Application Note No. 057

A 1.9 GHz Low Noise Amplifier optimized for high IP3 using BFP540

RF & Protection Devices

Never stop thinking

Edition 2007-01-08

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2009.

© Infineon Technologies AG 2009. All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History: 2007-01-08, Rev. 2.0

Previous Version:						
Page	Subjects (major changes since last revision)					
All	Document layout change					

1 A 1.9 GHz Low Noise Amplifier optimized for high IP3 using BFP540

Features

- *NF* = 1.3 dB
- Gain = 15.5 dB
- *OIP*₃ = 24 dBm
- Small SOT343 package

Description

Infineon's BFP540 is a high performance, low cost silicon bipolar transistor housed in a 4-lead ultra-miniature SOT343 surface mount package. This device is designed for applications requiring high performance such LNAs, VCOs, portable telephones, spread spectrum transceivers and other low noise applications. Applying Infineon's BFP540, low noise, high gain, high linearity at low power consumption are possible.

This application note describes a low noise, high gain, low component count LNA for 1900 MHz, and it also provides general guidelines for improving 3rd order intercept performance for Infineon grounded emitter transistors.

Figure 1 shows a low noise amplifier stage for 1900 MHz using BFP540. The circuit described is useful for low cost, battery-powered applications such as the LNA stage for a CDMA handset. The design goals were gain > 15 dB, NF < 1.4 dB, input and output return losses better than 10 dB, OIP_3 > 20 dBm, unconditional stability and low PC board area.

Table 1 shows the measured parameter values. These values includes the losses of the SMA connectors and microstrip lines of the FR4 epoxy board. If the connector and PCB loss were extracted, the noise figure result would improve by 0.1-0.2 dB. **Figure 1** to **Figure 4** shows the schematic and the layout of the amplifier.

Table 1 Measured parameter values at 1500 mile, 25 \circ , T_{CC}						
Parameter	Symbol	Unit	Value	Reference (Figures)		
Power Gain $(S_{21} ^2)$	Gp	dB	15.5	Gain vs Frequency at 1900 MHz		
Noise Figure	NF	dB	1.3	NF vs Frequency (25 °C)		
Input Return Loss	R _{Lin}	dB	9	Input Return Loss vs Frequency		
Output Return Loss	R _{Lout}	dB	15	Output Return Loss vs. Frequency		
Third-Order Intercept Point	OIP ₃	dBm	24	IP ₃ measurement at V_{CC} = 3 V, I _{CC} = 6.5 mA, P _{in} = -28 dBm per tone (OIP ₃ \cong 24 dBm)		
Output Power at 1 dB Compression	P_{1dB}	dBm	-1	Gain, P _{out} vs. P _{in} at 1900 MHz (P _{1dB} = - 1 dBm)		

Table 1 Measured parameter values at 1900 MHz, 25	°C, <i>I</i> _C
---	---------------------------

Figure 1 Schematic of 1900 MHz Amplifier

Table 2 Component Part list

Name	Value	Package	Manufacturer	Function
C1	6.8 pF	0402	Murata (COG)	Input matching
C2	100 pF	0402	Murata (COG)	DC block
C3	6.8 μF	-	S+M (10 V)	Block capacitor and improve <i>IP</i> ₃
C4	10 nF	0402	Murata (X7R)	Block capacitor
C5	100 nF	0402	Murata (COG)	RF decoupling
C6	15 pF	0402	Murata (COG)	RF decoupling
C7	-	-	-	Not applied
C8	47 nF	0603	S+M (X7R)	To improve IP3-performance
L1	5.6 nH	0402	S+M	Input matching
L2	4.7 nH	0402	S+M	Output matching
L3	100 nH	0402	S+M	Biasing
R1	15 Ω	0402	S+M	Improves stability
R2	22 kΩ	0402	S+M	Biasing
R3	120 Ω	0402	S+M	Set for desired supply voltage
V1	BFP540	SOT343	Infineon	
X1	SMA-connector	SMA	Johnson	
X2	SMA-connector	SMA	Johnson	
J1	5 Pin		STOCKO / MKS1650	PIN connector
J2	3 Pin		APEM / NK 236	Switches LNA ON/OFF

Figure 2 Application Board (scale 2:1, orginal size 23 x 35 mm)

Figure 3 Top, Middle and Bottom layers of PCB-Board

Cross-Section of PCB-Board Figure 4

1.1 Measured parameter values

The curves shows the measured parameter values at 25 °C, V_{CC} = 3.0 V and 1900 MHz unlesses otherwise noted. These values include the losses of the SMA connectors and microstrip lines of the 0.2 mm FR4 epoxy board. The first four curves show the S-parameter. The noise figure, output power and gain are presented in the following two and stability factors, calculated from the S-parameters measured at the SMA-connectors is shown subsequently. Finally the IP_3 measurement with Pin = -28 dBm are presented in the last two curves.

1.2 Improving the IP_3

The IP_3 is usually determined by using a two tone test, i.e. two equal carriers generate distortion products, both in-band and out of band (Figure 5)

This product (f2-f1) is a low frequency product that is generated, which can modulate the base-emitter and collector-emitter voltages of a transistor used in a amplifier, This results an fluctuating base voltage and collector voltage. For good linearity, a constant base and collector voltage are requiered. Lowering the collector voltage causes an amplifier to saturate earlier thus decreasing linearity for certain power level. The base voltage determines the quiescent current for the device, and thus the linearity.

A fluctuating base voltage would change the linearity of the amplifier. Therefore it is important to apply proper bypassing at both collector and base. In **Figure 1** C_3 is a low frequency decoupling capacitor for the collector and C_8 for the base. In most cases, a 47 nF to 220 nF capacitor is sufficient at the base. C_8 improves the IP_3 considerably. An improvement of 5 to 12 dBm can be expected. Similar effects can be expected when C_3 is also applied, however the effects are less dramatic.

1.3 In order to optimise the design for a particular application, observe the following points

- The input return loss can be improved by reducing L_1 from 5.6 nH to 4.7 nH, however this will also increase the noise figure.
- The stability margin can be increased by increasing the value of R_1 .
- For other supply voltages resistor R₃ can be used to help setting the collector voltage for a given collector current. For a supply voltage of V_{CC} = 3 V and I_{CC} = 6.5 mA the following resistor R₃ is recommended: (3 V 2.2 V) / 6.5 mA = R₃ ≅ 120 Ω (see Figure 1). R₃ also helps to cancel the H_{FE}-spread and helps to stabilise device current over supply voltage and temperature variation.
- Consider the LNA on/off switching time which is primarily determined by the time constant set by the $R_2 C_8$ combination.

Input Return Loss vs Frequency

Reverse Isolation vs. Frequency

Output Return Loss vs. Frequency

NF vs Frequency (25 °C)

K [1], |Det| [1], µ [1]

Gain, P_{out} vs. P_{in} at 1900 MHz ($P_{1\text{dB}}$ = - 1 dBm)

Stability Factor μ , K, the magnitude of the S-matrix OIP_3 vs. V_{CC} and Temperature determinant vs. Frequency

Figure 6 IP_3 measurement at V_{CC} = 3 V, I_{CC} = 6.5 mA, P_{in} = -28 dBm per tone ($OIP_3 \cong$ 24 dBm)