FCP22N60N / FCPF22N60NT
N-Channel SupreMOS® MOSFET
600 V, 22 A, 165 mΩ

Features
- BV_DSS > 650 V @ TJ = 150°C
- RDSON(Typ.) = 140 mΩ @ VGS = 10 V, ID = 11 A
- Ultra Low Gate Charge (Typ. Qg = 45 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 196.4 pF)
- 100% Avalanche Tested
- RoHS Compliant

Application
- LCD/LED/PDP TV
- Lighting
- Solar Inverter
- AC-DC Power Supply

Description
The SupreMOS® MOSFET is Fairchild Semiconductor’s next generation of high voltage super-junction (SJ) technology employing a deep trench filling process that differentiates it from the conventional SJ MOSFETs. This advanced technology and precise process control provides lowest Rsp on-resistance, superior switching performance and ruggedness. SupreMOS MOSFET is suitable for high frequency switching power converter applications such as PFC, server/telecom power, FPD TV power, ATX power, and industrial power applications.

Absolute Maximum Ratings TC = 25°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>FCP22N60N</th>
<th>FCPF22N60NT</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DSS</td>
<td>Drain to Source Voltage</td>
<td>600</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>V_GSS</td>
<td>Gate to Source Voltage</td>
<td>±45</td>
<td>±45</td>
<td>V</td>
</tr>
<tr>
<td>I_D</td>
<td>Drain Current</td>
<td>- Continuous (TC = 25°C)</td>
<td>22</td>
<td>22*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Continuous (TC = 100°C)</td>
<td>13.8</td>
<td>13.8*</td>
</tr>
<tr>
<td>I_DM</td>
<td>Drain Current</td>
<td>- Pulsed</td>
<td>66</td>
<td>66*</td>
</tr>
<tr>
<td>E_AS</td>
<td>Single Pulsed Avalanche Energy</td>
<td>(Note 2)</td>
<td>672</td>
<td>mJ</td>
</tr>
<tr>
<td>I_AR</td>
<td>Avalanche Current</td>
<td>(Note 1)</td>
<td>7.3</td>
<td>A</td>
</tr>
<tr>
<td>E_AR</td>
<td>Repetitive Avalanche Energy</td>
<td>(Note 1)</td>
<td>2.75</td>
<td>mJ</td>
</tr>
<tr>
<td>dv/dt</td>
<td>MOSFET dv/dt</td>
<td>(Note 3)</td>
<td>100</td>
<td>V/ns</td>
</tr>
<tr>
<td>P_D</td>
<td>Power Dissipation</td>
<td>(TC = 25°C)</td>
<td>205</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Derate Above 25°C</td>
<td>1.64</td>
<td>0.31</td>
</tr>
<tr>
<td>T_J, T_STG</td>
<td>Operating and Storage Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_L</td>
<td>Maximum Lead Temperature for Soldering, 1/8” from Case for 5 Seconds</td>
<td>300</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

*Drain current limited by maximum junction temperature.

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>FCP22N60N</th>
<th>FCPF22N60NT</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_JUC</td>
<td>Thermal Resistance, Junction to Case, Max.</td>
<td>0.61</td>
<td>3.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_JUA</td>
<td>Thermal Resistance, Junction to Ambient, Max.</td>
<td>62.5</td>
<td>62.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCP22N60N</td>
<td>FCP22N60N</td>
<td>TO-220</td>
<td>Tube</td>
<td>N/A</td>
<td>N/A</td>
<td>50 units</td>
</tr>
<tr>
<td>FCPF22N60NT</td>
<td>FCPF22N60NT</td>
<td>TO-220F</td>
<td>Tube</td>
<td>N/A</td>
<td>N/A</td>
<td>50 units</td>
</tr>
</tbody>
</table>

Electrical Characteristics \(T_C = 25^\circ C \) unless otherwise noted.

Off Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BVDSS)</td>
<td>Drain to Source Breakdown Voltage</td>
<td>(I_D = 1) mA, (V_GS = 0) V, (T_J = 25^\circ C)</td>
<td>600</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(\Delta BVDSS / \Delta T_J)</td>
<td>Breakdown Voltage Temperature Coefficient</td>
<td>(I_D = 1) mA, Referenced to 25°C</td>
<td>650</td>
<td>-</td>
<td>-</td>
<td>V/°C</td>
</tr>
<tr>
<td>(I_DSS)</td>
<td>Zero Gate Voltage Drain Current</td>
<td>(V_D = 480) V, (V_GS = 0) V</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>(I_GSS)</td>
<td>Gate to Body Leakage Current</td>
<td>(V_GS = \pm 45) V, (V_D = 0) V</td>
<td>-</td>
<td>-</td>
<td>±100</td>
<td>nA</td>
</tr>
</tbody>
</table>

On Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{GS(th)})</td>
<td>Gate Threshold Voltage</td>
<td>(V_GS = V_D, I_D = 250) μA</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>(R_{DS(on)})</td>
<td>Static Drain to Source On Resistance</td>
<td>(V_GS = 10) V, (I_D = 11) A</td>
<td>-</td>
<td>0.140</td>
<td>0.165</td>
<td>Ω</td>
</tr>
<tr>
<td>(g_{FS})</td>
<td>Forward Transconductance</td>
<td>(V_D = 20) V, (I_D = 11) A</td>
<td>-</td>
<td>22</td>
<td>-</td>
<td>S</td>
</tr>
</tbody>
</table>

Dynamic Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{iss})</td>
<td>Input Capacitance</td>
<td>(V_D = 100) V, (V_GS = 0) V, (f = 1) MHz</td>
<td>-</td>
<td>1950</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>(C_{oss})</td>
<td>Output Capacitance</td>
<td>(V_D = 380) V, (V_GS = 0) V, (f = 1) MHz</td>
<td>-</td>
<td>43.2</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>(C_{rss})</td>
<td>Reverse Transfer Capacitance</td>
<td>(V_D = 0) V to 480 (V_GS = 0) V</td>
<td>-</td>
<td>196.4</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>(C_{oss(eff)})</td>
<td>Effective Output Capacitance</td>
<td>(V_D = 380) V, (I_D = 11) A, (V_GS = 10) V</td>
<td>-</td>
<td>45</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>(Q_{gs})</td>
<td>Total Gate Charge at 10V</td>
<td>(V_D = 380) V, (I_D = 11) A, (V_GS = 10) V</td>
<td>-</td>
<td>8.7</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>(Q_{gd})</td>
<td>Gate to Drain “Miller” Charge</td>
<td>-</td>
<td>14.5</td>
<td>-</td>
<td>nC</td>
<td></td>
</tr>
<tr>
<td>ESR</td>
<td>Equivalent Series Resistance (G-S)</td>
<td>(f = 1) MHz</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{on})</td>
<td>Turn-On Delay Time</td>
<td>(V_D = 380) V, (I_D = 11) A</td>
<td>-</td>
<td>16.9</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{r})</td>
<td>Turn-On Rise Time</td>
<td>(V_GS = 10) V, (R_G = 4.7) Ω</td>
<td>-</td>
<td>16.7</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{off})</td>
<td>Turn-Off Delay Time</td>
<td>-</td>
<td>49</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{f})</td>
<td>Turn-Off Fall Time</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Drain-Source Diode Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_S)</td>
<td>Maximum Continuous Drain to Source Diode Forward Current</td>
<td>-</td>
<td>22</td>
<td>-</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(I_{SM})</td>
<td>Maximum Pulsed Drain to Source Diode Forward Current</td>
<td>-</td>
<td>66</td>
<td>-</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(V_{SD})</td>
<td>Drain to Source Diode Forward Voltage</td>
<td>(V_GS = 0) V, (I_{SD} = 11) A</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(t_{rr})</td>
<td>Reverse Recovery Time</td>
<td>(dV_GS/dt = 100) A/μs</td>
<td>-</td>
<td>350</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(Q_{rr})</td>
<td>Reverse Recovery Charge</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>μC</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Repetitive rating: pulse width-limited by maximum junction temperature.
2. \(I_{GD} = 7.3 \) A, \(R_G = 25 \) Ω, starting \(T_J = 25^\circ C \).
3. \(I_{SD} = 22 \) A, \(dV_D/dt = 200 \) A/μs, \(V_D = 380 \) V, starting \(T_J = 25^\circ C \).
4. Essentially independent of operating temperature typical characteristics.
Typical Performance Characteristics

Figure 1. On-Region Characteristics

*N Notes:
1. 250μs Pulse Test
2. TC = 25°C

Figure 2. Transfer Characteristics

*N Notes:
1. VGS = 20V
2. 250μs Pulse Test

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

*Note: TC = 25°C

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

*N Notes:
1. VDS = 0V
2. 250μs Pulse Test

Figure 5. Capacitance Characteristics

*C Ciss = Cgs + Cgd (Cds = shorted)
Coss = Cds + Cgd
Crss = Cgd

*Note:
1. VGS = 0V
2. f = 1MHz

Figure 6. Gate Charge Characteristics

*Note: ID = 11A
Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

![Breakdown Voltage Variation vs. Temperature Graph](image)

