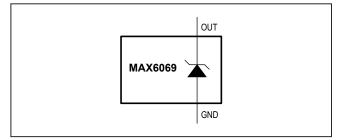
1µA Ultra-Tiny Shunt Voltage Reference

General Description

The MAX6069 ultra-low-power shunt references are ideal for space-critical and low-power applications. They are offered in a 4-bump wafer-level package (WLP), and the minimum operating current is guaranteed to be less than 1μ A. These references feature low temperature coefficients of less than 20ppm/°C and initial accuracy of better than 0.2%.

Available with +1.25V, +2.048V, +2.5V, and 3V output voltages, these references can be used as lower-power, higher-precision upgrades to the ICL8069, LM385, LT1004, and LM4040 in much smaller packages. Two grades are available: A and B. The A grade features a temperature coefficient of 25ppm/°C over the extended temperature range of -40°C to +85°C, with an initial accuracy of 0.2%. Grade B features a temperature range of -40°C to +85°C, with an initial accuracy of 0.2%. With an initial accuracy of 0.5%. Their tiny wafer-level packages make these references ideal for equipment with very small form factors.

Applications


- Portable Sensors
- Portable Meters
- Precision Regulators
- A/D and D/A Converters
- 4mA–20mA Loop-Powered Sensors

Benefits and Features

- Wide Operating Current Range: 1µA to 2mA
- 0.88mm x 1.16mm, 4-Bump WLP
- Initial Voltage Accuracy: 0.2%
- Temperature Coefficient: 20ppm/°C max
- Temperature Range: -40°C to +125°C
- Factory-Trimmed Output Voltages: +1.25V, +2.048V, +2.5V, +3.0V
- Functionally Equivalent to MAX6006/7/8/9

Ordering Information appears at end of data sheet.

Simplified Block Diagram

1µA Ultra-Tiny Shunt Voltage Reference

Absolute Maximum Ratings

Operating Current (OUT to GND)	20mA	Operating Temperature Range40°C to +125°	°C
Forward Current (GND to OUT)	20mA	Storage Temperature Range65°C to +150°	°C
Continuous Power Dissipation (Multilayer Board;		Junction Temperature+150°	°C
derate 9.75mW/°C above +70°C)	780mW	Soldering Temperature (reflow)+260°	°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

WLP

Package Code	W40D1+1				
Outline Number	<u>21-100139</u>				
Land Pattern Number	Refer to Application Note 1891				
Thermal Resistance, Four-Layer Board:					
Junction-to-Ambient (θ _{JA})	102.59°C/W				
Junction-to-Case (θ_{JC})	N/A				

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

 $(T_A = -40^{\circ}C \text{ to } + 125^{\circ}C, \text{ unless otherwise noted.}, Typical values are at T_A = +25^{\circ}C. (Note 1))$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS		
MAX6069A (1.250V)									
Reverse Breakdown Voltage		T _A = +25°C,	MAX6069AA (0.2%)	1.2475	1.2500	1.2525	v		
	V _R	I _R = 1.2μA	MAX6069AB (0.5%)	1.2438	1.2500	1.2563			
Minimum Operating Current	I _{RMIN}	V_R change < 0.2% from V_R at I_R = 1.2µA			0.5	1.0	μA		
Reverse Breakdown Change		I _R = 1.2μA to 200μA				1	mV		
with Current		I _R = 200μA to 2mA				2.0			
Reverse Dynamic Impedance		I _R = 1.2μA to 2mA (Note 2)				1.5	Ω		
Low-Frequency Noise		I _R = 1.2μA, f = 0.1Hz to 10Hz			30		µVp-p		

1µA Ultra-Tiny Shunt Voltage Reference

Electrical Characteristics (continued)

 $(T_A=-40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted.}, Typical values are at T_A = +25^{\circ}C. (Note 1))$

