

# STGYA120M65DF2AG

# Automotive trench gate field-stop IGBT, M series 650 V, 120 A low loss

Datasheet - production data

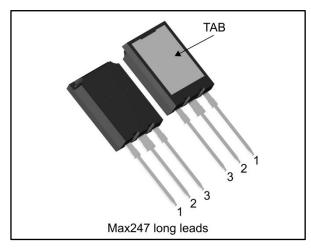
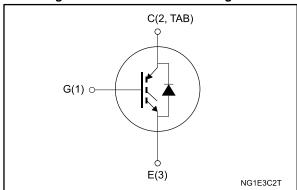




Figure 1: Internal schematic diagram



#### **Features**



- AEC-Q101 qualified
- 6 µs of short-circuit withstand time
- V<sub>CE(sat)</sub> = 1.65 V (typ.) @ I<sub>C</sub> = 120 A
- Tight parameter distribution
- Safer paralleling
- Low thermal resistance
- Soft and very fast recovery antiparallel diode

## **Applications**

- Motor control
- UPS
- PFC

### **Description**

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where low-loss and short-circuit functionality are essential. Furthermore, the positive V<sub>CE(sat)</sub> temperature coefficient and tight parameter distribution result in safer paralleling operation.

**Table 1: Device summary** 

| Order code       | Marking      | Package           | Packing |
|------------------|--------------|-------------------|---------|
| STGYA120M65DF2AG | G120M65DF2AG | Max247 long leads | Tube    |

# Contents

| 1 | Electrical ratings |                                       |    |
|---|--------------------|---------------------------------------|----|
| 2 | Electric           | al characteristics                    | 4  |
|   | 2.1                | Electrical characteristics (curves)   | 6  |
| 3 | Test cir           | cuits                                 | 12 |
| 4 | Packag             | e information                         | 13 |
|   | 4.1                | Max247 long leads package information | 14 |
| 5 | Revisio            | n history                             | 16 |

STGYA120M65DF2AG Electrical ratings

# 1 Electrical ratings

Table 2: Absolute maximum ratings

| Symbol                         | Parameter                                               | Value       | Unit |  |
|--------------------------------|---------------------------------------------------------|-------------|------|--|
| Vces                           | Collector-emitter voltage (V <sub>GE</sub> = 0)         | 650         | V    |  |
| lc <sup>(1)</sup>              | Continuous collector current at T <sub>C</sub> = 25 °C  | 160         | Α    |  |
| lc                             | Continuous collector current at T <sub>C</sub> = 100 °C | 120         | A    |  |
| ICP <sup>(2)</sup>             | Pulsed collector current                                | 360         | Α    |  |
| $V_{GE}$                       | Gate-emitter voltage                                    | ± 20        | V    |  |
| I <sub>F</sub> <sup>(1)</sup>  | Continuous forward current at T <sub>C</sub> = 25 °C    | 160         | Α    |  |
| l <sub>F</sub>                 | Continuous forward current at T <sub>C</sub> = 100 °C   | 120         | A    |  |
| I <sub>FP</sub> <sup>(2)</sup> | Pulsed forward current                                  | 360         | Α    |  |
| Ртот                           | Total dissipation at T <sub>C</sub> = 25 °C             | 625         | W    |  |
| Tstg                           | Storage temperature range                               | - 55 to 150 | )    |  |
| TJ                             | Operating junction temperature range                    | - 55 to 175 | °C   |  |

#### Notes:

Table 3: Thermal data

| Symbol             | Parameter                              | Value | Unit |
|--------------------|----------------------------------------|-------|------|
| R <sub>th</sub> JC | Thermal resistance junction-case IGBT  | 0.24  |      |
| R <sub>thJC</sub>  | Thermal resistance junction-case diode | 0.6   | °C/W |
| R <sub>thJA</sub>  | Thermal resistance junction-ambient    | 50    |      |

<sup>&</sup>lt;sup>(1)</sup>Current level is limited by bond wires.

 $<sup>\</sup>ensuremath{^{(2)}}\mbox{Pulse}$  width limited by maximum junction temperature.

