

DEMO9S08QE32 User Manual

DEMO9S08QE32UM Rev. 1.01 September 2009

Purchase Agreement

P&E Microcomputer Systems, Inc. reserves the right to make changes without further notice to any products herein to improve reliability, function, or design. P&E Microcomputer Systems, Inc. does not assume any liability arising out of the application or use of any product or circuit described herein.

This software and accompanying documentation are protected by United States Copyright law and also by International Treaty provisions. Any use of this software in violation of copyright law or the terms of this agreement will be prosecuted.

All the software described in this document is copyrighted by P&E Microcomputer Systems, Inc. Copyright notices have been included in the software.

P&E Microcomputer Systems authorizes you to make archival copies of the software and documentation for the sole purpose of back-up and protecting your investment from loss. Under no circumstances may you copy this software or documentation for the purpose of distribution to others. Under no conditions may you remove the copyright notices from this software or documentation.

This software may be used by one person on as many computers as that person uses, provided that the software is never used on two computers at the same time. P&E expects that group programming projects making use of this software will purchase a copy of the software and documentation for each user in the group. Contact P&E for volume discounts and site licensing agreements.

P&E Microcomputer Systems does not assume any liability for the use of this software beyond the original purchase price of the software. In no event will P&E Microcomputer Systems be liable for additional damages, including any lost profits, lost savings or other incidental or consequential damages arising out of the use or inability to use these programs, even if P&E Microcomputer Systems has been advised of the possibility of such damage.

By using this software, you accept the terms of this agreement.

© 2009 P&E Microcomputer Systems, Inc. "MS-DOS" and "Windows" are registered trademarks of Microsoft Corporation. "Freescale" and "ColdFire" are registered trademarks of Freescale, Inc. "IBM" and "PowerPC" are registered trademarks of IBM corporation.

P&E Microcomputer Systems, Inc. 98 Galen St. Watertown, MA 02472 617-923-0053 http://www.pemicro.com

Manual version 1.01

1	INTRODUCTION			
	1.1	Overview	1	
	1.2	Package Contents	1	
	1.3	Supported Devices		
	1.4	Recommended Materials On DEMOQE Resources CD	1	
	1.5	Handling Precautions	2	
2	HARD	WARE FEATURES	2	
	2.1	DEMOQE Base Board Features	2	
	2.2	On-Board Logic Analyzer	4	
	2.3	On-Board Virtual Serial Port	4	
	2.4	DEMOQE Daughter Card Features	5	
3	SYSTEM SETUP			
	3.1	Overview	5	
	3.2	Operating System Requirements	5	
	3.3	Software Setup	5	
	3.4	Quick Startup	6	
	3.5	Hardware Setup	7	
4	OPER	ATING MODES	10	
	4.1	Overview	. 10	
	4.2	Debug Mode	. 10	
	4.3	Run Mode	. 11	
	4.4	External BDM Mode	. 11	
5	DEMOQE TOOLKIT PC APPLICATIONS			
	5.1	DEMOQE Logic Analyzer Application	. 11	
	5.2	DEMOQE Terminal Application	. 12	
	5.3	DEMOQE Unsecure Application	. 13	
	5.4	DEMOQE Accelerometer Demo Application	. 14	
	5.5	DEMOQE Serial Grapher Application	. 15	
6	DEMONSTRATION MICROCONTROLLER APPLICATIONS 1			
	6.1	Quick Start Application	. 18	
	6.2	Serial Accelerometer Application	. 19	

7	JUMPER SETTINGS		
	7.1	System Power	19
	7.2	RS232 Communications	21
	7.3	LED Display Port	23
	7.4	Input and Reset Switches	23
	7.5	3-Axis Accelerometer Jumper Settings	25
	7.6	Buzzer	27
	7.7	IIC Pull-up	27
	7.8	Analog Input Potentiometer	28
	7.9	Optional External Crystal Circuitry Jumper Enable	28
	7.10	Optional Jumpers For Various VDD And VSS	28
8	DEM	29	
	8.1	Using CodeWarrior With The DEMO9S08QE32	29
	8.2	Using P&E Software With The DEMO9S08QE32	29
9	TRANSITIONING TO YOUR OWN TARGET		
	9.1	Hardware Solutions At A Glance	30
	9.2	Working With P&E's USB Multilink	31
	9.3	Working With P&E's Cyclone PRO	32
10	TROUBLESHOOTING		
	10.1	DEMO9S08QE32 Is Undetected	33
	10.2	CodeWarrior Installation Fails (WinDriver Error)	34

1 INTRODUCTION

1.1 Overview

The DEMO9S08QE32 is a low-cost development system designed for demonstrating, evaluating, and debugging the Freescale MC9S08QE32 microcontroller. P&E's Embedded Multilink circuitry on the DEMO9S08QE32 board allows the processor on the DEMO9S08QE32 to be debugged and programmed via USB from the PC. In addition, the demo board can be powered using the USB bus.

1.2 Package Contents

The DEMO9S08QE32 package includes the following items:

- DEMOQE Base Board with a DC9S08QE32 Daughter Card installed
- DEMO9S08QE32 Resource CD
- 2-cell AAA battery package
- USB Cable
- Freescale Warranty Card

1.3 Supported Devices

The DEMO9S08QE32 supports the MC9S08QE32 QFN48 device.

1.4 Recommended Materials On DEMOQE Resources CD

- DEMO9S08QE32 Embedded Multilink hardware interface driver
- DEMO9S08QE32 User Manual (this document)
- DEMO9S08QE32 Quick Start Application Source Code
- DEMO9S08QE32 Base Board and Daughter Cards Schematics

- DEMO9S08QE32 Component Breakdown List
- DEMOQE Toolkit Applications
- Links to P&E Evaluation Software
- Links to Freescale documentation, P&E Discussion Forums, and DFMO9S08QF32 FAQs.

1.5 Handling Precautions

Take care to handle the package contents, including the DEMOQE base board and DC9S08QE32 daughter card, in a manner such as to prevent electrostatic discharge.