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
		I _R = 1.2μΑ, ΜΑΧ6069ΑΑ	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			20	
Temperature Coefficient	тс	I _R = 1.2μΑ, MAX6069AA	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			25	~~~/°C
(Note 3)		I _R = 1.2μA, MAX6069AB	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			50	ppm/°C
		I _R = 1.2μA, MAX6069AB	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			75	
Long-Term Drift		1000h at T _A = +25°	°C		150		ppm
Thermal Hysteresis (Note 4)					200		ppm
MAX6069B (2.048V)		•					
		T _A = +25°C,	MAX6069BA (0.2%)	2.0439	2.048	2.0521	
Reverse Breakdown Voltage	V _R	I _R = 1.2μA	MAX6069BB (0.5%)	2.0378	2.048	2.0582	V
Minimum Operating Current	I _{RMIN}	V _R change < 0.2%	from V _R at I _R = 1.2µA		0.5	1.0	μA
Reverse Breakdown Change		$I_{R} = 1.2\mu A \text{ to } 200\mu A$ $I_{R} = 200\mu A \text{ to } 2mA$				1.3	mV
with Current						2.3	
Reverse Dynamic Impedance		$I_R = 1.2\mu A \text{ to } 2mA \text{ (Note 2)}$				1.8	Ω
Low-Frequency Noise		I _R = 1.2μA, f = 0.1Hz to 10Hz			50		µVp-p
Temperature Coefficient (Note 3)	тс	I _R = 1.2μΑ, ΜΑΧ6069ΒΑ	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			20	ppm/°C
Temperature Coefficient (Note 3)	тс	I _R = 1.2μΑ, MAX6069BA	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			25	ppm/°C
Temperature Coefficient (Note 3)	тс	I _R = 1.2μΑ, MAX6069BB	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			50	ppm/°C
Temperature Coefficient (Note 3)	тс	I _R = 1.2μΑ, MAX6069BB	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			75	ppm/°C
Long-Term Drift		1000h at T _A = +25°	°C		150		ppm
Thermal Hysteresis (Note 4)					200		ppm
MAX6069C (2.500V)		,					
Development in 1774		T _A = +25°C,	MAX6069CA (0.2%)	2.4950	2.5000	2.5050	
Reverse Breakdown Voltage	V _R	$R = I_R = 1.2 \mu A$	MAX6069CB (0.5%)	2.4875	2.5000	2.5125	V
Minimum Operating Current	I _{RMIN}	V_R change < 0.2% from V_R at I_R = 1.2µA			0.5	1.0	μA
Reverse Breakdown Change			4			1.5	
with Current		$I_{R} = 1.2\mu A \text{ to } 200\mu A$ $I_{R} = 200\mu A \text{ to } 2mA$				2.5	mV
Reverse Dynamic Impedance		$I_R = 1.2 \mu A \text{ to } 2 m A$	(Note 2)			2	Ω

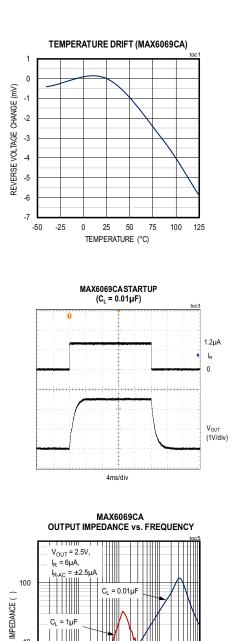
1µA Ultra-Tiny Shunt Voltage Reference

Electrical Characteristics (continued)

(T_A=-40°C to +125°C, unless otherwise noted., Typical values are at T_A = +25°C. (Note 1))