## 2 Electrical characteristics

T<sub>C</sub> = 25 °C unless otherwise specified

**Table 4: Static characteristics** 

| Symbol               | Parameter                                                                  | Test conditions                                                            | Min. | Тур. | Max.     | Unit |
|----------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|------|------|----------|------|
| V <sub>(BR)CES</sub> | Collector-emitter breakdown voltage                                        | $V_{GE} = 0 \text{ V}, I_C = 2 \text{ mA}$                                 | 650  |      |          | V    |
|                      |                                                                            | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 120 A                             |      | 1.65 | 2.15     |      |
| V <sub>CE(sat)</sub> | V <sub>CE(sat)</sub> Collector-emitter saturation                          | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 120 A,<br>T <sub>J</sub> = 125 °C |      | 1.95 |          | V    |
| voltage              | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 120 A,<br>T <sub>J</sub> = 175 °C |                                                                            | 2.1  |      |          |      |
|                      |                                                                            | I <sub>F</sub> = 120 A                                                     |      | 1.9  |          |      |
| $V_{F}$              | Forward on-voltage                                                         | I <sub>F</sub> = 120 A, T <sub>J</sub> = 125 °C                            |      | 1.7  |          | V    |
|                      |                                                                            | I <sub>F</sub> = 120 A, T <sub>J</sub> = 175 °C                            |      | 1.6  |          |      |
| $V_{GE(th)}$         | Gate threshold voltage                                                     | $V_{CE} = V_{GE}$ , $I_C = 2 \text{ mA}$                                   | 5    | 6    | 7        | V    |
| I <sub>CES</sub>     | Collector cut-off current                                                  | V <sub>GE</sub> = 0 V, V <sub>CE</sub> = 650 V                             |      |      | 100      | μΑ   |
| Iges                 | Gate-emitter leakage current                                               | Vce = 0 V, Vge = ± 20 V                                                    |      |      | ±<br>250 | μΑ   |

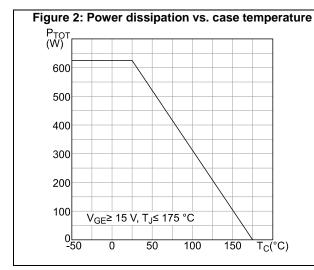
**Table 5: Dynamic characteristics** 

| Symbol | Parameter                    | Test conditions                                 | Min. | Тур. | Max. | Unit |
|--------|------------------------------|-------------------------------------------------|------|------|------|------|
| Cies   | Input capacitance            |                                                 | -    | 11   | -    |      |
| Coes   | Output capacitance           | V <sub>CE</sub> = 25 V, f = 1 MHz,              | -    | 0.61 | -    | nF   |
| Cres   | Reverse transfer capacitance | $V_{GE} = 0 V$                                  | -    | 0.25 | -    | 1    |
| $Q_g$  | Total gate charge            | Vcc = 520 V, Ic = 120 A,                        | -    | 420  | ı    |      |
| $Q_ge$ | Gate-emitter charge          | V <sub>GE</sub> = 15 V (see <i>Figure 30:</i> " | -    | 90   | -    | nC   |
| Qgc    | Gate-collector charge        | Gate charge test circuit")                      | -    | 160  | -    |      |

Table 6: IGBT switching characteristics (inductive load)

