

v04 0814

SIGE HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz

Typical Applications

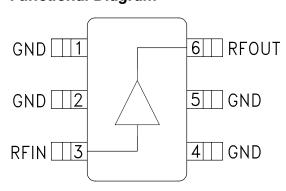
The HMC476SC70(E) is ideal for:

- Cellular / PCS / 3G
- WiBro / WiMAX / 4G
- Fixed Wireless & WLAN
- CATV, Cable Modem & DBS
- Microwave Radio & Test Equipment

Features

P1dB Output Power: +12 dBm

Gain: 20 dB


Output IP3: +24 dBm

Cascadable 50 Ohm I/Os

Single Supply: +5V to +12V

Industry Standard SC70 Package

Functional Diagram

General Description

The HMC476SC70(E) is a SiGe Heterojunction Bipolar Transistor (HBT) Gain Block MMIC SMT amplifiers covering DC to 6 GHz. This industry standard SC70 packaged amplifier can be used as a cascadable 50 Ohm RF/IF gain stage as well as a LO or PA driver with up to +12 dBm output power. The HMC476SC70(E) offers 20 dB of gain with a +24 dBm output IP3 at 850 MHz while requiring only 35 mA from a single positive supply. The Darlington topology results in reduced sensitivity to normal process variations and excellent gain stability over temperature while requiring a minimal number of external bias components.

Electrical Specifications, Vs=5V, Rbias=56 Ohm, $T_A=+25^{\circ}$ C

Parameter		Min.	Тур.	Max.	Units
Gain	DC - 2.0 GHz 2.0 - 4.0 GHz 4.0 - 6.0 GHz	16 13 9	19 16 12		dB dB dB
Gain Variation Over Temperature	DC - 6 GHz		0.008	0.012	dB/ °C
Input Return Loss	DC - 4 GHz 4.0 - 6.0 GHz		20 15		dB dB
Output Return Loss	DC - 4 GHz 4.0 - 6.0 GHz		20 13		dB dB
Reverse Isolation	DC - 6 GHz		18		dB
Output Power for 1 dB Compression (P1dB)	0.5 - 4.0 GHz 4.0 - 6.0 GHz	9.0 8.0	12.0 11.0		dBm dBm
Output Third Order Intercept (IP3) (Pout= 0 dBm per tone, 1 MHz spacing)	0.5 - 4.0 GHz 4.0 - 6.0 GHz		24 22		dBm dBm
Noise Figure	0.5 - 4.0 GHz 4.0 - 6.0 GHz		2.5 3.0		dB dB
Supply Current (Icq)			35	42	mA

HMC476SC70* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

• HMC476SC70 Evaluation Board

TOOLS AND SIMULATIONS •

• HMC476SC70 S-Parameters

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: 6 Lead Plastic SC70 Package (QTR: 08002 REV: 01)
- Package/Assembly Qualification Test Report: Plastic Encapsulated 4-LEAD MICRO-P (QTR: 05007 REV: 01)
- Semiconductor Qualification Test Report: SiGe HBT-A (QTR: 2013-00227)

DESIGN RESOURCES

- HMC476SC70 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC476SC70 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

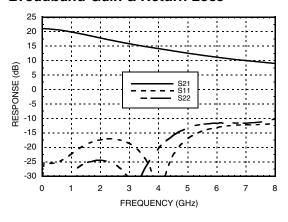
TECHNICAL SUPPORT

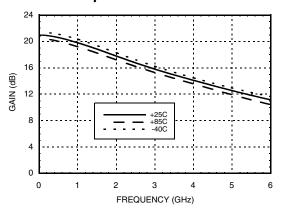
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

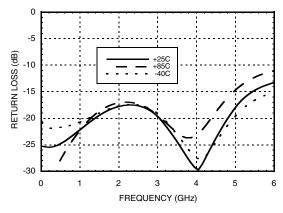
Submit feedback for this data sheet.

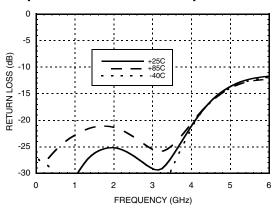
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

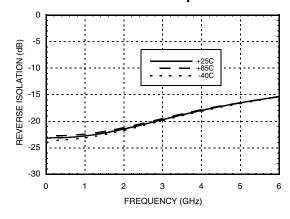


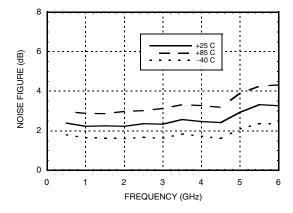

v04 0814

SIGE HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz


Broadband Gain & Return Loss

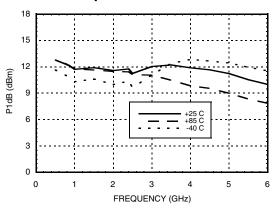

Gain vs. Temperature

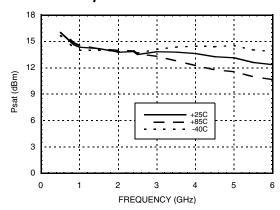

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

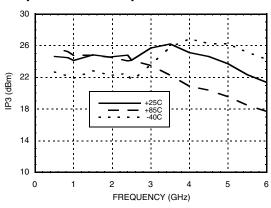
Reverse Isolation vs. Temperature

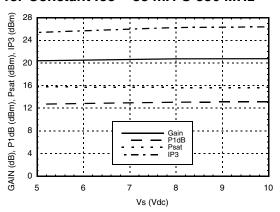
Noise Figure vs. Temperature

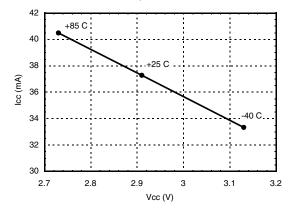



v04 081/

SIGE HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz


P1dB vs. Temperature

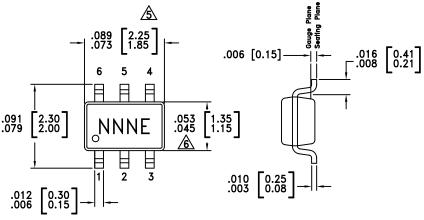

Psat vs. Temperature

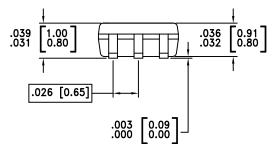

Output IP3 vs. Temperature

Gain, Power & OIP3 vs. Supply Voltage for Constant Icc = 35 mA @ 850 MHz

Icc vs. Vcc Over Temperature for Fixed Vs = 5V, RBIAS = 56 Ohms

/03 0814




Absolute Maximum Ratings

Collector Bias Voltage (Vcc)	+6V	
Collector Bias Current (Icc)	45 mA	
RF Input Power (RFIN)(Vcc = +2.4V)	+5 dBm	
Junction Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 7.75 mW/°C above 85 °C)	0.504 W	
Thermal Resistance (junction to lead)	129 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	

Outline Drawing

NOTES:

- PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEAD MATERIAL: COPPER ALLOY
- 3. LEAD PLATING: Sn/Pb
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- 6 DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

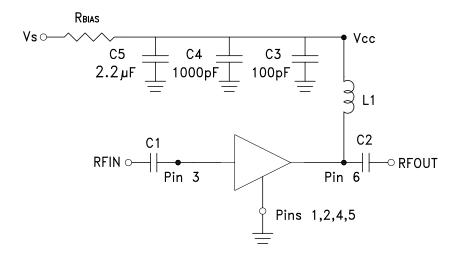
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking
HMC476SC70	Low Stress Injection Molded Plastic	Sn/Pb	MSL1 [1]	476E
HMC476SC70E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	476E

^[1] Max peak reflow temperature of 235 °C

^[2] Max peak reflow temperature of 260 °C

v04 0814



SIGE HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 4, 5	GND	These pins must be connected to RF/DC ground.	— ⊖ GND
3	RFIN	This pin is DC coupled. An off chip DC blocking capacitor is required.	RFOUT
6	RFOUT	RF output and DC Bias (Vcc) for the output stage.	

Application Circuit

Recommended Bias Resistor Values for Icc= 35 mA, Rbias= (Vs - Vcc) / Icc

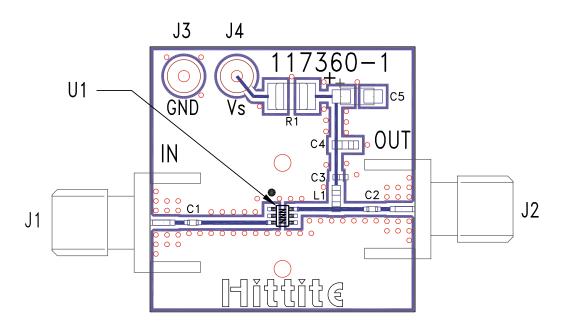
Supply Voltage (Vs)	5V	8V	10V	12V
RBIAS VALUE	56 Ω	130 Ω	180 Ω	240 Ω
RBIAS POWER RATING	1/8 W	1/4 W	1/4 W	1/2 W

Note:

- 1. External blocking capacitors are required on RFIN and RFOUT.
- 2. RBIAS provides DC bias stability over temperature.

Recommended Component Values for Key Application Frequencies

Component	Frequency (MHz)							
Component	50	900	1900	2200	2400	3500	5200	5800
L1	270 nH	56 nH	18 nH	18 nH	15 nH	8.2 nH	6.8 nH	3.3 nH
C1, C2	0.01 μF	100 pF						



/04 081*4*

Evaluation PCB

List of Materials for Evaluation PCB 118038 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3 - J4	DC Pin
C1 - C3	100 pF Capacitor, 0402 Pkg.
C4	1000 pF Capacitor, 0603 Pkg.
C5	2.2 µF Capacitor, Tantalum
R1	50 Ohm Resistor, 1210 Pkg.
L1	18 nH Inductor, 0603 Pkg.
U1	HMC476SC70(E)
PCB [2]	117360 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.