2 HARDWARE FEATURES

The DEMO9S08QE32 is a demonstration and development system for Freescale's MC9S08QE32 microcontroller. Application development is quick and easy using P&E's Embedded Multilink circuitry and the included software tools and examples. An optional BDM port is provided to allow use of an external BDM interface such as P&E's Cyclone PRO automated programmer or USB Multilink. The USB Multilink is functionally comparable to the DEMO9S08QE32's Embedded Multilink circuitry.

Note: The DEMO board's onboard Embedded Multilink circuitry is intended to function with the onboard processor and any daughter cards that may be included. It cannot be used to communicate with other devices.

2.1 DEMOQE Base Board Features

- On-board Logic Analyzer
- On-board Virtual Serial Port
- Asymmetrically positioned 4 8x2 male connectors for interchangeable daughter cards
- P&E's Embedded Multilink circuitry populated on the bottom
- RS-232 Serial Port w/ DB9-F Connector
- SCI signals connected to P&E's Embedded Multilink through jumpers
- ON/OFF Power Switch w/ LED indicator

A 5VDC to 8VDC power supply input barrel connector

Note: The DEMOQE board silk screen is incorrectly labelled as 5-12VDC. The maximum voltage is 8VDC.

- Power Input Selection Jumpers for selecting the input voltage source:
 - Power Input from Embedded Multilink to LDO regulator
 - Power Input from DC Power Jack to LDO regulator
 - Regulated VDD Output at 3.0V
 - Regulated VDD Output at 2.1V
 - Power Input from Battery
 - Power Input from MCU PORT connector
- RESET Push Button and LED indicator w/ Enable
- Optional External Crystal Circuitry Layout (not populated)
- User Features:
 - 3-axis Accelerometer w/Enable
 - 8 User LED's w/ Enable
 - 4 User Push Buttons w/ Enable
 - 1 Piezzo Buzzer w/ Enable
 - IIC Pullups w/ Enable
 - 10K Ohm POT w/ Enable
- Option Jumpers:
 - COM EN for 1.8V to 4.25V RS232 Transceiver
 - TXD EN for SCI TXD to Embedded Multilink
 - RXD EN for SCI RXD to Embedded Multilink
 - INPUT EN for two input channels to Embedded Multilink
- Specifications:
 - Board Size 3.5 x 4.0
 - Power Input:
 - USB Cable: 5VDC, 500mA max

 DC Power Jack: 2.5/5.5mm barrel connector, 5VDC to 8VDC Center Positive.

Note: The DEMOQE board silk screen is incorrectly labelled as 5-12VDC. The maximum voltage is 8VDC.

Two AAA Battery Cells

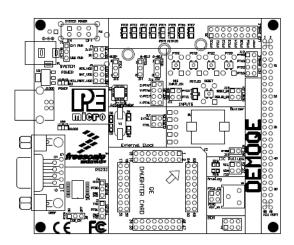


Figure 2-1: DEMOQE Top Component Placement

2.2 On-Board Logic Analyzer

The DEMOQE board has a built-in 2-channel logic analyzer which may be used to display captured data in real-time on a host PC. The logic analyzer channels (IN0/IN1) are connected to the PTC0 and PTC1 signals on the DEMOQE board by default via the J11 jumpers. The channels may be connected to any of the processor pins by wire jumpers (not included).

The DEMOQE Logic Analyzer Utility, included in the DEMOQE Toolkit on the accompanying CD-ROM, displays the logic analyzer signals on a PC.

2.3 On-Board Virtual Serial Port

The DEMOQE board has a built-in virtual serial port which may be connected to the QE processor's SCI RXD/TXD. This allows certain PC applications to be able to connect in a serial fashion to the microcontroller without the actual use of serial port hardware.

The DEMOQE Terminal Window Utility, included in the DEMOQE Toolkit on the accompanying CD-ROM, is a generic serial port utility which works with the DEMOQE virtual serial port or actual serial port hardware.

2.4 DEMOQE Daughter Card Features

- Four bottom-mounted asymmetrically positioned 8x2 female connectors to mate with the DEMOQE Base Board
- A top-mounted MC9S08QE32 QFN48 chip

3 SYSTEM SETUP

3.1 Overview

P&E's Embedded Multilink driver is required to operate the DEMO9S08QE32 using a PC. The Embedded Multilink driver should be installed with the CodeWarrior Development Studio software or from the DEMOQE Resources in the CD-ROM before the PC is connected to the DEMO9S08QE32.

3.2 Operating System Requirements

The following are the resources required to run the CodeWarrior Development Studio and the DEMO9S08QE32:

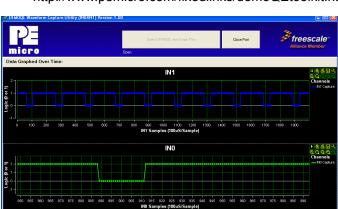
- A PC-compatible system running Windows 2000, Windows XP, or Windows Vista
- 128MB of available system RAM, and 1GB of available hard disk space
- A CD-ROM drive for software installation
- · A USB port

3.3 Software Setup

3.3.1 Installing CodeWarrior Development Studio

To install the CodeWarrior Development Studio, insert the CodeWarrior CD into your computer's CD-ROM drive. A start-up window will automatically appear. Select CodeWarrior Installation and follow the on-screen instructions.

3.3.2 Installing P&E Resources


Use the DEMOQE Resources CD-ROM to access and install P&E resources for the DEMO9S08QE32. These materials are not required for operation. The support materials contained on the DEMOQE Resources CD-ROM are listed in Section 1.4 - Recommended Materials On DEMOQE Resources CD.