| Symbol                         | Parameter                    | Test conditions                                                                           | Min. | Тур. | Max. | Unit |
|--------------------------------|------------------------------|-------------------------------------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>             | Turn-on delay time           |                                                                                           |      | 66   | -    | ns   |
| tr                             | Current rise time            |                                                                                           |      | 38   | -    | ns   |
| (di/dt) <sub>on</sub>          | Turn-on current slope        | V <sub>CE</sub> = 400 V, I <sub>C</sub> = 120 A,                                          |      | 2500 | -    | A/µs |
| t <sub>d(off)</sub>            | Turn-off-delay time          | $V_{GE} = 400 \text{ V}, 10 = 120 \text{ A},$ $V_{GE} = 15 \text{ V}, R_{G} = 4.7 \Omega$ |      | 185  | -    | ns   |
| t <sub>f</sub>                 | Current fall time            | (see Figure 29: "Test circuit                                                             |      | 85   | -    | ns   |
| E <sub>on</sub> <sup>(1)</sup> | Turn-on switching energy     | for inductive load switching")                                                            |      | 1.8  | -    | mJ   |
| E <sub>off</sub> (2)           | Turn-off switching energy    |                                                                                           |      | 4.41 | -    | mJ   |
| Ets                            | Total switching energy       |                                                                                           |      | 6.21 | -    | mJ   |
| t <sub>d(on)</sub>             | Turn-on delay time           |                                                                                           |      | 62   | -    | ns   |
| tr                             | Current rise time            |                                                                                           |      | 48   | -    | ns   |
| (di/dt) <sub>on</sub>          | Turn-on current slope        | V <sub>CE</sub> = 400 V, I <sub>C</sub> = 120 A,                                          |      | 2016 | -    | A/µs |
| t <sub>d(off)</sub>            | Turn-off-delay time          | $V_{GE} = 15 \text{ V}, R_{G} = 4.7 \Omega$                                               |      | 187  | -    | ns   |
| tf                             | Current fall time            | T <sub>J</sub> = 175 °C (see Figure 29: "  <br>Test circuit for inductive load            |      | 164  | -    | ns   |
| Eon <sup>(1)</sup>             | Turn-on switching energy     | switching")                                                                               |      | 4.4  | -    | mJ   |
| E <sub>off</sub> (2)           | Turn-off switching energy    |                                                                                           |      | 6.0  | -    | mJ   |
| E <sub>ts</sub>                | Total switching energy       |                                                                                           |      | 10.4 | -    | mJ   |
|                                | Short-circuit withstand time | V <sub>CC</sub> ≤ 400 V, V <sub>GE</sub> = 13 V,<br>T <sub>Jstart</sub> = 150 °C          | 10   |      | -    |      |
| t <sub>sc</sub>                |                              | V <sub>CC</sub> ≤ 400 V, V <sub>GE</sub> = 15 V,<br>T <sub>Jstart</sub> = 150 °C          | 6    |      | -    | μs   |

#### Notes:


Table 7: Diode switching characteristics (inductive load)

| Symbol               | Parameter                                                           | Test conditions                                                                  | Min. | Тур. | Max. | Unit |
|----------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|------|------|------|------|
| trr                  | Reverse recovery time                                               |                                                                                  | ı    | 202  | 1    | ns   |
| Qrr                  | Reverse recovery charge                                             | I <sub>F</sub> = 120 A, V <sub>R</sub> = 400 V,                                  | -    | 2.9  | -    | μC   |
| Irrm                 | Reverse recovery current                                            | V <sub>GE</sub> = 15 V (see <i>Figure 29:</i> "                                  | ı    | 32.5 | 1    | Α    |
| dl <sub>rr</sub> /dt | Peak rate of fall of reverse recovery current during t <sub>b</sub> | Test circuit for inductive load switching") di/dt = 1000 A/μs                    | ı    | 500  | ı    | A/µs |
| Err                  | Reverse recovery energy                                             |                                                                                  |      | 500  | 1    | μJ   |
| t <sub>rr</sub>      | Reverse recovery time                                               |                                                                                  | ı    | 320  | ı    | ns   |
| Qrr                  | Reverse recovery charge                                             | I <sub>F</sub> = 120 A, V <sub>R</sub> = 400 V,                                  | ı    | 11.2 | ı    | μC   |
| Irrm                 | Reverse recovery current                                            | $V_{GE} = 15 \text{ V T}_{J} = 175 \text{ °C}$<br>(see Figure 29: " Test circuit | ı    | 62   | ı    | Α    |
| dl <sub>rr</sub> /dt | Peak rate of fall of reverse recovery current during tb             | for inductive load switching") di/dt = 1000 A/µs                                 | -    | 270  | -    | A/µs |
| Err                  | Reverse recovery energy                                             |                                                                                  | ı    | 1710 | -    | μJ   |

<sup>&</sup>lt;sup>(1)</sup>Including the reverse recovery of the diode.

 $<sup>\</sup>ensuremath{^{(2)}}\mbox{Including}$  the tail of the collector current.

## 2.1 Electrical characteristics (curves)



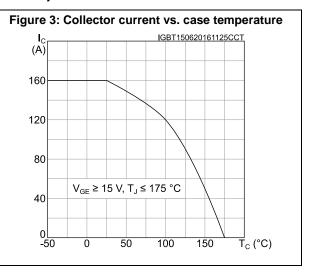
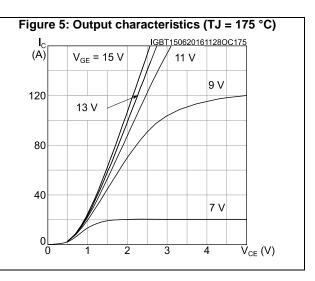


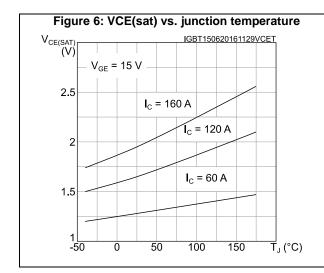

Figure 4: Output characteristics (TJ = 25 °C)

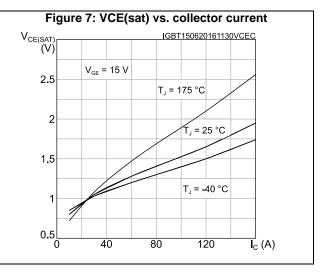
IC

IGBT1506201611260C25

(A)


120


13 V


9 V

40

0 1 2 3 4 V<sub>CE</sub> (V)







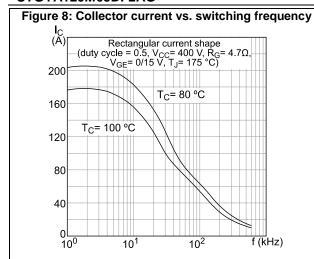
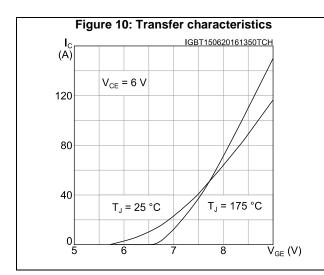
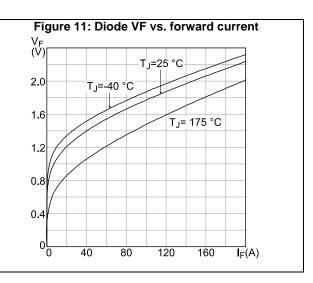
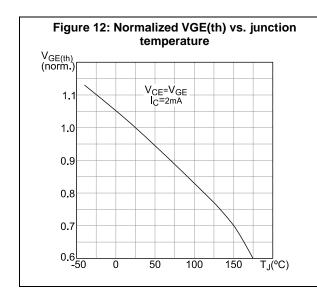






Figure 9: Forward bias safe operating area  $t_{C}(A)$   $10^{2}$   $t_{p} = 10 \ \mu s$   $t_{p} = 100 \ \mu s$   $t_{p} = 1 \ ms$   $t_{p} = 1 \ ms$   $t_{p} = 10 \ ms$   $10^{0}$   $T_{J}=175^{\circ}C, T_{C}=25^{\circ}C, \text{ single pulse}$   $10^{-1}$   $10^{0}$   $10^{1}$   $10^{2}$   $V_{CE}(V)$ 







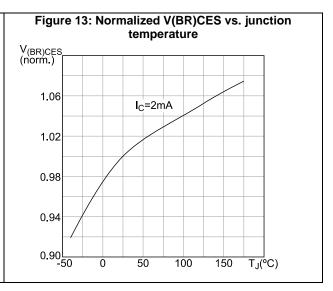



Figure 14: Capacitance variations

C
(pF)

10<sup>4</sup>

10<sup>3</sup>

10<sup>2</sup>

f = 1 MHz

C<sub>oes</sub>

C<sub>res</sub>

10<sup>1</sup>

10<sup>-1</sup>

10<sup>0</sup>

10<sup>1</sup>

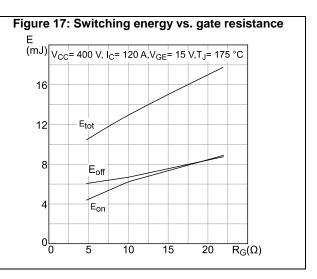
10<sup>2</sup>

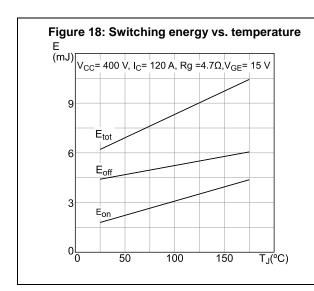
V<sub>CE</sub>(V)

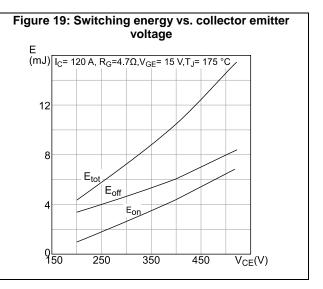
Figure 15: Gate charge vs. gate-emitter voltage

