

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

November 2016

FXGL2014 — 4-Channel LVTTL to GTL Transceiver

Features

- Operates as a 4-bit GTL-/GTL/GTL+ Sampling receiver or as a LVTTL to GTL-/GTL/GTL+ Driver
- 3.0 V to 3.6 V Operation with 5 V Tolerant LVTTL Input
- GTL Input and Output 3.6 V Tolerant
- Vref Adjustable from 0.5 V to VCC/2
- Partial Power-down Permitted
- Under-Voltage Lockout (UVLO)
- ESD Protection exceeds 2000 V HBM per JESD22-A114 and 1000 V CDM per JESD22-CC101
- Latch-up Protection Exceeds 500 mA per JESD78
- Package Offered: TSSOP14
- -40°C to 85°C Operating Temperature Range

Applications

- Server
- Base Station
- Wire-line Communication

Description

The FXGL2014 is a 4-channel translator to interface between 3.3-V LVTTL chip set I/O and Xeon processor GTL-/GTL/GTL+ I/O.

The FXGL2014 integrates ESD protection cells on all terminals and is available in a TSSOP package (5.0 mm \times 4.4 mm). The device is characterized over free air temperature range of -40° C to 85°C.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FXGL2014MTC	-40 to +85°C	5.0 mm × 4.4 mm, 0.65 mm Pitch, 14 Lead TSSOP Package	Tape & Reel

Analog Symbols

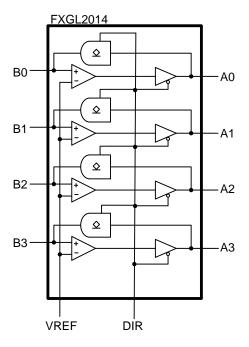


Figure 1. Analog Symbols

Functional Description

INPUT	INPUT/OUTPUT			
DIR	A (LVTTL)	B (GTL)		
High Voltage	Input	Bn = An		
Low Voltage	An = Bn	Input		

Pin Configuration

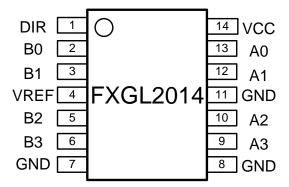


Figure 1. Pin Assignment (Top Through View)

Pin Descriptions

Pin Name	Pin #	Description	
A0	13		
A1	12	LVIII Data Input / Output	
A2	10	LVTTL Data Input / Output	
А3	9		
В0	2		
B1	3	GTL Data Input / Output	
B2	5	GTL Data Input / Output	
В3	6		
DIR	1	Direction Control Input (LVTTL)	
	7		
GND	8	Ground	
	11		
VCC	14	Supply Voltage	
VREF	4	GTL Reference Voltage	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
V _{CC}	Supply Voltage		-0.5	4.6	V
I _{IK}	Input Clamping Current, V _I <0 V			-50	mA
V_{DIR}	Input Control Voltages DIR		-0.5	6	V
	lanut Valtara	A Port	-0.5	6.5	V
Vı	Input Voltage	B Port	-0.5	4.6	V
I _{CK}	Control Input Clamp Current, Vo < 0 V			-50	mA
\/	Output Valtage in Off State	A Port	-0.5	6.5	V
Vo	Output Voltage in Off-State	B Port	-0.5	4.6	V
	Comment into any system tip the Levy Ctate	A Port		40	A
l _{OL}	Current into any output in the Low State		80	mA	
I _{OH}	Current into any output in the High State		-40	mA	
T _{stg}	Storage Temperature Range	-55	150	°C	
V	Human Body Model (HBM), JEDEC: JESD22-A114 All Pins		2		1417
V_{ESD}	Charged Device Model, JEDEC: JESD22-C101	1		kV	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. ON does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parame	Min.	Тур.	Max.	Unit		
V _{cc}	Supply Voltage		3.0	3.3	3.6	V	
		GTL-	0.85	0.90	0.95		
V_{TT}	Termination Voltage	GTL	1.14	1.20	1.26	V	
		GTL+	1.35	1.50	1.65		
		Overall	0.5	2/3V _{TT}	V _{CC} /2		
	Reference Voltage	GTL-	0.50	0.60	0.63	V	
V_{REF}		GTL	0.76	0.80	0.84	V	
		GTL+	0.87	1.00	1.10		
V	Innut Valtage	A Port	0	3.3	5.5 ⁽³⁾	V	
Vı	Input Voltage	B Port	0	V_{TT}	3.6	V	
\/	High layed langet Valtage	A Port and DIR	2			V	
V _{IH}	High-level Input Voltage	B Port	V _{REF} + 50 mV			V	
1/	Lave lavel lament Valtage	A Port and DIR			0.8	V	
V _{IL}	Low-level Input Voltage	B Port			V _{REF} – 50 mV		
I _{OL}	Low lovel Output Current	A Port			20	m 1	
	Low-level Output Current	B Port			50	mA	
I _{OH}	High-level Output current	A Port			-20	mA	

Notes:

- 1. Over operating free-air temperature range (unless otherwise noted).
- 2. All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.
- 3. The V_1 (max) of LVTTL port is 3.6 V if configured as output (DIR=L).

