

2D21

THYRATRON

FOR RELAY AND GRID-CONTROLLED RECTIFIER APPLICATIONS

7-PIN MINIATURE FOUR ELECTRODES

INERT-GAS TUBE
NEGATIVE CONTROL CHARACTERISTICS

DESCRIPTION AND RATING =

The 2D21 is a miniature, four-electrode, inert-gas-filled thyratron with negative control characteristics for use in relay and grid-controlled rectifier applications. Operating characteristics of the tube include a high-control ratio essentially independent of temperature over a wide range, low grid-anode capacitance, and very low grid current.

GENERAL

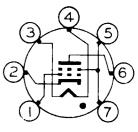
ELECTRICAL

MECHANICAL

Mounting Position—Any
Type of Cooling—Air
Envelope—T-5½, Glass
Base—E7-1, Miniature Button 7-Pin

MAXIMUM RATINGS

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.


The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

BASING DIAGRAM

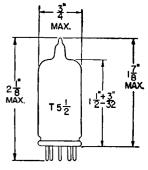
EIA 7BN

TERMINAL CONNECTIONS

Pin 1—Grid Number 1 (Control Grid)

Pin 2—Cathode

Pin 3—Heater


Pin 4—Heater

Pin 5—Grid Number 2 (Shield Grid)

Pin 6-Anode

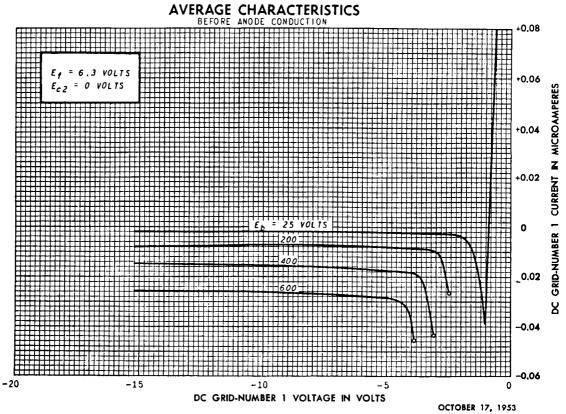
Pin 7—Grid Number 2 (Shield Grid)

PHYSICAL DIMENSIONS

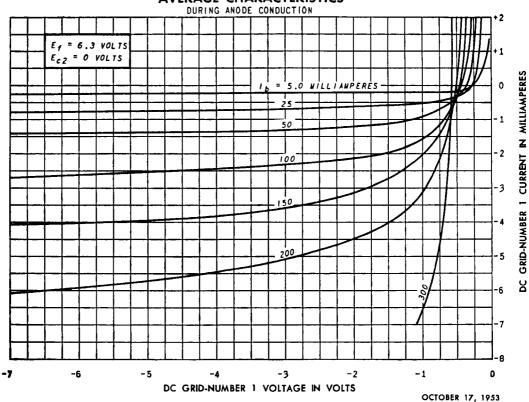
EIA 5-2

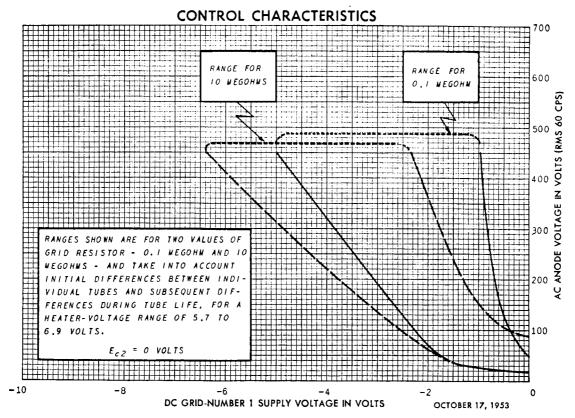
MAXIMUM RATINGS (Continued)

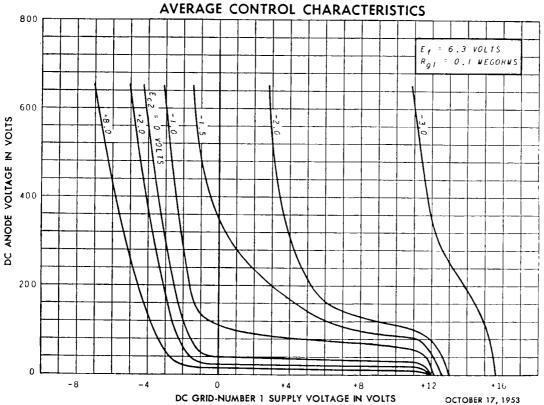
ABSOLUTE MAXIMUM VALUES		
Peak Anode Voltage Inverse		Volts Volts
Cathode Current		
Peak	0.5	Amperes
Average	0.1	Amperes
Maximum Averaging Time	30	Seconds
Fault	10	Amperes
Maximum Duration	0.1	Seconds
Negative Control-Grid Voltage		
Before Conduction	100	Volts
During Conduction	10	Volts
Positive Control-Grid Current		
Anode Positive	10	Milliamperes
Anode Negative	10	Milliamperes
Negative Shield-Grid Voltage		
Before Conduction	100	Volts
During Conduction	10	Volts
Positive Shield-Grid Current		
Anode Positive	10	Milliamperes
Anode Negative	10	Milliamperes
Heater-Cathode Voltage		
Heater Positive with Respect to Cathode	25	Volts
Heater Negative with Respect to Cathode	100	Volts
Control-Grid Circuit Resistance	10	Megohms
Ambient Temperature Limits		C
•		
CHARACTERISTICS AND TYPICAL OPERATION		
AVERAGE CHARACTERISTICS		
lonization Time, approximate	0.5	Missassanda
	0.5	microseconas
Deionization Time, approximate		
Ebb = 125 volts d-c, lb = 0.1 ampere d-c, Rg = 1000 ohms	25	
Ecc1 = -100 Volts DC		Microseconds
		Microseconds
Anode Voltage Drop	8	Volts
Critical Grid Current, maximum		
Ebb = 460 Volts RMS	0.5	Microamperes


FOOTNOTES

^{*} The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.


 $[\]dagger$ Heater current of a bogey tube at Ef = 6.3 volts.


[‡] Without external shield.



AVERAGE CHARACTERISTICS

RECEIVING TUBE DEPARTMENT

Owensboro, Kentucky