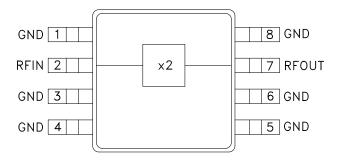


HMC188MS8 / 188MS8E

v04.0709

GaAs MMIC SMT PASSIVE FREQUENCY DOUBLER, 1.25 - 3.0 GHz INPUT

Typical Applications


The HMC188MS8 / HMC188MS8E is suitable for:

- Wireless Local Loop
- LMDS, VSAT, and Point-to-Point Radios
- UNII & HiperLAN
- Test Equipment

Features

Conversion Loss: 15 dB Fo, 3Fo, 4Fo Isolation: 45 dB Input Drive Level: 10 to 20 dBm

Functional Diagram

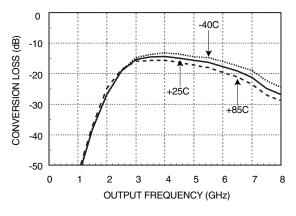
General Description

The HMC188MS8 & HMC188MS8E are miniature frequency doublers in plastic 8-lead MSOP packages. The suppression of undesired fundamental and higher order harmonics is 45 dB typical with respect to input signal levels. The doubler uses the same diode/balun technology used in Hittite MMIC mixers. The doubler is ideal for high volume applications where frequency doubling of a lower frequency is more economical than directly generating a higher frequency. The passive Schottky diode doubler technology contributes no measurable additive phase noise onto the multiplied signal.

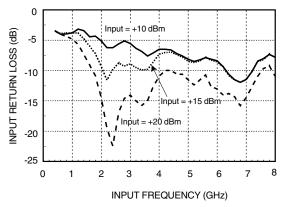
Electrical Specifications, $T_A = +25^{\circ}$ C, As a Function of Drive Level

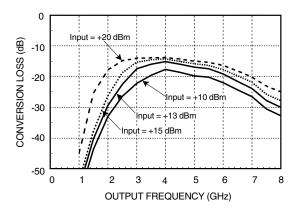
	Inț	Input = +10 dBm		Input = +15 dBm		Input = +20 dBm				
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, Input		1.75 - 2.75		1.5 - 2.5		1.25 - 3.0			GHz	
Frequency Range, Output	3.5 - 5.5		3.0 - 5.0		2.5 - 6.0			GHz		
Conversion Loss		19	22		15	18		16	19	dB
FO Isolation (with respect to input level)				35	45					dB
3FO Isolation (with respect to input level)				43	50					dB
4FO Isolation (with respect to input level)				38	45					dB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

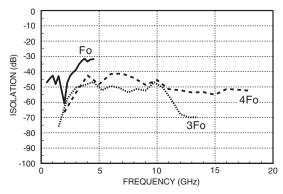


HMC188MS8 / 188MS8E

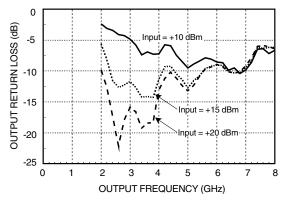

v04.0709


Conversion Loss @ +15 dBm Drive Level

Input Return Loss vs. Drive Level



Conversion Loss vs. Drive Level


GaAs MMIC SMT PASSIVE FREQUENCY DOUBLER, 1.25 - 3.0 GHz INPUT

Isolation @ +15 dBm Drive Level*

*With respect to input level

Output Return Loss vs. Drive Level

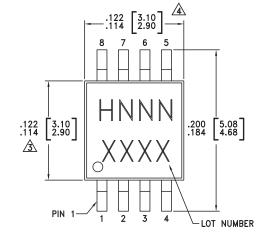
Note: Output return loss measured at 2fo, with +10dBm, +15 dBm, and +20 dBm drive levels on input of doubler.

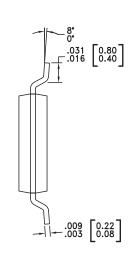
Absolute Maximum Ratings

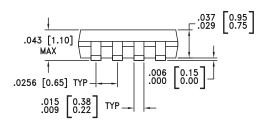
Input Drive	+27 dBm
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




v04.0709



GaAs MMIC SMT PASSIVE FREQUENCY DOUBLER, 1.25 - 3.0 GHz INPUT

Outline Drawing

NOTES:

1. LEADFRAME MATERIAL: COPPER ALLOY

2. DIMENSIONS ARE IN INCHES [MILLIMETERS].

DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.

A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.

5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]	
HMC188MS8	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	H188 XXXX	
HMC188MS8E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H188</u> XXXX	

[1] Max peak reflow temperature of 235 °C

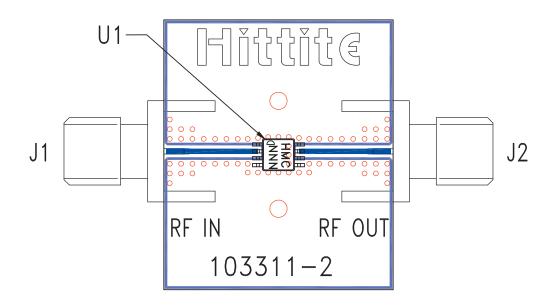
[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

Pin Description

Pin Number	Function	Description	Interface Schematic	
1, 3 - 6, 8	GND	All ground leads must be soldered to PCB RF/DC ground.		
2	RFIN	Pin is DC coupled and matched to 50 Ohms from 1.25 to 3.0 GHz		
7	RFOUT	Pin is DC coupled and matched to 50 Ohms from 2.5 to 6.0 GHz		

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


HMC188MS8 / 188MS8E

v04.0709

GaAs MMIC SMT PASSIVE FREQUENCY DOUBLER, 1.25 - 3.0 GHz INPUT

Evaluation PCB

List of Materials for Evaluation PCB 103313 [1]

Item	Description	
J1 - J3	PCB Mount SMA Connector	
C1	1,000 pF Capacitor, 0603 Pkg.	
U1	HMC188MS8 / HMC188MS8E x4 Active Multiplier	
PCB [2]	104610 Eval Board	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.