3.4 Quick Startup

Only a few steps are required to get the DEMO9S08QE32 up and running:

- Step 1. If you do not have CodeWarrior Development Studio version 6.0 installed on your computer, please install it using the accompanying CD-ROM. Additional information regarding CodeWarrior can be found at www.freescale.com.
- Step 2. Remove the DEMO9S08QE32 demonstration board from its antistatic pouch. The green DC9S08QE32 daughter card should be plugged into the header on the base board.
- Step 3. Connect the USB cable from your computer to the DEMO9S08QE32 demonstration board. Depending on your operating system, you may need to follow steps to install the USB driver from the DEMOQE Resources CD-ROM. Once the USB cable is connected properly the green USB LED on the DEMO9S08QE32 should illuminate.
- Step 4. Turn on the DEMO9S08QE32 power switch (K6). The red Power LED should illuminate.
- Step 5. Press the buttons labelled PTA2 and PTA3. When each button is pressed a different tone will be emitted, and the light intensity of the PTC0 LED will change. The LEDs labelled PTC1 and PTC2 (for PTA2) or PTC3 and PTC4 (for PTA3) should illuminate. In addition, the light intensity of the LED labeled PTC1 should vary as the potentiometer is rotated.
- Step 6. Optionally, you may run the DEMOQE Logic Analyzer Application available in the DEMOQE toolkit on the CD. This PC-based application graphs the IN0 and IN1 signals on the DEMOQE board. If both J11 jumpers are installed, IN0 shows PTC0 and IN1 shows PTC1. Push button PTA2 and turn the potentiometer to change these signals. This application may also be found at:

http://www.pemicro.com/fixedlinks/demoQEtoolkit.html.

Figure 3-1: DEMOQE Logic Analyzer Application

3.5 Hardware Setup

3.5.1 First-Time Connection

The DEMO9S08QE32 may be connected to a PC through a USB port. Connection steps are listed below in typical order:

- 1. Install the required software, as described in the previous section.
- 2. Make sure the jumpers for USB_PWR, 3V for VOLT_EN, and REG_VDD for VDD_SELECT are installed.
- 3. Plug the USB cable A-M connector into a free USB port of the PC.
- 4. Plug the USB cable B-M connector into the USB connector on the DEMOQE Base Board.
- 5. The operating system will recognize P&E's Embedded Multilink circuitry and P&E's USB to Serial circuitry. Depending on the operating system, you may see the "Found New Hardware Wizard" dialog, helping you to install software for "PEMicro USB Multilink (i0). On Windows XP (SP2), the following dialog will appear:

Figure 3-2: Found New Hardware Wizard Dialog (1 of 4)

Select the "Install the software automatically (Recommended)" option and click the "Next" button.

6. Windows will install the driver files to your system. At the end of the installation, the following dialog box will appear:

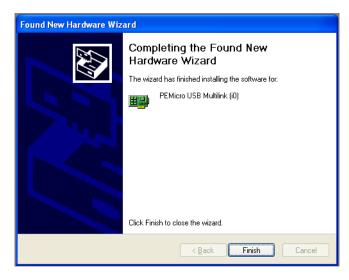


Figure 3-3: Found New Hardware Wizard Dialog (2 of 4)

Click the "Finish" button to exit the current "Found New Hardware Wizard".

7. Depending on the operating system, you may see the "Found New Hardware Wizard" dialog again, helping you to install software for "PEMicro USB Serial Port (i1). On Windows XP (SP2), the following dialog will appear:

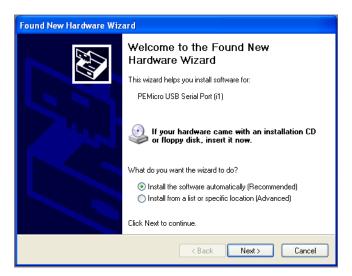


Figure 3-4: Found New Hardware Wizard Dialog (3 of 4)

Select the "Install the software automatically (Recommended)" option and click the "Next" button.

8. Windows will install the driver files to your system. At the end of the installation, the following dialog box will appear:

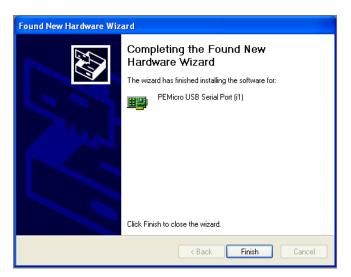


Figure 3-5: Found New Hardware Wizard Dialog (4 of 4)

Click the "Finish" button to exit the "Found New Hardware Wizard".

If the DEMO9S08QE32 hardware interface driver is now properly installed on your system, the green USB LED on the DEMOQE Base Board should be illuminated. In addition, if you turn on the system power of the DEMO9S08QE32 you will see the red Power LED illuminate.

4 OPERATING MODES

4.1 Overview

The DEMO9S08QE32's Embedded Multilink circuitry, featured hardware components, and optional external BDM header make it a versatile development tool. Below are some of the featured operating modes of the DEMO9S08QE32.

4.2 Debug Mode

A host communicates with the DEMO9S08QE32 through the Embedded Multilink circuitry. Either the CodeWarrior Development Studio or P&E's HCS08 software tools will work with the DEMO9S08QE32. Please refer to

Section 8 - DEMO9S08QE32 CODE DEVELOPMENT SOFTWARE for more information.

4.3 Run Mode

The DEMO9S08QE32's rich component list empowers it to perform a variety of tasks. Once an application is developed, debugged, and programmed properly into the QE32 internal flash memory, it can run with or without connecting to a host.

4.4 External BDM Mode

The DEMO9S08QE32 has an optional BDM header for debugging and programming the on-board QE32 device using an external BDM hardware tool, such as P&E's USB Multilink or Cyclone PRO. Please refer to **Section 9** - **TRANSITIONING TO YOUR OWN TARGET** for more information. A user can take advantage of this mode to develop a target-specific QE32 system and compare it with the DEMO9S08QE32 when necessary.

5 DEMOQE TOOLKIT PC APPLICATIONS

P&E provides several Windows PC-based applications which work with the DEMO9S08QE32 board. These applications are collectively referred to as the DEMOQE Toolkit. The following applications are included in the toolkit:

5.1 DEMOQE Logic Analyzer Application

The DEMOQE board has a built-in two-channel logic analyzer. This analyzer allows the IN0 and IN1 signals to be captured by the PC and displayed for the user. The IN0 and IN1 signals may be connected to any of the MCU signals which the user would like to view. By default, they are connected to the PTC0 and PTC1 pins of the MCU by jumper J11. At the time of this release, the logic analyzer runs at a capture rate of 10khz.