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
Low-Frequency Noise		I _R = 1.2μA, f = 0.1H	$I_R = 1.2\mu A$, f = 0.1Hz to 10Hz		60		µVр-р
Temperature Coefficient (Note 3)		I _R = 1.2μΑ, MAX6069CA	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$			20	
			T _A = -40°C to +125°C			25	
	тс	I _R = 1.2μΑ, MAX6069CB	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			50	ppm/°C
		I _R = 1.2μΑ, MAX6069CB	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			75	
Long-Term Drift		1000h at T _A = +25°	C		150		ppm
Thermal Hysteresis (Note 4)					200		ppm
MAX6069D (3.00V)							
		T _A = +25°C,	MAX6069DA (0.2%)	2.9940	3.0000	3.0060	
Reverse Breakdown Voltage	V_{R} $I_{R} = 2$	I _R = 1.2μA	MAX6069DB (0.5%)	2.9850	3.0000	3.0150	V
Minimum Operating Current	I _{RMIN}	V _R change < 0.2%	V_R change < 0.2% from V_R at I_R = 1.2µA		0.5	1.0	μA
Reverse Breakdown		I _R = 1.2μA to 200μA I _R = 200μA to 2mA				1.7	
Change with Current						2.7	mV
Reverse Dynamic Impedance		I _R = 1.2μA to 2mA (Note 2)			2.2	Ω
Low-Frequency Noise		I _R = 1.2μA, f = 0.1H	lz to 10Hz		75		µ∨р-р
		I _R = 1.2μΑ, MAX6069DA	$T_A = -40^{\circ}C$ to $+85^{\circ}C$			20	
Temperature Coefficient	TC $TC = \begin{bmatrix} I_R = 1.2\mu A, \\ MAX6069DA \end{bmatrix}$ $I_R = 1.2\mu A, \\ MAX6069DB \\I_R = 1.2\mu A, \\ MAX6069DB \\I_R = 1.2\mu A, \\ MAX6069DB \end{bmatrix}$		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			25	~~~/°C
(Note 3)			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			50	ppm/°C
			$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			75	
Long-Term Drift		1000h at T _A = +25°C			150		ppm
Thermal Hysteresis (Note 4)					200		ppm

Note 1: All units are 100% production tested at $T_A = +25^{\circ}C$ and are guaranteed by design and characterization for

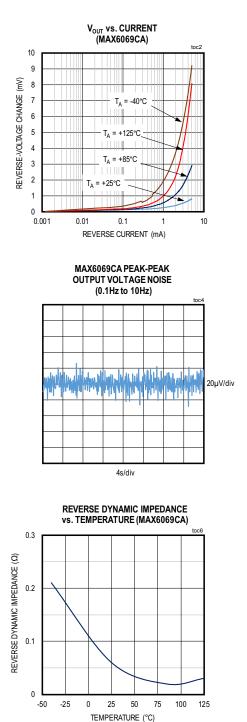

 $T_A = T_{MIN}$ to T_{MAX} , as specified. Note 2: This parameter is guaranteed by the "reverse breakdown change with current" test.

Note 3: TC is measured by the "box" method; i.e., $(V_{MAX} - V_{MIN})/(T_{MAX} - T_{MIN})$. **Note 4:** Thermal hysteresis is defined as the change in the +25°C output voltage after cycling a unit from T_{MIN} to T_{MAX}.

1µA Ultra-Tiny Shunt Voltage Reference

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

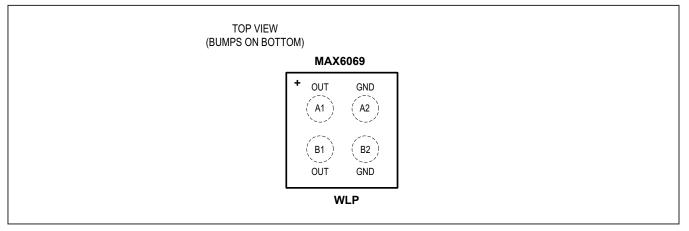

10

FREQUENCY (kHz)

1

100

1000



10

1 L 0.1

1µA Ultra-Tiny Shunt Voltage Reference

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
A1	OUT	Output Voltage. Bias OUT with a pullup resistor to a potential greater than OUT. Bypass OUT to GND with a 0.01μ F or larger capacitor.
A2	GND	Ground
B1	OUT	Output Voltage. B1 is shorted to A1 internally.
B2	GND	Ground. B2 is shorted to A2 internally.

Detailed Description

The MAX6069 family consists of precision, twoterminal, shunt bandgap voltage references. On-chip, thin-film resistors are laser-trimmed to provide 0.2% output voltage accuracies. Voltages of +1.25V, +2.048V, +2.5V, and +3.0V are available in a space-saving 4-bump WLP.

