To learn more about ON Semiconductor, please visit our website at www.onsemi.com
DF005S - DF10S
Bridge Rectifiers

Features
- Maximum Surge Rating: $I_{FSM} = 50 \text{ A}$
 $I^2t = 10 \text{ A}^2\text{Sec}$
- Optimized V_F: Typical 0.94 V at 1.5 A, 25°C
- Glass Passivated Junctions
- Lead Free Compliant to EU RoHS 2002/95/EU Directives
- Green Molding Compound: IEC61249
- Qualified with IR Reflow and Wave Soldering
- UL Certified, UL #E258596

Description
With the ever-pressing need to improve power supply efficiency, improve surge rating, improve reliability, and reduce size, the DFxS family sets a standard in performance.

The design offers an surge rating of 50 A. This is important when improving reliability and increasing efficiency. High efficiency designs strive to reduce circuit resistance, which, unfortunately can result in increased inrush surge. As such high surge current ratings can be required to maintain or improve reliability.

The design also offers better efficiency by achieving a 1.5 A V_F of 1.1 V maximum at 25°C. This lower V_F also supports cooler and more efficient operation.

Finally, the DFxS achieves all this in a SDIP surface mount form factor, reducing board space and volumetric requirements vs. competitive devices.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF005S</td>
<td>DF005S</td>
<td>SDIP 4L</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>DF01S</td>
<td>DF01S</td>
<td>SDIP 4L</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>DF02S</td>
<td>DF02S</td>
<td>SDIP 4L</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>DF04S</td>
<td>DF04S</td>
<td>SDIP 4L</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>DF06S</td>
<td>DF06S</td>
<td>SDIP 4L</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>DF08S</td>
<td>DF08S</td>
<td>SDIP 4L</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>DF10S</td>
<td>DF10S</td>
<td>SDIP 4L</td>
<td>Tape and Reel</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{RRM}</td>
<td>Maximum Repetitive Reverse Voltage</td>
<td>DF005S: 50</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DF01S: 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DF02S: 200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DF04S: 400</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DF06S: 600</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DF08S: 800</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DF10S: 1000</td>
<td></td>
</tr>
<tr>
<td>V_{RMS}</td>
<td>Maximum RMS Bridge Input Voltage</td>
<td>DF005S: 35</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DF01S: 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DF02S: 140</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DF04S: 280</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DF06S: 560</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DF08S: 700</td>
<td></td>
</tr>
<tr>
<td>$I_{F(AV)}$</td>
<td>Average Rectified Forward Current at $T_A = 40^\circ C$</td>
<td>DF005S: 1.5</td>
<td>A</td>
</tr>
<tr>
<td>I_{FSM}</td>
<td>Non-Repetitive Peak Forward Surge Current 8.3 ms Single Half-Sine Wave</td>
<td>DF005S: 50</td>
<td>A</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature Range</td>
<td>DF005S: -55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating Junction Temperature</td>
<td>DF005S: -55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_D</td>
<td>Power Dissipation</td>
<td>DF005S: 3.1</td>
<td>W</td>
</tr>
<tr>
<td>$R_{\theta JA}$</td>
<td>Thermal Resistance, Junction-to-Ambient Single-Die Measurement$^{(1)}$ (Maximum Land Pattern: 13 x 13 mm)</td>
<td>DF005S: 62</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-Die Measurement$^{(2)}$ (Maximum Land Pattern: 13 x 13 mm)</td>
<td>DF005S: 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-Die Measurement$^{(2)}$ (Minimum Land Pattern: 1.3 x 1.5 mm)</td>
<td>DF005S: 105</td>
</tr>
<tr>
<td>ψ_{JL}</td>
<td>Thermal Characterization Parameter, Junction to Lead Single-Die Measurement$^{(2)}$ (Maximum and Minimum Land Pattern)</td>
<td>DF005S: 27</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Notes:

1. Device mounted on PCB with 0.5 inch × 0.5 inch (13 mm × 13 mm).
2. The thermal resistances ($R_{\theta JA}$ & ψ_{JL}) are characterized with the device mounted on the following FR4 printed circuit boards, as shown in Figure 1 and Figure 2. PCB size: 76.2 x 114.3 mm.

Heating effect from adjacent dice is considered and only two dices are powered at the same time.
Electrical Characteristics

Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>Forward Voltage, per Element</td>
<td>$I_F = 1.5$ A</td>
<td></td>
<td>1.1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_R</td>
<td>Reverse Current, per Element at Rated V_R</td>
<td>$T_A = 25^\circ C$</td>
<td></td>
<td>5.0</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = 125^\circ C$</td>
<td></td>
<td>500</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I^2t</td>
<td>Rating for Fusing ($t < 8.35$ ms)</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>A^2s</td>
</tr>
<tr>
<td>C_J</td>
<td>Typical Capacitance, per Leg</td>
<td>$V_R = 4.0$ V, $f = 1.0$ MHz</td>
<td></td>
<td>25</td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>
Typical Performance Characteristics

- **Figure 3. Non-Repetitive Surge Current**
- **Figure 4. Forward Current Derating Curve**
- **Figure 5. Forward Voltage Characteristics**
- **Figure 6. Reverse Current vs. Reverse Voltage**
Physical Dimensions

