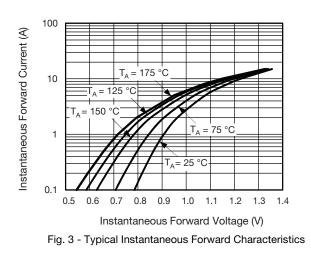



Fig. 2 - Forward Power Loss Characteristics

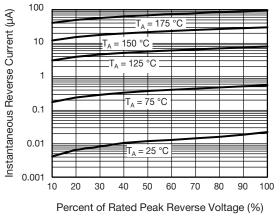


Fig. 4 - Typical Reverse Leakage Characteristics

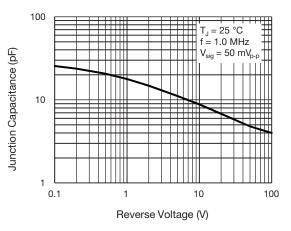
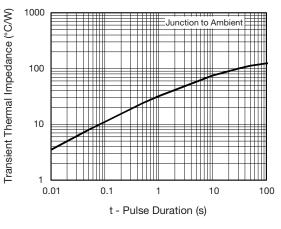
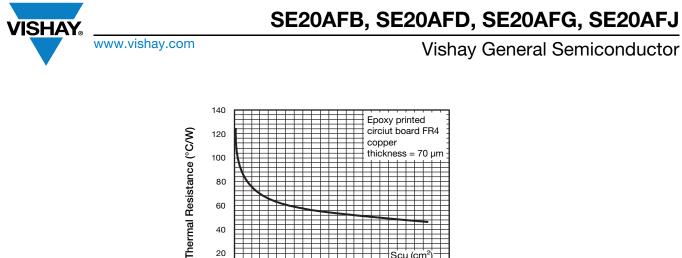


Fig. 5 - Typical Junction Capacitance




Fig. 6 - Typical Junction Capacitance

Revision: 27-Jul-15

3

Document Number: 89954

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

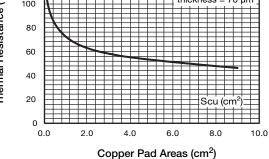
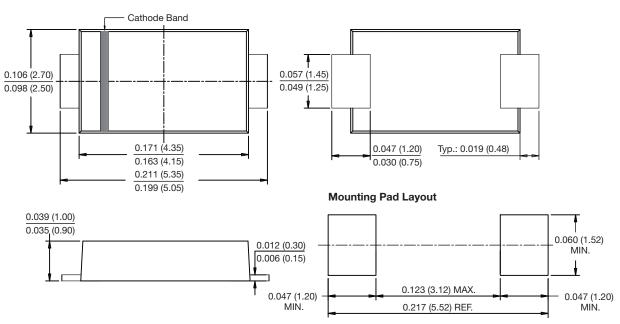



Fig. 7 - Thermal Resistance Junction to Ambient vs. Copper Pad Areas

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

DO-221AC (SlimSMA)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.