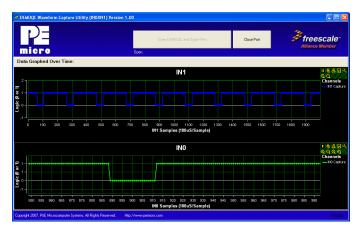


Figure 5-1: Logic Analyzer Application

This PC-based application is used to display the logic analyzer data on the PC. The logic analyzer data is displayed in real-time and each waveform may be paused, zoomed, and printed.

If the microcontroller-based Quick Start Application is programmed into the MCU, the IN0 channel will show the PWM output on pin PTC0 whose duty cycle is controlled by the potentiometer (W1). The IN1 channel shows the PWM output on channel PTC1 which drivers the buzzer.

This PC-based application is included on the CD-ROM that accompanys the DEMOQE, and may also be found at:

http://www.pemicro.com/fixedlinks/demoQEtoolkit.html.

5.2 DEMOQE Terminal Application

This PC-based application acts as a standard serial port terminal application on the PC. It works with standard serial ports as well as the virtual serial port on the DEMOQE board. The application includes settings to adjust the COM port number, baud rate, parity, and number of data bits. There is a button to take a file on the PC and transmit it out of the serial port. There are also delays which are automatically inserted in the transmission output to prevent overruns. It is recommended that these defaults not be changed.

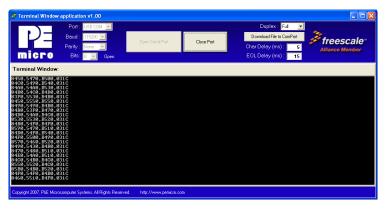


Figure 5-2: DEMOQE Terminal Application

The terminal window may be set for full duplex or half duplex. In full duplex mode, only received characters are displayed in the terminal window. In half duplex mode, both transmitted and received characters are displayed.

This PC-based application is included on the CD-ROM that accompanys the DEMOQE, and may also be found at:

http://www.pemicro.com/fixedlinks/demoQEtoolkit.html.

5.3 DEMOQE Unsecure Application

This application allows secure HCS08 microcontrollers to be unsecured. The Unsecure application will erase a secure device to make it unsecure. This application works with the DEMOQE board as well as other user hardware connected to the PC via the USB Multilink or Cyclone PRO hardware interfaces.

Figure 5-3: DEMOQE Unsecure Application

This PC-based application is included on the CD-ROM that accompanys the DEMOQE, and may also be found at:

http://www.pemicro.com/fixedlinks/demoQEtoolkit.html.

5.4 DEMOQE Accelerometer Demo Application

This PC-based application will graph serial data output from the microcontroller-based serial accelerometer application documented in **Section 6.2 - Serial Accelerometer Application**. The graphed data includes the magnitude of the X, Y, and Z accelerometer signals, as well as the current processor loading. For this application to work properly, the *microcontroller-based* serial accelerometer application must be programmed into the microcontroller which is plugged into the DEMOQE board.

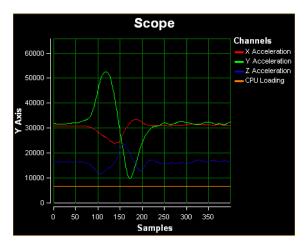


Figure 5-4: Accelererometer Demo Application

The data that is graphed may come from either the PC serial port or the virtual serial port on the DEMOQE board. The serial port of the microcontroller on the DEMOQE board is routed to either serial port hardware or the virtual COM port based upon the setting of jumpers J6 and J7.

This PC-based application is included on the CD-ROM that accompanys the DEMOQE, and may also be found at:

http://www.pemicro.com/fixedlinks/demoQEtoolkit.html.

5.5 DEMOQE Serial Grapher Application

This PC-based application is a more generalized version of the accelerometer demo application. It may be used with the microcontroller based serial accelerometer application or customer microcontroller code which transmits data in the correct format. The serial graphing utility allows incoming data on the PC serial port, or one of P&E's virtual serial ports, to be automatically graphed in time or displayed upon a series of bar graphs. The virtual serial port exists on several of P&E's embedded USB multilink designs including the DEMOQE board.

This PC-based application is included on the CD-ROM that accompanys the DEMOQE and may also be found at:

http://www.pemicro.com/fixedlinks/demoQEtoolkit.html.

All data to be displayed must be in hexadecimal format. The data can be accepted and displayed either as incoming byte values (\$00-\$FF) or word values (\$0000-\$FFFF). The data format indicates whether the data is byte or word data. The graphical components automatically size their range depending upon the incoming data.

5.5.1 Visual Components

The Bar Graph has four separate bars A, B, C, and D. On each bar a percentage value is displayed which indicates the current value relative to the full range. A byte value of \$7F (max is \$FF) would show up as approximately 50% as would a word value of \$7FFF (max is \$FFFF). As can be seen in the data formatting section, all four bars must be written at the same time. The bars are shown here:

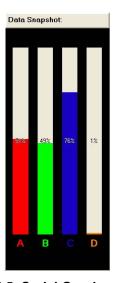


Figure 5-5: Serial Grapher Bar Graph

The graphing component shows four waveforms X, Y, Z, and W. The magnitude axis either has a range of \$00-\$FF (if byte values are incoming on the serial port) or \$0000-\$FFFF (if word values are incoming). Each new set of values which comes through the serial port is added to the far right side of the graph and the rest of the data values move to the left. The vertical axis displays the incoming data as the magnitude of each waveform, and the horizontal axis displays the number of samples. The graph has a limited size,

so older samples will eventually fall off the left part of the graph. As can be seen in **Section 5.5.2 - Data Format**, each incoming data command affecting the graphing component must have new data for all four waveforms. An example graph is shown here:

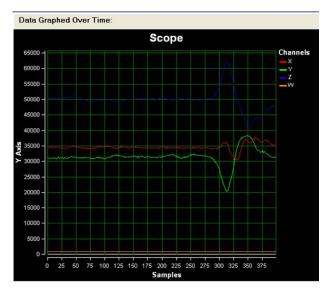


Figure 5-6: Serial Grapher Graphing Component

5.5.2 Data Format

The data format is broken into two sections depending upon whether the incoming data is in byte format or word format.