Figure 7. 4-LEAD, SDIP, 6.5 MM WIDE

NOTES:
A. THIS PACKAGE DOES NOT CONFORM TO ANY REFERENCE STANDARD.
B. ALL DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
G. DRAWING FILE NAME: MKT-SDIP04AREV05.
FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY
TERMS AND CONDITIONS AND LIABILITY LIMITATIONS AT SECTION 8 OF OUR TERMS AND CONDITIONS. FAIRCHILD Semiconductor reserves the right to make
changes at any time without notice to improve design. The user is responsible for their application of products and circuits described herein. All
specifications are subject to change without notice.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not
intended to be an exhaustive list of all such trademarks.

- AccuPower™
- AttitudeEngine™
- Awaica
- AX-CAP™
- BHSIC™
- Build it Now™
- CorePLUS™
- CorePOWER™
- CROSSVOLT™
- CTL™
- Current Transfer Logic™
- DEUXPEED™
- Dual Cool™
- EfficientMax™
- ESBC™
- Fairchild®
- Fairchild Semiconductor®
- FACT Quiet Series™
- FACT™
- FAST™
- FastvCore™
- FETBench™
- FPS™
- FRFET®
- F-PFS™
- Global Power Resource™
- GreenBridge™
- Green FPS™
- Green FPS™ e-Series™
- InteliMAX™
- IsoPLANAR™
- Making Small Speakers Sound Louder and Better™
- MegaBuck™
- MICROCOUPLER™
- MicroFET™
- MicroPak™
- MicroPak2™
- MillerDrive™
- MotionMax™
- MotionGrid™
- MIT™
- M1™
- MVR™
- mWSaver™
- OptoHit™
- OPTOLOGIC®
- OPTOPLANAR®
- Power Supply WebDesigner™
- PowerTrench™
- PowerXS™
- Programmable Active Droop™
- QFET™
- QS™
- Quiet Series™
- RapidConfigure™
- Saving our world, 1mW/W/kW at a time™
- SignalWise™
- SmartMax™
- SMART START™
- Solutions for Your Success™
- SPM™
- STEALTH™
- SuperFET™
- SuperSOT™-3
- SuperSOT™-6
- SuperSOT™-8
- SupreMOS™
- SyncFET™
- Sync-Lock™
- TinyBoost™
- TinyBuck™
- TinyCalc™
- TinyLogic™
- TINYOPTO™
- TinyPower™
- TinyPWM™
- TinyWire™
- TransSiC™
- TriFault Detect™
- TRUECURRENT™
- Ultra FRFET™
- UniFET™
- VCX™
- VisualMax™
- XS™
- Xsens™
- 仙童™
- AccuPower
- AttitudeEngine
- Awaica
- AX-CAP
- BHSIC
- Build it Now
- CorePLUS
- CorePOWER
- CROSSVOLT
- CTL
- Current Transfer Logic
- DEUXPEED
- Dual Cool
- EfficientMax
- ESBC
- Fairchild
- Fairchild Semiconductor
- FACT Quiet Series
- FACT
- FAST
- FastvCore
- FETBench
- FPS
- FRFET
- F-PFS
- Global Power Resource
- GreenBridge
- Green FPS
- Green FPS e-Series
- InteliMAX
- IsoPLANAR
- Making Small Speakers Sound Louder and Better
- MegaBuck
- MICROCOUPLER
- MicroFET
- MicroPak
- MicroPak2
- MillerDrive
- MotionMax
- MotionGrid
- MIT
- M1
- MVR
- mWSaver
- OptoHit
- OPTOLOGIC
- OPTOPLANAR
- Power Supply WebDesigner
- PowerTrench
- PowerXS
- Programmable Active Droop
- QFET
- QS
- Quiet Series
- RapidConfigure
- Saving our world, 1mW/W/kW at a time
- SignalWise
- SmartMax
- SMART START
- Solutions for Your Success
- SPM
- STEALTH
- SuperFET
- SuperSOT-3
- SuperSOT-6
- SuperSOT-8
- SupreMOS
- SyncFET
- Sync-Lock
- TinyBoost
- TinyBuck
- TinyCalc
- TinyLogic
- TINYOPTO
- TinyPower
- TinyPWM
- TinyWire
- TransSiC
- TriFault Detect
- TRUECURRENT
- Ultra FRFET
- UniFET
- VCX
- VisualMax
- XS
- Xsens

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HERETOIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. NO LICENTCE, WHETHER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY FAIRCHILD SEMICONDUCTOR RIGHTS, INCLUDING WITHOUT LIMITATION PATENT RIGHTS. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY TERMS AND CONDITIONS AND LIABILITY LIMITATIONS AT SECTION 8 OF OUR TERMS AND CONDITIONS. FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME WITHOUT NOTICE TO IMPROVE DESIGN. THE USER IS RESPONSIBLE FOR THEIR APPLICATION OF PRODUCTS AND CIRCUITS DESCRIBED HEREIN. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from authorized distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and its Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.

Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

Rev. I74