Applications Information

Output/Load Capacitance

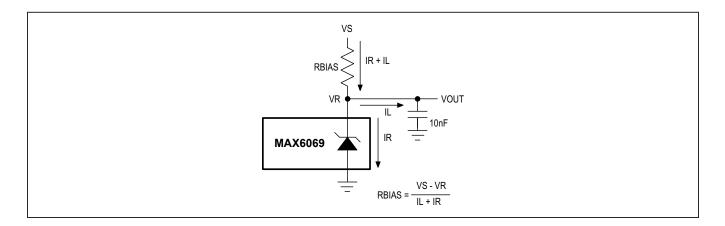
Bypass OUT to GND with a 0.01μ F or larger capacitor. In applications where the load or the supply can experience step changes, additional capacitance will reduce the amount of overshoot (or undershoot) and assist the circuit's transient response.

Output Voltage Hysteresis

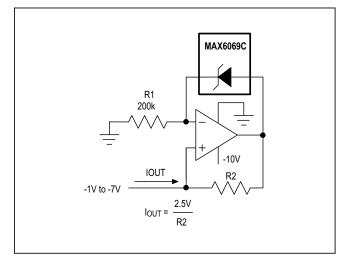
Output voltage hysteresis is the change in the output voltage at $T_A = +25^{\circ}$ C before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The temperature hysteresis value is typically less than 200ppm.

Turn-On Time

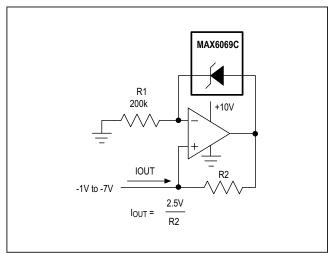
The output capacitance and bias current of the MAX6069 greatly affect turn-on settling time. In the <u>Typical Operating</u> <u>Characteristics</u>, turn-on time is shown with a 10nF output capacitor and a 1.2μ A bias current. Under these conditions, the MAX6069 settles in about 4ms. Settling time linearly decreases in proportion to the circuit's bias current.


1µA Ultra-Tiny Shunt Voltage Reference

Typical Application Circuits


Shunt Regulator Connection

In the typical shunt regulator connection shown here, R_{BIAS} sets the current through the load (I_L) and the current through the shunt regulator(I_R). There are two worst-case situations that R_{BIAS} needs to be sized for:


- 1) R_{BIAS} must be small enough that when V_S (supply voltage) is at its minimum and I_L is at its maximum, I_R is equal to at least the minimum operating current of the shunt regulator.
- 2) R_{BIAS} must be large enough that when V_S is at its maximum and I_L is at its minimum, I_R is < 2mA.

Precision Current Sink

Precision Current Sink

1µA Ultra-Tiny Shunt Voltage Reference

Ordering Information

PART NUMBER	OUTPUT VOLTAGE (V)	INITIAL ACCURACY (%)	TEMP COEFFICIENT (PPM/°C)	PIN-PACKAGE	TOP MARK
MAX6069AAAWS+*	1.250	0.2	20	4-WLP	+AM
MAX6069AAAWS+T*	1.250	0.2	20	4-WLP	+AM
MAX6069ABAWS+*	1.250	0.5	50	4-WLP	+AN
MAX6069ABAWS+T*	1.250	0.5	50	4-WLP	+AN
MAX6069BAAWS+*	2.048	0.2	20	4-WLP	+AO
MAX6069BAAWS+T*	2.048	0.2	20	4-WLP	+AO
MAX6069BBAWS+*	2.048	0.5	50	4-WLP	+AP
MAX6069BBAWS+T*	2.048	0.5	50	4-WLP	+AP
MAX6069CAAWS+	2.500	0.2	20	4-WLP	+AQ
MAX6069CAAWS+T	2.500	0.2	20	4-WLP	+AQ
MAX6069CBAWS+	2.500	0.5	50	4-WLP	+AR
MAX6069CBAWS+T	2.500	0.5	50	4-WLP	+AR
MAX6069DAAWS+*	3.000	0.2	20	4-WLP	+AS
MAX6069DAAWS+T*	3.000	0.2	20	4-WLP	+AS
MAX6069DBAWS+*	3.000	0.5	50	4-WLP	+AT
MAX6069DBAWS+T*	3.000	0.5	50	4-WLP	+AT

+ Denotes a lead(Pb)-free/RoHS-compliant package.

T Denotes tape-and-reel.

*Future product—Contact Maxim for availability.

1µA Ultra-Tiny Shunt Voltage Reference

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/17	Initial release	—

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.