5.5.2.1 Byte Formatted Data

There are two commands which may be accepted. Both commands must end in the special characters #\$0D and #\$0A which are CR (carriage return) and LF (line feed). The accepted commands are:

WnnZnnYnnXnn

The nn values are 00-FF and correspond in order to the data displayed on the following graph lines: W, Z, Y, X.

AnnBnnCnnDnn

The nn values are 00-FF and correspond in order to the data displayed on the

following bar graphs lines: A, B, C, D.

5.5.2.2 Word Formatted Data

There are three commands which may be accepted. All commands must end in the special characters #\$0D and #\$0A which are CR (carriage return) and LF (line feed). The accepted commands are:

nnnn,nnnn,nnnn,nnnn

The nnnn values are 0000-FFFF and correspond in order to the data displayed on both the graph and bar graphs as follows: X/A, Y/B, Z/C, W/D.

nnnn:nnnn:nnnn:nnnn

The nnnn values are 0000-FFFF and correspond in order to the data displayed the graphing component as follows: X, Y, Z, W.

nnnn=nnnn=nnnn

The nnnn values are 0000-FFFF and correspond in order to the data displayed on the bar graph component as follows: A, B, C, D.

6 DEMONSTRATION MICROCONTROLLER APPLICATIONS

The following microcontroller applications are designed to run on the QE32 processors.

6.1 Quick Start Application

The function of the Quick Start microcontroller application is to play a different tone and illuminate a different LED for each of the buttons which may be pressed on the DEMO9S08QE32 board. The potentiometer controls the intensity of two LEDs on the DEMO9S08QE32 board, via PWM signals. This application comes pre-programmed into the memory of the QE32 processor.

The source code for this Quick Start Application is included on the CD-ROM included with the DEMOQE, and may also be found at:

http://www.pemicro.com/fixedlinks/demoQEtoolkit.html.

6.2 Serial Accelerometer Application

This microcontroller application samples the state of the on-board three-axis accelerometer using on-chip A/D converter channels. This data is converted into ASCII characters and sent out using the serial pins of the QE32 processor. These serial pins may be connected to either serial port hardware or to P&E's virtual serial port (which is part of the Embedded Multilink design). This connection is controlled by jumpers J6 and J7.

P&E has two PC-based DEMOQE Toolkit applications which allow the serial port data generated by this application to be graphed. These are documented in Section 5.4 - DEMOQE Accelerometer Demo Application and Section 5.5 - DEMOQE Serial Grapher Application.

The source code for this microcontroller based Serial Accelerometer Application is included on the CD-ROM included with the DEMOQE and also may be found at http://www.pemicro.com/fixedlinks/demoQEtoolkit.html.

7 JUMPER SETTINGS

7.1 System Power

The QE32 processor may obtain its power from either the on-board regulator, a 2-cell battery pack, or through MCU_PORT J1. The on-board regulator obtains its input from either the Embedded Multilink circuitry or a 2.5mm barrel connector. The on-board regulator can regulate the output to either 2.1V or 3V. The DEMO9S08QE32 is fully functional at both voltages. Power input and voltage selection are achieved by using 3 option headers.

7.1.1 J3 - Regulator Input Selection Jumper

Jumper 3 determines whether the DEMO9S08QE32's on-board regulator obtains its power from the DC power jack or from the Embedded Multilink circuitry. The regulator input selection is mutually exclusive. It prevents power input contention from damaging the board and the host. **Figure 7-1** shows the regulator input selection details.

Select regulator input from DC power jack. A 5-8VDC center positive power supply must be used.

Note: The DEMOQE board silk screen is incorrectly labelled as 5-12VDC. The maximum voltage is 8VDC.

Select regulator input from the Embedded Multilink circuitry, which derives its power from the USB bus

Figure 7-1: PWR Selection Header (J3)

7.1.2 J4 - Regulator Output Selection Jumper VOLT_EN

The regulator can output either a 2.1VDC or 3VDC voltage for the DEMO9S08QE32. The VOLT_EN jumper J4 selects the voltage. **Figure 7-2** shows the regulator output selection details.

Select regulator output to be 2.1V.

Select regulator output to be 3V

Figure 7-2: Regulator Voltage Output Selection VOLT_EN (J4)

7.1.3 J5 - VDD Source Selection Jumper VDD_SELECT

Select the regulator to supply microcontroller VDD. This is the default setting.

Select the battery pack to supply microcontroller VDD

Select the MCU_PORT to supply microcontroller VDD. This setting also allows power to be supplied to the target connected to the MCU_PORT. By default this jumper is installed.

Figure 7-3: VDD_SELECT Option Header (J5)

7.2 RS232 Communications

The DEMO9S08QE32 integrates an RS232 transceiver for the microcontroller SCI signals. The transceiver operates from 1.8V to 4.25V, and it can be enabled or disabled via jumper settings or through firmware control. The DEMO9S08QE32 also integrates the SCI signal into the Embedded Multilink circuitry. A user can communicate with the microcontroller SCI module via either the on-board DB9 connector or the Embedded Multilink circuitry. There are three jumpers associated with SCI communication.

7.2.1 J6 - SCI RXD Signal Selection Jumper RXD_EN

Connects the microcontroller PTB0/RXD signal to the RS232 transceiver.

Connects the microcontroller PTB0/RXD signal to the Embedded Multilink SCI circuitry. This is the default setting.

Figure 7-4: SCI RXD Signal Selection Jumper RXD_EN (J6)

7.2.2 J7 - SCI TXD Signal Selection Jumper TXD_EN (J7)

Connects the microcontroller PTB1/TXD signal to the RS232 transceiver.

Connects the microcontroller PTB1/TXD signal to the Embedded Multilink SCI circuitry. This is the default setting.

