

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

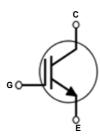
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

FGA180N33AT 330V, 180A PDP Trench IGBT

Features

- High Current Capability
- Low saturation voltage: V_{CE(sat)} =1.03V @ I_C = 40A
- High input impedance
- RoHS compliant

Applications


PDP SYSTEM

General Description

Using Novel Trench IGBT Technology, Fairchild's new series of trench IGBTs offer the optimum performance for PDP applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	· ·		Ratings	Units V	
V _{CES}			330		
V _{GES}	Gate to Emitter Voltage		± 30	V	
I _C	Collector Current	@ T _C = 25°C	180	А	
I _{C pulse (1)}	Pulsed Collector Current	@ T _C = 25°C	450	А	
P _D	Maximum Power Dissipation	@ T _C = 25°C	390	W	
	Maximum Power Dissipation	@ T _C = 100 ^o C	156	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
Τ _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Notes:

1: Repetitive test, pulse width = 100usec, Duty = 0.1

* I_C pulse limited by max Tj

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (IGBT)	HeJC(IGBT) Thermal Resistance, Junction to Case		0.32	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W

April 2008

П
G
⋗
~
ä
ž
N33
ω
2
ü
ö
30V, `
<u> </u>
8
2
D
PDP
Τ
-
ē
Ĵ
<u>c</u>
_
0
Ж
Ĩ

				Packaging				Qty per
Device N	larking	Device	Packag	ackage Type		er Tube	B	ox
FGA180N33AT FGA180N33ATTU		TO-3P	TO-3P Tube		30ea		-	
Electric Symbol	al Cha	Parameter	1	T _C = 25°C unless otherwise noted Test Conditions	Min.	Тур.	Max.	Units
Symbol		i arameter				iyp.	Wax.	Units
Off Charac	teristics							
BV _{CES}	Collector	to Emitter Breakdown V	oltage V _{GE} =	0V, I _C = 250μA	330	-	-	V
I _{CES}	Collector	Cut-Off Current	$V_{CE} =$	$V_{CES}, V_{GE} = 0V$	-	-	250	μΑ
I _{GES}	G-E Leakage Current		V _{GE} =	V_{GES} , $V_{CE} = 0V$	-	-	±400	nA
On Charac	teristics							
V _{GE(th)}	G-E Thre	shold Voltage	I _C = 25	50uA, V _{CE} = V _{GE}	2.5	4.0	5.5	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage			0A, V _{GE} = 15V	-	1.1	1.4	V
			I _C = 18	I _C = 180A, V _{GE} = 15V,		1.68	-	V
• CE(sat)			I _C = 18	$I_{C} = 180A, V_{GE} = 15V$ $T_{C} = 125^{\circ}C$		1.89	_	V
Dynamic C	haracteris	tics						
C _{ies}	Input Cap				-	3880	-	pF
C _{oes}		t Capacitance		V _{CE} = 30V, V _{GE} = 0V, f = 1MHz		305	-	pF
C _{res}	Reverse Transfer Capacitance		f = 110			180	-	pF
Switching	Character	istics						
t _{d(on)}	1	Delay Time			-	27	-	ns
t _r	Rise Time		V _{CC} =	200V, $I_C = 40A$,	-	80	-	ns
t _{d(off)}	Turn-Off	Delay Time		$= R_G = 5\Omega, V_{GE} = 15V,$ Resistive Load, $T_C = 25^{\circ}C$		108	-	ns
t _f	Fall Time				-	180	240	ns
t _{d(on)}	Turn-On I	Delay Time			-	26	-	ns
t _r	Rise Time	e	V _{CC} =	$V_{CC} = 200V, I_C = 40A,$ $R_G = 5\Omega, V_{GE} = 15V,$ Resistive Load, $T_C = 125^{\circ}C$		75	-	ns
t _{d(off)}	Turn-Off I	Delay Time	Resist			112	-	ns
t _f	Fall Time			-	-	250	300	ns
Qg	Total Gate	e Charge			-	169	-	nC
Q _{ge}	Gate to E	mitter Charge		200V, I _C = 40A,	-	22	-	nC
Q _{gc}	Gate to C	ollector Charge	V _{GE} = 15V		-	69	-	nC