VGE
(V)

VCC= 520 V, IC= 120A, IG= 10 mA


15


10


5

0 100 200 300 400 Qg(nC)

Figure 16: Switching energy vs. collector current  $\begin{array}{c|c} E \\ (mJ) & V_{CC} = 400 \text{ V}, R_G = 4.7\Omega, V_{GE} = 15 \text{ V}, T_J = 175 \text{ °C} \end{array}$ 24 20 16 12 E<sub>tot</sub> E<sub>off</sub> 8 Eon 0 50 100 150 200  $\overline{I_{C}}(A)$ 







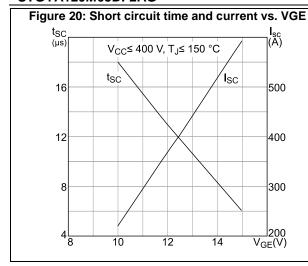
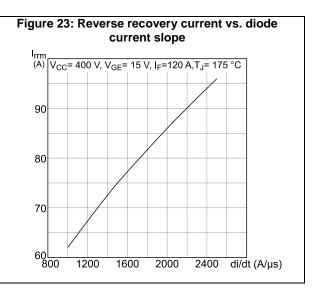
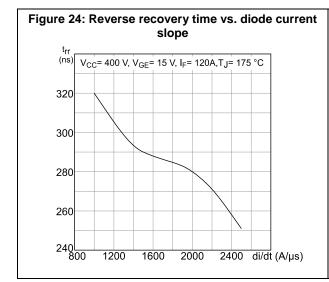
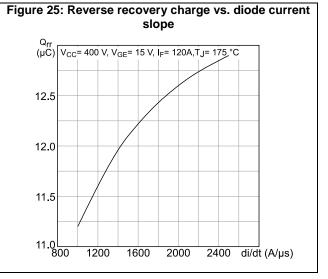
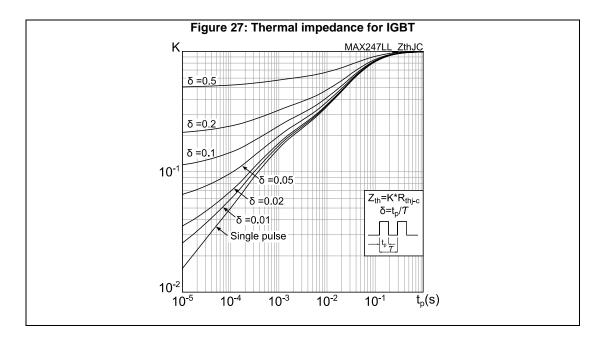
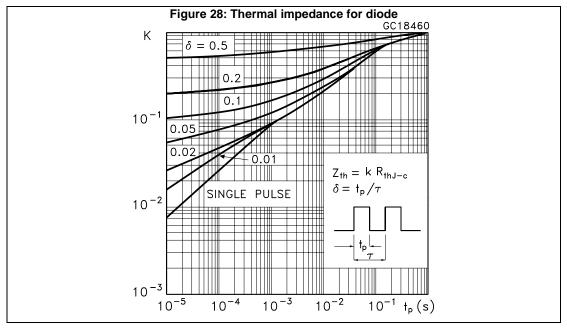





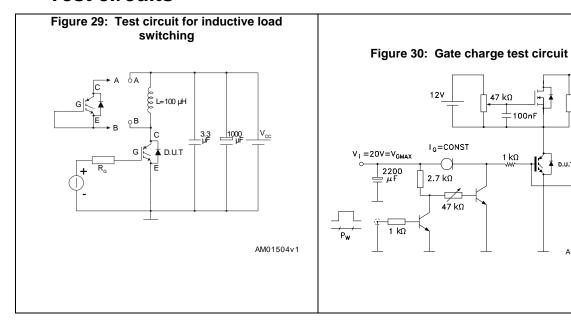

Figure 21: Switching times vs. collector current t (ns)  $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 4.7\Omega, T_J = 175 °C$   $t_{d(off)}$   $t_{f}$   $t_{f}$ 