Figure 7-5: SCI TXD Signal Selection Jumper TXD_EN (J7)

7.2.3 J8 - SCI Transceiver Enable COM_EN (J8)

Enables the SCI Transceiver. The user may control PTC5 in firmware to enable or disable the transceiver.

Disables the SCI Transceiver. This is the default setting.

Figure 7-6: SCI Transceiver Enable/Disable Selection COM_EN (J8)

7.3 LED Display Port

The DEMOQE Base Board has 8 LEDs connected to signals PTC0, PTC1, PTC2, PTC3, PTC4, PTC5, PTE6, and PTE7. They can be enabled or disabled by installing or removing the corresponding jumper, J9, in the LED ENABLE header.

7.3.1 J9 - LED Display Enable Port LED ENABLE

Enables all LED outputs. This is the default setting.

Figure 7-7: LED Display Enable Header LED_ENABLE (J9)

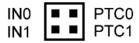
Note: PTE6 and PTE7 have no effect on QE32 devices.

7.4 Input and Reset Switches

The DEMO9S08QE32 has an option to connect two signals, PTC0 and PTC1, to the Embedded Multilink for signal processing. The two signals are connected or disconnected to IN0 or IN1 correspondingly, via jumpers P&E INPUT EN (J11).

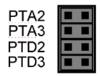
The DEMO9S08QE32 has 4 switches that are connected to signals PTA2, PTA3, PTD2, and PTD3 respectively, and are enabled or disabled by the 4 corresponding jumpers KEY_ENABLE (J12).

The DEMO9S08QE32 has one Reset switch and one Reset LED associated with it. These are enabled or disabled by the two corresponding jumpers RESET EN (J18).



7.4.1 J11 - P&E's Logic Analyzer Inputs IN0/IN1

The logic analyzer inputs are marked on one side of the J11 jumper. The inputs allow P&E's PC-based logic analyzer application to display these signals in real-time.


By installing both jumpers, the logic analyzer pins IN0 and IN1 will be connected to PTC0 and PTC1 respectively.

By removing these jumpers IN0 and IN1 will be unconnected. The user may connect these signals, via wires, to any other signals on the processor which they wish to view on the PC.

Figure 7-8: Jumper Settings for Input Signals to P&E's Embedded Multilink, P&E INPUT EN (J11)

7.4.2 J12 - Light Touch Switch Enable Jumper KEY_ENABLE

Enables the corresponding switch. Each jumper may be individually installed or removed. By default, all jumpers are installed to enable all the switches.

Figure 7-9: Jumper Settings for Light Touch Switches KEY_ENABLE (J12)

Note: PTD2 and PTD3 have no effect on QE32 devices.

7.4.3 J18 - Reset Switch Enable and Reset LED Display Enable Jumper

RESET_EN

RSTLED_EN RESET_EN

Enables the Reset Switch and the Reset LED Display. Each jumper may be individually installed or removed. This is the default setting.

Figure 7-10: Reset Switch and Reset LED enable Jumper (J18)

7.5 3-Axis Accelerometer Jumper Settings

The DEMO9S08QE32 integrates a 3-axis accelerometer. Its enable or disable, sensitivity levels, and output signal connections are all jumper settable. Jumpers J13, J14, J15 and J16 are associated with the accelerometer.

TABLE 1. Accelerometer G-Select Pin Descriptions

G-SEL2	G-SEL1	g-Range	Sensitivity
0	0	1.5g	800 mV/g
0	1	2g	600 mV/g
1	0	4g	300 mV/g
1	1	6g	200 mV/g

7.5.1 J13 - Accelerometer g-Select1 Jumper G-SEL1

Selects g-Select1 to be logic low. This is the default setting.

Selects g-Select1 to be logic high. A user may control PTD0 in

firmware to set g-Select1.

Figure 7-11: Accelerometer g-Select1 Jumper settings (J13)

7.5.2 J14 - Accelerometer g-Select2 Jumper G-SEL2

Selects g-Select2 to be logic low. This is the default setting.

Selects g-Select2 to be logic high. A user may control PTD0 in firmware to set g-Select2

Figure 7-12: Accelerometer g-Select2 Jumper settings (J14)

7.5.3 J15 - Accelerometer Sleep Mode Select Jumper SLEEP (J15)

Enables the 3-axis accelerometer. This is the default setting.

Puts the 3-axis accelerometer into sleep mode. The user may control PTC4 in firmware to enable or disable the accelerometer. In this configuration, the user needs to pay close attention to LED PTC4 and RSTO configuration.

Figure 7-13: Accelerometer Sleep Mode Jumper settings (J15)

7.5.4 J16 - Accelerometer 3-axis Signals Connection Jumper ACC EN

The accelerometer output signals are jumper settable to PTA7, PTA6, PTC7, and PTA1. PTA6 and PTC7 share the same Y-axis signal. By default, the Y-axis signal is connected to PTA6.

Figure 7-14: Accelerometer Signal Output ACC_EN (J16)

7.6 Buzzer

The DEMO9S08QE32 integrates a Piezo Transducer whose resonant frequency is 4.0KHz. Jumper J19 connects to PTB5 to control this buzzer.

7.6.1 J19 - Buzzer enable jumper BUZ EN

PTB5

Enables Buzzer to be controlled by PTB5. This is the default setting.

Figure 7-15: Accelerometer Signal Output ACC_EN (J19)

7.7 IIC Pull-up

The DEMO9S08QE32 provides external pull-up resistors for SCL and SDA lines, enabled by installing the corresponding jumpers on J20. By default both jumpers are installed.

7.7.1 J20 - IIC Pullup Enable Jumpers IIC_EN

SCL III

Enables IIC external pullup. This is the default setting.

Figure 7-16: IIC External Pullup Enable IIC_EN (J20)

7.8 Analog Input Potentiometer

The DEMO9S08QE32 provides an easy access 10Kohm potentiometer whose output may be connected to PTC6 and/or PTA0, selectable by J21, POT_EN.

7.8.1 J21 - Potentiometer Output Selection Jumpers POT_EN

PTC6 ■ ■ PTA0 ■ ■

Selects the potentiometer output connection. By default it is connected to PTA0.