Typical Performance Characteristics

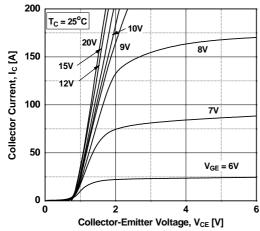


Figure 3. Typical Saturation Voltage Characteristics

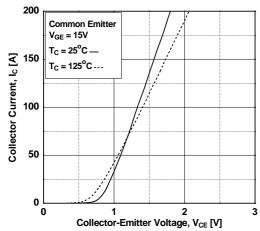


Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

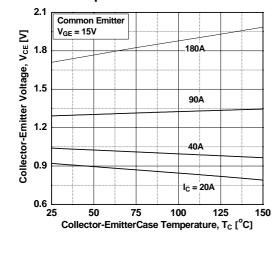


Figure 2. Typical Output Characteristics

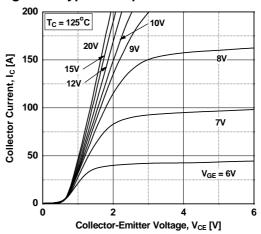


Figure 4. Transfer Characteristics

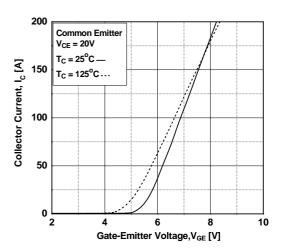
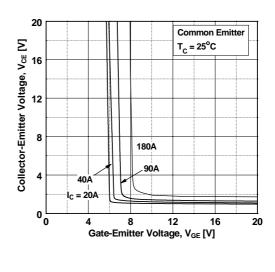



Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics

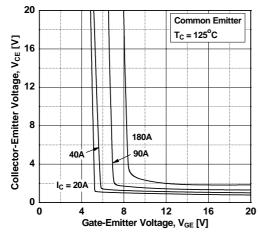
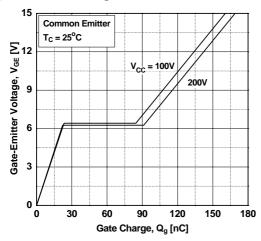



Figure 9. Gate charge Characteristics

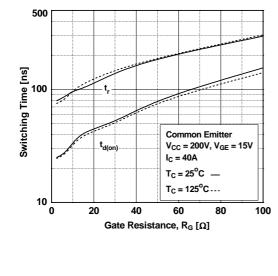


Figure 8. Capacitance Characteristics

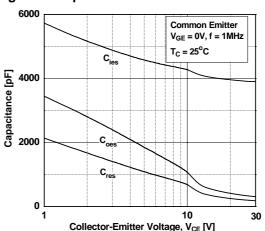


Figure 10. SOA Characteristics

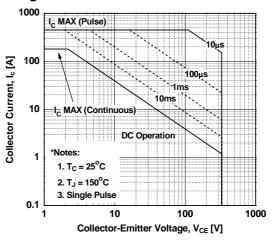
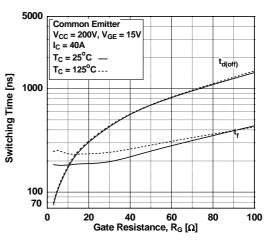