Thermal Information

	Value	Unit	
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance	116	°C/W
R ₀ JC(top)	Junction-to-Case (top) Thermal Resistance	17	C/VV

DC Electrical Characteristics

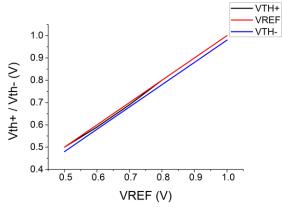
Specified at $T_A = -40$ °C to 85°C (unless otherwise noted).

011	Davamatar	O an dition a	-40°C	to 85	s°C	11			
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
\/	A Dord	$V_{CC} = 3 \text{ to } 3.6 \text{ V}, I_{OH} = -100 \mu\text{A}$	V _{CC} - 0.2			V			
V_{OH}	A Port	V _{CC} = 3 V, I _{OH} = -16 mA	2.0			V			
	A Port	V _{CC} = 3 V, I _{OL} = 8 mA		0.28	0.40				
V	A Port	V _{CC} = 3 V, I _{OL} = 12 mA		0.42	0.60	V			
V_{OL}	A Port	V _{CC} = 3 V, I _{OL} = 16 mA		0.55	0.80	V			
	B Port	V _{CC} = 3 V, I _{OL} = 40 mA		0.23	0.40				
		$V_{CC} = 3.6 \text{ V}, V_I = V_{CC}$			±1				
	A Port	V _{CC} = 3.6 V, V _I = 0 V			±1	μΑ			
II		V _{CC} = 3.6 V, V _I = 5.5 V			5	7			
	B Port	$V_{CC} = 3.6 \text{ V}, V_I = V_{TT} \text{ or GND}$			±1	μA			
	Control Pin	$V_{CC} = 3.6 \text{ V}, V_{I} = V_{CC} \text{ or } 0 \text{ V}$			±1	μΑ			
	OFF-State Output Current on A Port	$V_{CC} = 0 \text{ V}, V_{IO} = 0 \text{ to } 3.6 \text{ V}$			±10				
I_{off}	OFF-State Output Current on A Port	$V_{CC} = 0 \text{ V}, V_{IO} = 3.6 \text{ to } 5.5 \text{ V}$			±100	μΑ			
	OFF-State Output Current on B Port	V _{CC} = 0 V, V _{IO} = 0 to 3.6 V			±10				
	A Port	$V_{CC} = 3.6 \text{ V}, V_I = V_{CC} \text{ or GND},$ $I_O = 0$		3	10	mA			
I _{CC}	B Port	$V_{CC} = 3.6 \text{ V}, V_I = V_{TT} \text{ or GND},$ $I_O = 0$		3	10	mA			
Δlcc	A Port or Control Input	$V_{CC} = 3.6 \text{ V}, V_{I} = V_{CC} - 0.6 \text{ V}$			500	μA			
V _{UVLO} ⁽⁴⁾	Under-Voltage Lockout Threshold	V _{CC} = 0 to 3 V	1.5			٧			
C _I ⁽⁴⁾	Input Capacitance of Control Pin	$V_{CC} = 3 \text{ to } 3.6 \text{ V}, V_{I} = 3.0 \text{ V or } 0 \text{ V}$		2.0		pF			
O (4)	A Port	$V_{CC} = 3 \text{ to } 3.6 \text{ V}, V_{O} = 3.0 \text{ V or } 0 \text{ V}$		4.0					
$C_{1O}^{(4)}$	B Port	$V_{CC} = 3 \text{ to } 3.6 \text{ V}, V_{O} = V_{TT} \text{ or } 0 \text{ V}$	5.46			pF			

Note:

4. Guaranteed by characterization and / or design. Not production tested.

AC Electrical Characteristics


Over-operating range, $T_A = -40$ °C to 85°C, $V_{CC} = 3.0$ to 3.6 V, GND = 0 V for GTL.

				GTL-			GTL			GTL+		
			$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		$V_{CC} = 3.3 V$ $\pm 0.3 V$		V _{CC} = 3.3 V ± 0.3 V					
Symbol	Paramete	Parameter		V _{REF} = 0.6 V		V _{REF} = 0.8 V V _{TT} = 1.2 V		V _{REF} = 1 V V _{TT} = 1.5 V		Unit		
			V _{TT} = 0.9 V									
			Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
t _{PLH}	Low to High Propagation Delay ⁽⁵⁾	An to Do		2.8	5.0		2.8	5.0		2.8	5.0	
t _{PHL}	High to Low Propagation Delay ⁽⁵⁾	An to Bn		3.3	7.0		3.4	7.0		3.4	7.0	ns
t _{PLH}	Low to High Propagation Delay ⁽⁵⁾	Bn to An		5.3	8.0		5.2	8.0		5.1	8.0	no
t _{PHL}	High to Low Propagation Delay ⁽⁵⁾			5.2	8.0		4.9	7.0		4.7	7.0	ns

Note:

5. Guaranteed by characterization and / or design. Not production tested.

Typical characteristics

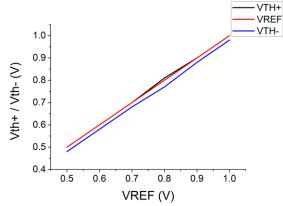


Figure 2. GTL Vth+ and Vth- vs. VREF (-40°C)

Figure 3. GTL Vth+ and Vth- vs. VREF (25°C)

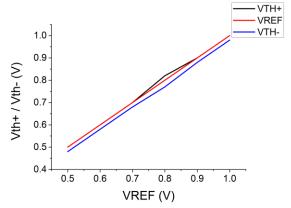
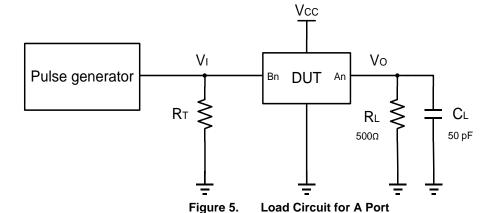



Figure 4. GTL Vth+ and Vth- vs. VREF (85°C)

Test Information

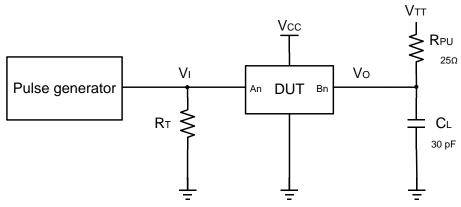
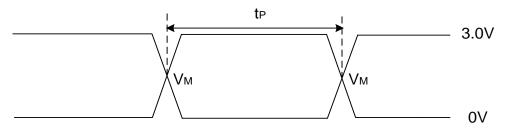


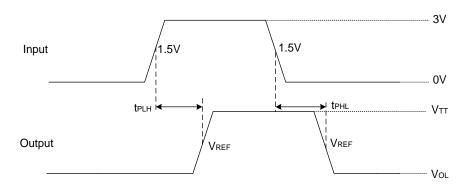
Figure 6. Load Circuit for B Port

R_T- Termination resistance; should be equal to output impedance of pulse generators.

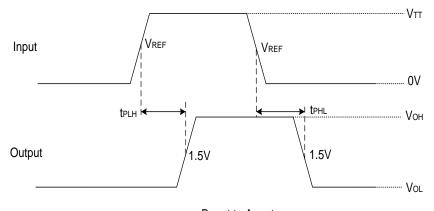

 R_L – Load resistor.

 C_L – Load capacitance; includes jig and probe capacitance.

Waveforms


 V_M = 1.5 V at $V_{CC} \ge 3.0$ V; V_M = V_{CC} at $V_{CC} \le 2.7$ V for A ports and control pins.

 $V_M = V_{REF}$ for B ports.


V_M = 1.5V for A port and V_{REF} for B port

Pulse duration

A port to B port

Propagation delay times

B port to A port

Propagation delay times

Figure 7. Voltage Waveforms

- A. All control inputs are LVTTL levels.
- B. C_L includes probe and jig capacitance.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_0 = 50 Ω , $t_r \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Application Information

Application Overview

The FXGL2014 is a 4-channel translating transceiver designed for 3.3-V LVTTL system interface with a GTL-/GTL/GTL+ bus, where GTL-/GTL/GTL+ refers to the reference voltage of the GTL bus and the input/output voltage thresholds associated with it.

The direction pin allows the part to function as either a GTL-to-LVTTL sampling receiver or as a LVTTL-to-GTL interface.

The FXGL2014 performs translation in two directions. One direction is GTL–/GTL/GTL+ to LVTTL when DIR is tied to GND. With appropriate V_{REF} set up, the GTL input can be compliant with GTL–/GTL/GTL+. Another direction is LVTTL to GTL–/GTL/GTL+ when DIR is tied to VCC. 3.6 V tolerance on the GTL output allows the GTL outputs to pull up to any voltage level under 3.6 V.