Figure 7-17: Potentiometer Output Selection Jumpers POT_EN (J21)

7.9 Optional External Crystal Circuitry Jumper Enable

The DEMO9S08QE32 provides external crystal circuitry without components populated. A user may elect to populate the components, and may use jumper J17, CLOCK_EN, to enable the external crystal circuitry.

7.9.1 J17 - External Crystal Circuitry Enable Jumpers CLOCK_EN

EXTAL TO THE EXTAL THE EXTAL TO THE EXTAL TOTHER TO THE EXTAL TO THE EXTAL TO THE EXTAL TO THE EXTAL TO THE E

Enables or disables the external crystal circuitry. Both positions must be installed to enable use of crystal circuitry.

Figure 7-18: External Crystal Circuitry Enable Jumper CLOCK_EN (J17)

7.10 Optional Jumpers For Various VDD And VSS

The DEMO9S08QE32 provides 5 jumpers, J22 through J25, for different VDD and VSS connections on the bottom of the board. By default, they are not populated and are shorted correspondingly with zero-ohm resistors in parallel, except J24 which is populated. A user may take off the zero-ohm resistor and install a corresponding jumper.

Note: JR2 (Jumper 23) and JR5 (Jumper 26) have no efffect on QE32 devices.

8 DEMO9S08QE32 CODE DEVELOPMENT SOFTWARE

The DEMO9S08QE32 includes P&E's Embedded Multilink circuitry, so no external hardware BDM tool is needed to debug and program the DEMO9S08QE32. A user only needs to connect the DEMO9S08QE32 to their PC to start developing code for it.

The DEMO9S08QE32 package comes with a special edition of Freescale's CodeWarrior studio. In addition, P&E's evaluation software for HCS08 is available online at www.pemicro.com. A user may use either CodeWarrior or P&E software tools to develop code for the DEMO9S08QE32.

8.1 Using CodeWarrior With The DEMO9S08QE32

The CodeWarrior studio supports Freescale's HCS08 devices. It offers C, C++, and assembly-level support, and provides debugging capabilities based on P&E's debug and programming technologies.

A programming or debug session with the project-based CodeWarrior IDE may be launched by double-clicking on the project name (the format is projectname.mcp) from your file storage. Its tutorials, FAQs, and quick start guides are easy to follow and will allow you use pre-built templates to begin creating a new project in a short time.

8.2 Using P&E Software With The DEMO9S08QE32

P&E offers software tools for Freescale's HCS08 devices that can be used to develop code for the DEMO9S08QE32 board. P&E offers an integrated development environment, which combines a command-line assembler, incircuit debugger, and flash memory programmer. The assembler includes features such as a full string replacement macro, conditional assembly, include files, and more. The debugger supports both assembly and C source-level debugging. The programmer can program/reprogram both internal and external flash devices in-circuit.

9 TRANSITIONING TO YOUR OWN TARGET

Once you have finished working with the DEMO9S08QE32 and are ready to build your own target, you will need a hardware tool to allow you to develop using your own board. P&E's USB Multilink and P&E's Cyclone PRO offer two effective solutions, depending on your needs. Both work with Freescale's

CodeWarrior as well as P&E software, and both provide a seamless transition to working with your own hardware.

The USB Multilink is a development tool that is functionally comparable to the Embedded Multilink circuitry on the DEMO9S08QE32. It will enable you to debug your code and program it onto your target. The Cyclone PRO is a more versatile and robust development tool with advanced features and production capabilities.

More information is available below to assist you in choosing the appropriate development tool for your needs.

9.1 Hardware Solutions At A Glance

The USB Multilink offers an affordable and compact solution for your development needs, and allows debugging and programming to be accomplished simply and efficiently. Those doing rapid development will find the USB Multilink easy to use and fully capable of fast-paced debugging and programming.

The Cyclone PRO is a more complete solution designed for both development and production. The Cyclone PRO features automated power switching, multiple communications interfaces (including USB, Ethernet, and Serial), stand-alone programming functionality, and many other advanced capabilities.

Below is an overview of the features and intended use of the USB Multilink and Cyclone PRO.

9.1.1 USB Multilink Key Features

- Direct user control of target's execution
- Programming and debugging capabilities
- Read/write registers and memory values
- Compact and lightweight
- Communication via USB 2.0
- Supported by P&E software and Freescale's CodeWarrior

9.1.2 Cyclone PRO Key Features

Advanced programming and debugging capabilities, including:

- PC-Controlled and User-Controlled Stand-Alone Operation
- Interactive Programming via Host PC
- In-Circuit Debugging, Programming, and Testing
- Compatible with Freescale's ColdFireV1, HCS08, RS08, and HC(S)12(X) microcontroller families
- Communication via USB, Serial, and Ethernet Ports
- Multiple image storage
- LCD screen menu interface
- Supported by P&E software and Freescale's CodeWarrior

9.2 Working With P&E's USB Multilink

Figure 9-1: P&E's USB Multilink (USB-ML-12 shown)

9.2.1 Product Features & Implementation

P&E's USB Multilink Interface (USB-ML-12) connects your target to your PC and allows the PC access to the Background Debug Mode (BDM) on Freescale's ColdFireV1, HCS08, RS08, and HC(S)12(X) microcontrollers. It connects between a USB port on a Windows 2000/XP/2003 machine and a standard 6-pin debug connector on the target.

By using the USB Multilink Interface, the user can take advantage of the background debug mode to halt normal processor execution and use a PC to control the processor. The user can then directly control the target's execution, read/write registers and memory values, debug code on the processor, and program internal or external FLASH memory devices. The USB Multilink enables you to debug, program, and test your code on your board.

9.2.2 Software

The USB Multilink Interface works with Codewarrior as well as P&E's in-circuit debugger and flash programmer to allow debug and flash programming of the target processor. P&E's USB Multilink Development Packages come with the USB Multilink Interface, as well as flash programming software, in-circuit debugging software, Windows IDE, and register file editor.