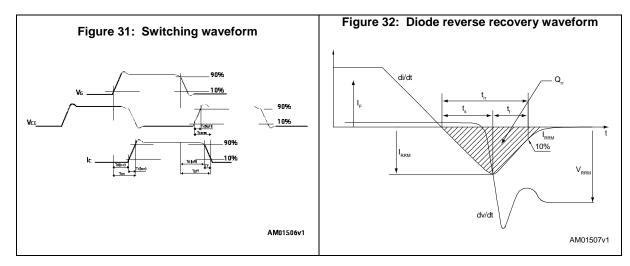

Figure 22: Switching times vs. gate resistance t (ns)  $t_{d(off)}$   $t_{f}$   $t_{r}$   $t_{r}$  t










Test circuits STGYA120M65DF2AG

## 3 Test circuits





AM01505v1

# 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

# 4.1 Max247 long leads package information

Figure 33: Max247 long leads package outline

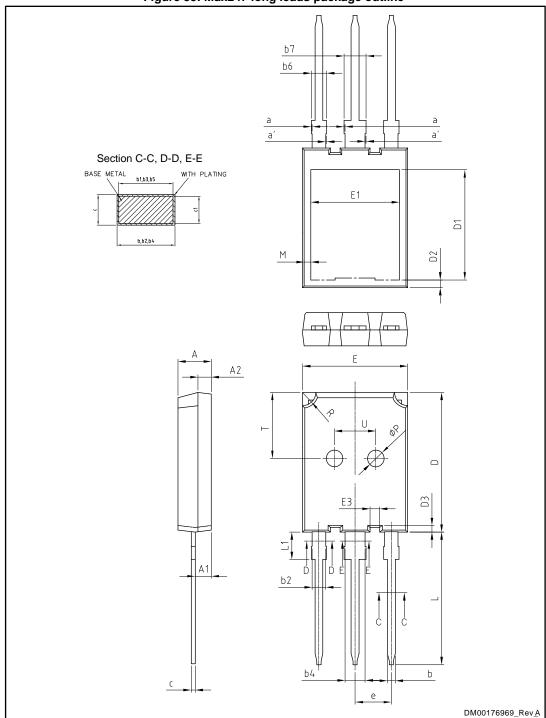



Table 8: Max247 long leads package mechanical data

|      | Table 6: Max247 long lead | mm    |       |
|------|---------------------------|-------|-------|
| Dim. | Min.                      | Тур.  | Max.  |
| А    | 4.90                      | 5.00  | 5.10  |
| A1   | 2.31                      | 2.41  | 2.51  |
| A2   | 1.90                      | 2.00  | 2.10  |
| а    | 0                         |       | 0.15  |
| a'   | 0                         |       | 0.15  |
| b    | 1.16                      |       | 1.26  |
| b1   | 1.15                      | 1.20  | 1.22  |
| b2   | 1.96                      |       | 2.06  |
| b3   | 1.95                      | 2.00  | 2.02  |
| b4   | 2.96                      |       | 3.06  |
| b5   | 2.95                      | 3.00  | 3.02  |
| b6   |                           |       | 2.25  |
| b7   |                           |       | 3.25  |
| С    | 0.59                      |       | 0.66  |
| c1   | 0.58                      | 0.60  | 0.62  |
| D    | 20.90                     | 21.00 | 21.10 |
| D1   | 16.25                     | 16.55 | 16.85 |
| D2   | 1.05                      | 1.17  | 1.35  |
| D3   | 0.75                      | 1.00  | 1.25  |
| Е    | 15.70                     | 15.80 | 15.90 |
| E1   | 13.10                     | 13.26 | 13.50 |
| E3   | 1.35                      | 1.45  | 1.55  |
| е    | 5.34                      | 5.44  | 5.54  |
| L    | 19.80                     | 19.92 | 20.10 |
| L1   |                           |       | 4.30  |
| M    | 0.70                      |       | 1.30  |
| Р    | 2.40                      | 2.50  | 2.60  |
| R    | 1.90                      | 2.00  | 2.10  |
| Т    | 9.80                      |       | 10.20 |
| U    | 6.00                      |       | 6.40  |

Revision history STGYA120M65DF2AG

# 5 Revision history

**Table 9: Document revision history** 

| Date        | Revision | Changes                                                                            |  |  |
|-------------|----------|------------------------------------------------------------------------------------|--|--|
| 12-Aug-2016 | 1        | First release.                                                                     |  |  |
| 12-Dec-2016 | 2        | Document status promoted from preliminary to production data.  Minor text changes. |  |  |

#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