Figure 12. Turn-off Characteristics vs. Gate Resistance

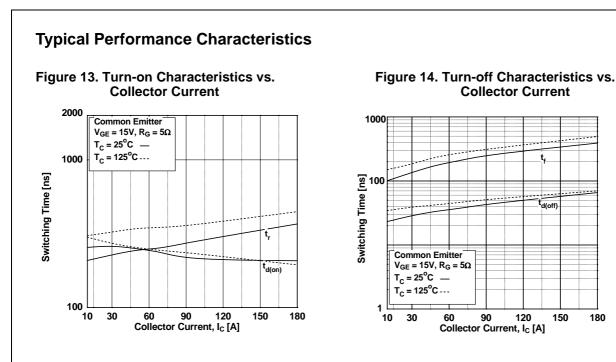
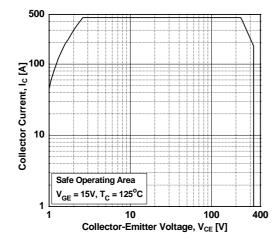
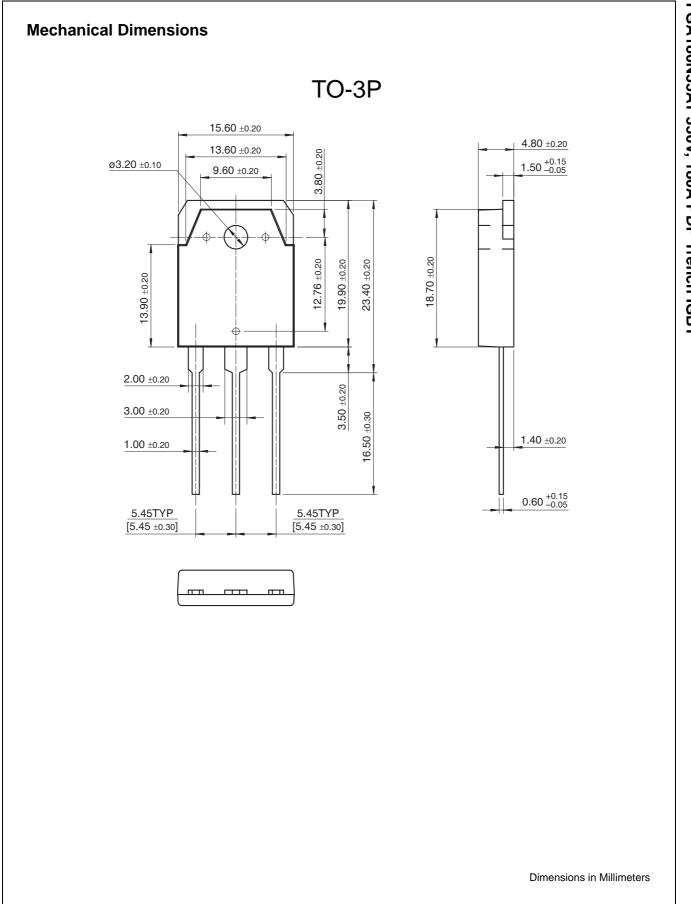




Figure 15. Turn off Switching SOA Characteristics

Typical Performance Characteristics Figure 16. Transient Thermal Impedance of IGBT 1 Thermal Response [Zthjc] 0.5 0.1 0.2 0.1 0.05 0.02 0.01 0.01 single pulse Duty Factor, D = t1/t2 Peak T_i = Pdm x Zthjc + T_C 1E-3 -1E-5 1E-4 1E-3 0.01 0.1 1 Rectangular Pulse Duration [sec]

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx®	FPS™	PDP-SPM™	The Power Franchise [®]
Build it Now™	F-PFS™	Power-SPM [™]	he
CorePLUS™	FRFET®	PowerTrench [®]	franchise
CorePOWER™	Global Power Resource SM	Programmable Active Droop™	TinyBoost™
CROSSVOLT™	Green FPS [™]	QFET®	TinyBuck™
CTL™	Green FPS [™] e-Series [™]	QS™	TinyLogic [®]
Current Transfer Logic™	GTO™	Quiet Series [™]	TINYOPTO™
EcoSPARK [®]	IntelliMAX™	RapidConfigure™	TinyPower™
EfficentMax™	ISOPLANAR™	Saving our world 1mW at a time™	TinyPWM™
EZSWITCH™ *	MegaBuck™	SmartMax™	TinyWire™
EZ [™]	MICROCOUPLER™	SMART START™	µSerDes™
	MicroFET™	SPM [®]	
F	MicroPak™	STEALTH™	SerDes
Fairchild [®]	MillerDrive™	SuperFET™	UHC [®]
Fairchild Semiconductor®	MotionMax™	SuperSOT™-3	Ultra FRFET™
FACT Quiet Series™	Motion-SPM™	SuperSOT™-6	UniFET™
FACT [®]	OPTOLOGIC [®]	SuperSOT™-8	VCX TM
FAST [®]	OPTOPLANAR®	SuperMOS™	VisualMax™
FastvCore™	() [®]		
FlashWriter [®] *		GENERAL	

* EZSWITCHTM and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC