ER2220
Epoxy Resin

ER2220 is a flame retardant, thermally conductive, two-part encapsulation compound based on epoxy technology. Designed to meet increasing demands for efficient thermal dissipation, ER2220 combines ease of processing with an enhanced thermal conductivity when compared to traditional thermally conductive encapsulants. Combined with flame retardancy achieving UL94 V-0 level, ER2220 provides the ultimate in protection and performance for a vast array of applications, including those in the rapidly expanding LED industry.

- Exceptional thermal conductivity; ideal for heat dissipation within LED applications
- Good flow characteristics; allows ease of application
- Does not contain abrasive fillers; low wear on dispensing machinery
- Meets UL94 V-0 approval; high level of flame retardancy

Approvals
RoHS-2 Compliant (2011/65/EU): Yes
UL Approval: Meets UL94 V-0

Typical Properties

Liquid Properties:
- Base Material: Epoxy
- Density Part A - Resin (g/ml): 2.38
- Density Part B - Hardener (g/ml): 0.93
- Part A Viscosity (mPa s 23°C): 55000
- Part B Viscosity (mPa s 23°C): 25
- Mixed System Viscosity (mPa s 23°C): 15000
- Mix Ratio (Weight): 20.81:1
- Mix Ratio (Volume): 8.15:1
- Usable Life (23°C): 120 mins
- Gel Time (23°C): 3 hours
- Cure Time (23°C): 24 hours
- Cure Time (60°C): 4 hours
- Cure Time (100°C): 1 hour
- Colour Part A - Resin: Grey
- Colour Part B - Hardener: Black
- Storage Conditions: Dry Conditions: Above 15°C, Below 30°C
- Shelf Life: 24 Months (bulk) 18 months (resin pack)
- Exotherm (Measured on 100ml sample, cylinder of diameter 49.4mm @ 23°C): < 35°C
- Shrinkage: < 1%
Cured System:
- **Thermal Conductivity (W/m.K)**: 1.54
- **Cured Density (g/ml)**: 2.22
- **Temperature Range (°C)**: -40 to +130
- **Max Temperature Range (Short Term (°C)/30 Mins)**: +150 (Application and Geometry Dependent)
- **Dielectric Strength (kV/mm)**: 10
- **Volume Resistivity (ohm-cm)**: 10^{15}
- **Shore Hardness (D90)**: Grey
- **Colour (Mixed System)**: Grey
- **Flame Retardancy**: Meets UL94 V-0
- **Tensile Strength (MPa)**: 60
- **Compressive Strength (MPa)**: 120
- **Deflection Temperature (°C)**: 60
- **Coefficient of Expansion (ppm/°C)**: 30
- **Loss Tangent @ 50 Hz**: 0.05
- **Permittivity @ 50 Hz**: 6.00
- **Comparative Tracking Index**: >850 Volts
- **Water Absorption**: 10 days @ 20° C / 1 hour @ 100° C, < 0.5% / < 1%
- **Elongation At Break**: 0.4%

Mixing Procedures

Resin Packs

When in Resin pack form, the resin and hardener are mixed by removing the clip and moving the contents around inside the pack until thoroughly mixed. To remove the clip, remove both end caps, grip each end of the pack and pull apart gently. By using the removed clip, take special care to push unmixed material from the corners of the pack. Mixing normally takes from two to four minutes depending on the skill of the operator and the size of the pack. Both the resin and hardener are evacuated prior to packing so the system is ready for use immediately after mixing. The corner may be cut from the pack so that it may be used as a simple dispenser.
Bulk Mixing
When mixing, care must be taken to avoid the introduction of excessive amounts of air. Automatic mixing equipment is available which will not only mix both the resin and hardener accurately in the correct ratio but do this without introducing air. Containers of Part A (Resin) and Part B (Hardener) should be kept sealed at all times when not in use to prevent the ingress of moisture. Bulk material must be thoroughly mixed before use. Incomplete mixing will result in erratic or partial curing.

General
Sedimentation of the resin has been minimised by careful attention to the formulation. However, any sediment which may have occurred over long periods of time must be dispersed before removing any material from the container. This dispersion can be carried out (if necessary) by stirring with a broad bladed spatula or gently rolling the can. Take care not to introduce excessive amounts of air during this operation or it may be necessary to re-evacuate the resin. Sedimentation will be accelerated by storage at high temperatures. Sedimentation found in resin packs forms no problem since the sediment is re-mixed when the pack is used.

Additional Information

Viscosity:
Heat can be used to reduce the viscosity of the resin to aid flow during the potting process.

![Part A Viscosity - ER2220](chart1)
![Mixed System Viscosity - ER2220](chart2)

Cleaning:
It is far easier for machines & containers to be cleaned before the resin has been allowed to cure. Electrolube’s RRS is suitable for cleaning machines and containers and cured resin may be slowly softened and removed by soaking in our RRS.

Curing:
Do not heat cure large volumes immediately. Allow these to gel at room temperature and post-cure at high temperature if required (refer to liquid properties for details). Small volumes (250ml) may be heat cured immediately.

Storage:
When storing under very cold conditions, the hardener may crystallise. If this occurs, simply warm (40°C) the container gently until all crystals have re-melted.

Health & Safety:
Always refer to the Health & Safety data sheet before use. These can be downloaded from www.electrolube.com

Copyright Electrolube 2013

All information is given in good faith but without warranty. Properties are given as a guide only and should not be taken as a specification.

Electrolube cannot be held responsible for the performance of its products within any application determined by the customer, who must satisfy themselves as to the suitability of the product.

Revision 2: Feb 2015