9.3 Working With P&E's Cyclone PRO

Figure 9-2: P&E's Cyclone PRO

9.3.1 Product Features & Implementation

P&E's Cyclone PRO is an extremely flexible tool designed for debugging, testing, and in-circuit flash programming of Freescale's ColdFireV1, HC08, HCS08, RS08, and HC(S)12(X) microcontrollers. The Cyclone PRO connects your target to the PC via USB, Ethernet, or Serial Port and enables you to debug your code, program, and test it on your board. After development is complete the Cyclone PRO can be used as a production tool on your manufacturing floor.

For production, the Cyclone PRO may be operated interactively via Windows-based programming applications as well as under batch or .dll commands from a PC. Once loaded with data by a PC it can be disconnected and operated manually in a stand-alone mode via the LCD menu and control buttons. The Cyclone PRO has over 3Mbytes of non-volatile memory, which allows the onboard storage of multiple programming images. When connected to a PC for programming or loading it can communicate via the ethernet, USB, or serial interfaces.

9.3.2 Software

The Cyclone PRO comes with intuitive configuration software and interactive programming software, as well as easy to use automated control software. The Cyclone PRO also functions as a full-featured debug interface, and is supported by Freescale's CodeWarrior as well as development software from P&E.

P&E's Cyclone PRO is also available bundled with additional software as part of various Development Packages. In addition to the Cyclone PRO, these Development Packages include in-circuit debugging software, flash programming software, a Windows IDE, and register file editor.

10 TROUBLESHOOTING

10.1 DEMO9S08QE32 Is Undetected

Q: The connection assistant indicates that my DEMO9S08QE32 is undetected even though I have connected the hardware to my USB port. What should I do?

A: The connection assistant, which displays in either Codewarrior or P&E's development software, is a dialog which allows the user to connect to the DEMO9S08QE32 hardware. If this dialog indicates that the DEMO9S08QE32 hardware is not connected to the PC, the first step is to make sure that the DEMO9S08QE32 hardware is connected to the PC via a USB 2.0 high-speed cable. If it is connected, unplug and then plug in the USB cable on the DEMO9S08QE32 board and click refresh in the connection assistant. If the hardware still does not show up, try the following remedies:

(A) Re-Enable the USB driver

If you connected the DEMO9S08QE32 interface prior to installing P&E's Embedded Multilink drivers, Windows will not have been able to find the appropriate driver and may have disabled the device. The DEMO9S08QE32 board shows up in Window's device manager as a "P&E Multilink," since it contains P&E's Embedded Multilink circuitry. If you unplug and then plug in the device, Windows will automatically disable it even if you have installed the drivers. To force windows to try to load the driver again, perform the following steps while the DEMO9S08QE32 interface is connected to the computer:

1. Open the Control Panel (Start Button->Settings->Control Panel)

- Double Click the "System" Icon
- 3. Select the "Hardware" tab
- 4. Click the "Device Manager" Button
- 5. The "P&E Multilink" device will be shown with an exclamation mark next to it. Double-click this device.
- 6. Click the "Reinstall Driver..." button and follow the dialog instructions to have Windows automatically install the driver.

(B) Re-Install the USB driver

If the Multilink device does not show up in the device manager, use the driver installation utility located in the DEMOQE Resouces CD-ROM. After driver installation, unplug the DEMO9S08QE32 from the PC and reboot the PC. When the reboot has completed, connect the interface to the PC with the USB 2.0 cable. Run the software again to see if the interface is now detected.

If you have an error attempting to install the drivers, please view the installation troubleshooting FAQ on P&E's website at:

http://www.pemicro.com/faqs/faq_view.cfm?id=89.

(C) Test for installation of the USB driver files

To test the driver installation, use the driver test utility in the DEMOQE Resources CD-ROM to make sure all files were properly installed. This may give some indication of what the problem is.

(D) Using a USB Hub

The DEMO9S08QE32 is a high-power USB device. If a USB Hub is used, it must be a self-powered hub (i.e., with its own power supply). If the Hub is not self-powered the DEMO9S08QE32 will not work. In general, USB ports located directly on the PC are high-power (self-powered) ports.

10.2 CodeWarrior Installation Fails (WinDriver Error)

Q: When I try to install the Codewarrior or P&E software, installation fails with this message: "There are currently 2 open applications using WinDriver. Please close all applications and press Retry. To reload WinDriver, press Cancel and reboot." How do I solve this?

A: Some software applications on your PC are connected to the Windriver system driver which manages P&E's USB connections. This system driver needs to be disabled for the installation to continue. Directions to disable

Windriver are as follows:

In Windows Explorer, right-click on My Computer and select Properties from the drop-down menu.

- Select the Hardware tab.
- 2. Click on the Device Manager button.
- 3. Select the "System Devices" in the Device Manager window.
- 4. Expand the tree index (+) for System Devices.
- At the bottom of the System Devices list you should see the Win-Driver item.
- Right-click on WinDriver and select Disable from the drop-down menu.
- 7. Click Yes/OK when the confirmation dialog appears.

WinDriver is now disabled and you should be able to complete the installation. After the installation finishes, you should re-enable the WinDriver system driver using the following steps:

In Windows Explorer, right-click on My Computer and select Properties from the drop-down menu.

- Select the Hardware tab.
- 2. Click on the Device Manager button.
- 3. Select the "System Devices" in the Device Manager window.
- 4. Expand the tree index (+) for System Devices.
- At the bottom of the System Devices list, you should see a WinDriver item.
- Right-click on WinDriver and select Enable from the drop-down menu.

Reboot your PC after the installation finishes.

If you are unable to disable the WinDriver system driver in the above fashion, you can delete the file c:\windows\system32\windrvr6.sys and then reboot your machine. You should then re-run the installer and complete the procedure. Reboot your machine after the installation has finished.

Freescale Controller Continuum

-- 68HC08/S08/RS08/(S)12(X) -- ColdFire® V1 -- ColdFire® V2/V3/V4 -- Power Architecture® -- ARM® --

©2008, P&E Microcomputer Systems, Inc. All rights reserved.

P&E Micrcomputer Systems, Inc. P.O. Box 2044 Woburn, MA 01888

www.pemicro.com

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.