*Notes:
1. \(V_{GS} = 0V \)
2. \(I_D = 1mA \)

Figure 8. On-Resistance Variation vs. Temperature

![On-Resistance Variation vs. Temperature Graph](image)

*Notes:
1. \(V_{GS} = 10V \)
2. \(I_D = 11A \)

Figure 9. Maximum Safe Operating Area for FCP22N60N

![Maximum Safe Operating Area Graph](image)

*Notes:
1. \(T_C = 25^\circ C \)
2. \(T_J = 150^\circ C \)
3. Single Pulse

Figure 10. Maximum Safe Operating Area for FCPF22N60NT

![Maximum Safe Operating Area Graph](image)

*Notes:
1. \(T_C = 25^\circ C \)
2. \(T_J = 150^\circ C \)
3. Single Pulse

Figure 11. Maximum Drain Current vs. Case Temperature

![Maximum Drain Current vs. Case Temperature Graph](image)
Typical Performance Characteristics (Continued)

Figure 12. Transient Thermal Response Curve for FCP22N60N

<table>
<thead>
<tr>
<th>Rectangular Pulse Duration [sec]</th>
<th>ZθJC(t), Thermal Response [°C/W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-5</td>
<td>0.01</td>
</tr>
<tr>
<td>10^-4</td>
<td>0.05</td>
</tr>
<tr>
<td>10^-3</td>
<td>0.1</td>
</tr>
<tr>
<td>10^-2</td>
<td>0.3</td>
</tr>
<tr>
<td>10^-1</td>
<td>0.6</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Notes:
1. ZθJC(t) = 0.61°C/W Max.
2. Duty Factor, D = t1/t2
3. TJM - TC = PDM * ZθJC(t)

Figure 13. Transient Thermal Response Curve for FCPF22N60NT

<table>
<thead>
<tr>
<th>Rectangular Pulse Duration [sec]</th>
<th>ZθJC(t), Thermal Response [°C/W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-5</td>
<td>0.001</td>
</tr>
<tr>
<td>10^-4</td>
<td>0.01</td>
</tr>
<tr>
<td>10^-3</td>
<td>0.05</td>
</tr>
<tr>
<td>10^-2</td>
<td>0.1</td>
</tr>
<tr>
<td>10^-1</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Notes:
1. ZθJC(t) = 3.2°C/W Max.
2. Duty Factor, D = t1/t2
3. TJM - TC = PDM * ZθJC(t)
Figure 14. Gate Charge Test Circuit & Waveform

Figure 15. Resistive Switching Test Circuit & Waveforms

Figure 16. Unclamped Inductive Switching Test Circuit & Waveforms
Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms

- DUT
- V_{DS}
- I_{SD}
- Driver
- RG
- Same Type as DUT
- V_{DD}
- V_{GS}
- dV/dt controlled by RG
- I_{SD} controlled by pulse period

- V_{GS} (Driver)
- $D = \frac{Gate Pulse Width}{Gate Pulse Period}$
- $10V$

- I_{SD} (DUT)
- I_{FM}, Body Diode Forward Current
- I_{RM}, Body Diode Reverse Current
- V_{DS} (DUT)
- Body Diode Recovery dv/dt
- V_{SD}
- V_{DD}
- Body Diode Forward Voltage Drop

Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms
Figure 18. TO-220, Molded, 3-Lead, Jedec Variation AB

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-003
Figure 19. TO220, Molded, 3-Lead, Full Pack, EIAJ SC91, Straight Lead

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF220-003
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AX-CAP™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EcoSPARK®
EfficientMax™
ESBC™
Fairchild®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FETBench™
FPS™
F-PFS™
FRFET®
Global Power ResourceSM
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Marking Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroFak™
MillerDrive™
MotionMax™
mWSaver®
OptoHiT™
OPTOLOGIC®
OPTOPLANAR®
PowerTrench®
PowerXS™
Programmable Active Drop™
QFET™
QST™
Quiet Series™
RapidConfigure™
Sync-Lock™
SYSTEM®
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower®
TinyPWM™
TinyWire™
TransSC™
TrNuFault Detect™
TRUECURRENT™
µSerDes™
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

These specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers these products.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

©2009 Fairchild Semiconductor Corporation
FCP22N60N / FCPF22N60NT Rev. C1