NB3N511

3.3V / 5.0V 14 MHz to 200 MHz PLL Clock Multiplier

Description

The NB3N511 is a clock multiplier that will generate one of nine selectable output multiples of an input frequency via two 3-level select inputs (S0, S1). It accepts a standard fundamental mode crystal or an external reference clock signal. Phase-Locked-Loop (PLL) design techniques are used to produce a low jitter, TTL level clock output up to 200 MHz with a 50% duty cycle. An Output Enable (OE) pin is provided, and when asserted low, the clock output goes into tri-state (high impedance). The NB3N511 is commonly used in electronic systems as a cost efficient replacement for crystal oscillators.

Features

- Clock Output Frequencies up to 200 MHz
- Nine Selectable Multipliers of the Input Frequency
- Operating Range: VDD = 3.3 V ±10% or 5.0 V ±5%
- Low Jitter Output of 25 ps One Sigma (rms)
- Zero ppm Clock Multiplication Error
- 45% – 55% Output Duty Cycle
- TTL/CMOS Output with 25 mA TTL Level Drive
- Crystal Reference Input Range of 5 – 32 MHz
- Input Clock Frequency Range of 1 – 50 MHz
- OE, Output Enable with Tri-State Output
- 8-Pin SOIC
- Industrial Temperature Range −40°C to +85°C
- These are Pb-Free Devices

Figure 1. NB3N511 Logic Diagram

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.
Table 1. CLOCK MULTIPLIER SELECT TABLE

<table>
<thead>
<tr>
<th>S1*</th>
<th>S0*</th>
<th>CLKOUT Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>4X Input</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>5.333X Input</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>5X Input</td>
</tr>
<tr>
<td>M</td>
<td>L</td>
<td>2.5X Input</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>2X Input</td>
</tr>
<tr>
<td>M</td>
<td>H</td>
<td>3.333X Input</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>6X Input</td>
</tr>
<tr>
<td>H</td>
<td>M</td>
<td>3X Input</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>8X Input</td>
</tr>
</tbody>
</table>

*Pins S1 and S0 default to M when open
L = GND
H = VDD
M = OPEN (unconnected; will default to VDD/2)

Table 2. PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1/ICLK</td>
<td>Crystal or LVCMOS/LVTTL Input</td>
<td>Crystal or external reference clock input</td>
</tr>
<tr>
<td>2</td>
<td>VDD</td>
<td>Power supply</td>
<td>Positive supply voltage</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Power supply</td>
<td>0 V. Ground.</td>
</tr>
<tr>
<td>4</td>
<td>S1</td>
<td>Three level Input</td>
<td>Multiplier select pin – connect to VDD, GND or float</td>
</tr>
<tr>
<td>5</td>
<td>CLKOUT</td>
<td>LVCMOS/LVTTL Output</td>
<td>Clock output</td>
</tr>
<tr>
<td>6</td>
<td>S0</td>
<td>Three level Input</td>
<td>Multiplier select pin – connect to VDD, GND or float</td>
</tr>
<tr>
<td>7</td>
<td>OE</td>
<td>LVCMOS/LVTTL Input</td>
<td>Output Enable. CLKOUT is high impedance when OE is low. Internal pullup</td>
</tr>
<tr>
<td>8</td>
<td>X2</td>
<td>Crystal</td>
<td>Crystal input – Leave open when providing an external clock reference</td>
</tr>
</tbody>
</table>

Table 3. COMMON OUTPUT FREQUENCY EXAMPLES

<table>
<thead>
<tr>
<th>Output Frequency (MHz)</th>
<th>Input Frequency (MHz)</th>
<th>S1, S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>10</td>
<td>M, M</td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td>M, M</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>H, M</td>
</tr>
<tr>
<td>32</td>
<td>16</td>
<td>M, M</td>
</tr>
<tr>
<td>33.33</td>
<td>16.66</td>
<td>M, M</td>
</tr>
<tr>
<td>37.5</td>
<td>15</td>
<td>M, L</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>L, L</td>
</tr>
<tr>
<td>48</td>
<td>12</td>
<td>L, L</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>M, L</td>
</tr>
<tr>
<td>60</td>
<td>10</td>
<td>H, L</td>
</tr>
<tr>
<td>64</td>
<td>16</td>
<td>L, L</td>
</tr>
</tbody>
</table>

Table 4. COMMON OUTPUT FREQUENCY EXAMPLES

<table>
<thead>
<tr>
<th>Output Frequency (MHz)</th>
<th>Input Frequency (MHz)</th>
<th>S1, S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.66</td>
<td>20</td>
<td>M, H</td>
</tr>
<tr>
<td>72</td>
<td>12</td>
<td>H, L</td>
</tr>
<tr>
<td>75</td>
<td>25</td>
<td>H, M</td>
</tr>
<tr>
<td>80</td>
<td>10</td>
<td>H, H</td>
</tr>
<tr>
<td>83.33</td>
<td>25</td>
<td>M, H</td>
</tr>
<tr>
<td>90</td>
<td>15</td>
<td>H, L</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>L, H</td>
</tr>
<tr>
<td>120</td>
<td>15</td>
<td>H, H</td>
</tr>
<tr>
<td>125</td>
<td>25</td>
<td>L, H</td>
</tr>
<tr>
<td>133.3</td>
<td>25</td>
<td>L, M</td>
</tr>
<tr>
<td>150</td>
<td>25</td>
<td>H, L</td>
</tr>
</tbody>
</table>

Figure 2. NB3N511 Package Pinout, 8−Pin (150 mil) SOIC (Top View)
Table 4. ATTRIBUTES

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD Protection</td>
<td>Human Body Model</td>
</tr>
<tr>
<td></td>
<td>Machine Model</td>
</tr>
<tr>
<td></td>
<td>Charged Device Model</td>
</tr>
<tr>
<td>RPU – OE Input Pull-up Resistor</td>
<td></td>
</tr>
<tr>
<td>Moisture Sensitivity (Note 1)</td>
<td>SOIC–8</td>
</tr>
<tr>
<td>Flammability Rating</td>
<td>Oxygen Index: 28 to 34</td>
</tr>
<tr>
<td>Transistor Count</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test</td>
</tr>
</tbody>
</table>

1. For additional information, see Application Note AND8003/D.

Table 5. MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition 1</th>
<th>Condition 2</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Positive Power Supply</td>
<td>GND = 0 V</td>
<td></td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>VIO</td>
<td>Input and Output Voltages</td>
<td>−0.5 V ≤ VIO ≤ VDD + 0.5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>Operating Temperature Range</td>
<td>−40 to +85 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tstg</td>
<td>Storage Temperature Range</td>
<td>−65 to +150 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θJA</td>
<td>Thermal Resistance (Junction–to–Ambient)</td>
<td>0 lfpm</td>
<td>SOIC–8</td>
<td>190</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 lfpm</td>
<td>SOIC–8</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>θJC</td>
<td>Thermal Resistance (Junction–to–Case)</td>
<td>(Note 2)</td>
<td>SOIC–8</td>
<td>41 to 44</td>
<td>°C/W</td>
</tr>
<tr>
<td>Tsol</td>
<td>Wave Solder</td>
<td>Pb–Free</td>
<td></td>
<td>265</td>
<td>°C</td>
</tr>
</tbody>
</table>

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

2. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.
Table 6. DC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Operating Voltage $V_{DD} = 5$ V $V_{DD} = 3.3$ V</td>
<td>4.75</td>
<td>3.0</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Power Supply Current – Inputs and outputs open, CLKOUT operating at 100 MHz (with 20 MHz crystal) $V_{DD} = 5$ V $V_{DD} = 3.3$ V</td>
<td>9</td>
<td>8</td>
<td>3.6</td>
<td>mA</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output HIGH Voltage $I_{OH} = -4$ mA CMOS High</td>
<td>$V_{DD} - 0.4$</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output LOW Voltage $I_{OL} = 25$ mA</td>
<td>2.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>Input HIGH Voltage, ICLK only (pin 1) $V_{DD} = 5$ V $V_{DD} = 3.3$ V</td>
<td>$(V_{DD} / 2) + 1$</td>
<td>$(V_{DD} / 2) + 0.7$</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input LOW Voltage, ICLK only (pin 1) $V_{DD} = 5$ V $V_{DD} = 3.3$ V</td>
<td>$(V_{DD} / 2) - 1$</td>
<td>$(V_{DD} / 2) - 0.7$</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>Input HIGH Voltage, S0, S1</td>
<td>$V_{DD} - 0.5$</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input LOW Voltage, S0, S1</td>
<td>0.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>Input HIGH Voltage, OE (pin 7)</td>
<td>2.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input LOW Voltage, OE (pin 7)</td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>C_{in}</td>
<td>Input Capacitance, S0, S1 and OE</td>
<td>4</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Output Short Circuit Current, CLKOUT</td>
<td></td>
<td></td>
<td>±70</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Nominal Output Impedance</td>
<td></td>
<td></td>
<td>20</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Table 7. AC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{Xtal}</td>
<td>Crystal Input Frequency (Note 3)</td>
<td>5</td>
<td>32</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>f_{CLKIN}</td>
<td>Clock Input Frequency</td>
<td>1</td>
<td>50</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>f_{OUT}</td>
<td>Output Frequency Range $f_{OUTMIN} \leq f_{IN} \times Multiplier \leq f_{OUTMAX}$ $V_{DD} = 4.25$ to 5.25 V (5.0 V ± 5%) $V_{DD} = 3.0$ to 3.6 V (3.3 V ± 10%)</td>
<td>14</td>
<td>200</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>DC</td>
<td>Output Clock Duty Cycle at 1.5 V</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>%</td>
</tr>
<tr>
<td>OE<sub>H</sub></td>
<td>Output enable time, OE high to output on</td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>OE<sub>L</sub></td>
<td>Output disable time, OE low to tri-state</td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{\text{jitter}}) (rms)</td>
<td>Period Jitter (rms, 1 ns)</td>
<td>25</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>(t_{\text{jitter (pk-to-pk)}})</td>
<td>Total Period Jitter, (peak-to-peak)</td>
<td>±70</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>(t_{r/t_f})</td>
<td>Output rise/fall time (0.8 V to 2.0 V) (measured with 15 pF load)</td>
<td>1</td>
<td>1.5</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

3. The crystal should be fundamental mode, parallel resonant. Do not use third overtone. For exact tuning when using a crystal, capacitors should be connected from pins X1/CLK to GND and X2 to GND. The value of these capacitors is given by the following equation, where C_{L} is the specified crystal load capacitance: Crystal capacitance (pF) = $(C_{L} - 12) \times 2$. So, for a crystal with 16 pF load capacitance, use two 8 pF capacitors.
APPLICATIONS INFORMATION

High Frequency CMOS/TTL Oscillators

The NB3N511, along with a low frequency fundamental mode crystal, can build a high frequency TTL output oscillator. For example, a 20 MHz crystal connected to the NB3N511 with the 5X output selected (S1 = L, S0 = H) produces an 100 MHz CMOS/TTL output clock.

Decoupling and External Components

The NB3N511 requires a 0.01 μF decoupling capacitor to be connected between VDD and GND on pins 2 and 3. It must be connected close to the NB3N511 to minimize lead inductance. Control input pins can be connected to device pins VDD or GND, or to the VDD and GND planes on the board.

Series Termination Resistor

A 33 Ω terminating resistor can be used next to the CLK pin for trace lengths over one inch.

Crystal Information

The crystal used should be a fundamental mode (do not use third overtone), parallel resonant. Crystal load capacitors should be connected from pins X1 to ground and X2 to ground to optimize the frequency accuracy, See Figure 1.

The total on chip capacitance is approximately 12 pF. A parallel resonant, fundamental mode crystal should be used. The device crystal connections should include pads for small capacitors from X1 to ground and from X2 to ground. These capacitors are used to adjust the stray capacitance of the board to match the nominally required crystal load capacitance. Because load capacitance can only be increased in this trimming process, it is important to keep stray capacitance to a minimum by using very short PCB traces (and no vias) between the crystal and device. Crystal capacitors, if needed, must be connected from each of the pins X1 and X2 to ground. The value (in pF) of these crystal caps should equal (C_L − 12 pF) * 2. In this equation, C_L = crystal load capacitance in pF. Example: For a crystal with a 16 pF load capacitance, each crystal capacitor would be 8 pF [(16 − 12) x 2 = 8].

Table 8. RECOMMENDED CRYSTAL PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal Cut</td>
<td>Fundamental AT Cut</td>
</tr>
<tr>
<td>Resonance</td>
<td>Parallel Resonance</td>
</tr>
<tr>
<td>Load Capacitance</td>
<td>18 pF</td>
</tr>
<tr>
<td>Operating Range</td>
<td>−40 to +85°C</td>
</tr>
<tr>
<td>Shunt Capacitance</td>
<td>5 pF Max</td>
</tr>
<tr>
<td>Equivalent Series Resistance (ESR)</td>
<td>50 Ω Max</td>
</tr>
<tr>
<td>Correlation Drive Level</td>
<td>1.0 mW Max</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB3N511DG</td>
<td>SOIC–8 (Pb–Free)</td>
<td>98 Units / Rail</td>
</tr>
<tr>
<td>NB3N511DR2G</td>
<td>SOIC–8 (Pb–Free)</td>
<td>2500 / Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
NOTES:
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07.

SOLDERING FOOTPRINT*

*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.