Feature Description

5 V Tolerance on LVTTL Input

The FXGL2014 LVTTL inputs (only) are tolerant up to 5.5 V and allow direct access to TTL or 5 V CMOS inputs. The LVTTL outputs are not 5.5 V tolerant.

3.6 V Tolerance on GTL Input / Output

The FXGL2014 GTL inputs and outputs operate up to 3.6 V, allowing the device to be used in higher voltage open-drain output applications.

Ultra-Low V_{REF} and High Bandwidth

FXGL2014's V_{REF} tracks down to 0.5 V for low voltage CPUs with excellent propagation delay performance. This feature allows the FXGL2014 to support high data rates with the GTL- bus.

Under-Voltage Lockout (UVLO)

Under-voltage lockout circuit is integrated internal. This feature makes sure the data transferred effectively when power unstable.

Typical Application GTL-/GTL/GTL+ to LVTTL

Select appropriate V_{TT}/V_{REF} based upon GTL-/GTL/GTL+. The parameters in Recommended Operating Conditions are compliant to the GTL specification.

The FXGL2014 requires industrial standard LVTTL and GTL inputs. The design example in the Application Information shows standard voltage level and typical resistor values.

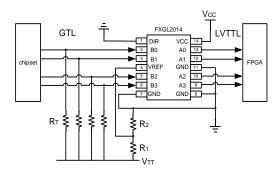


Figure 8. Application Diagram for GTL to LVTTL Table 1. Application Table for GTL to LVTTL

• • •	
	Port B to Port A
	GTL to LVTTL
VCC	3.3 V
VREF	2*VTT/3
VTT	1.0 V
DIR	GND
RT	75 Ω
R1	49.9 Ω
R2	100 Ω

LVTTL to GTL-/GTL/GTL+

Because GTL is an open-drain interface, the selection of the pull-up resistor depends on the application requirement (for example, data rate) and PCB trace capacitance.

The FXGL2014 requires industrial standard LVTTL and GTL inputs. The design example in the Application Information section show standard voltage level and typical resistor values.

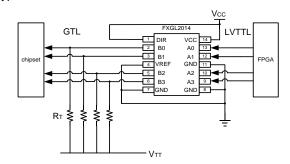
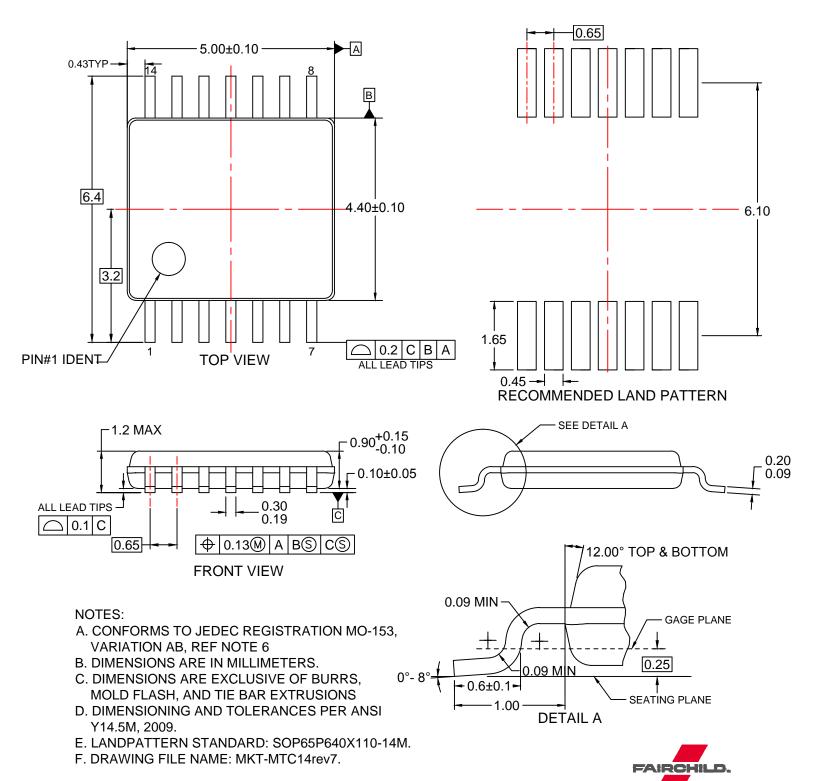



Figure 9. Application Diagram for LVTTL to GTL Table 2. Application Table for LVTTL to GTL

	Port A to Port B
	LVTTL to GTL
V _{CC}	3.3 V
V_{REF}	GND
V _{TT}	1.0 V
DIR	GND
R _T	75 Ω
R ₁	Not Available
R ₂	Not Available

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see any inability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ex

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative