

CY3271

PSoC[®] 1 FirstTouch[™] Starter Kit with CyFi[™] Low-Power RF Guide

Doc. # 001-48286 Rev. *E

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

Copyrights

© Cypress Semiconductor Corporation, 2009-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems, where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use, and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress), and is protected by, and subject to worldwide patent protection (United States and foreign), United States copyright laws, and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and/or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application, or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems, where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use, and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

PSoC Designer[™], FirstTouch[™], and Programmable System-on-Chip[™] are trademarks and PSoC[®] is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Data Sheets. Cypress believes that its family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

Contents

1.	Introdu	ction	5
	1.1	Kit Contents	5
	1.2	Sense and Control Dashboard	
	1.3	Additional Learning Resources	6
	1.4	Document History	7
	1.5	Documentation Conventions	7
2.	Getting	Started	9
	2.1	Kit Installation	9
	2.2	PSoC Designer	13
	2.3	PSoC Programmer	14
	2.4	Configuring Sense and Control Dashboard	15
3.	Kit Ope	ration	21
	3.1	Introduction	21
		3.1.1 RF Expansion Card	22
		3.1.2 Multifunction Expansion Card	24
4.	Hardwa	re	25
	4.1	System Block Diagram	25
	4.2	Functional Description	25
		4.2.1 FirstTouch PC Bridge (FTPC)	27
		4.2.2 Programming PC Bridge Application Processor	31
	4.3	RF Expansion Card Overview	31
		4.3.1 RF Expansion Card	31
		4.3.2 Hardware Design	33
		4.3.3 LED Connections	33
	4.4	FirstTouch Multifunction (FTMF) Expansion Card	
		4.4.1 CY8C21434 Chip	
	4.5	AAA Power Pack	
	4.6	CR2032 Power Pack	40
5.	Code E	xamples	41
	5.1	My First Code Example	41
		5.1.1 Project Objective	41
		5.1.2 Flowchart	42
		5.1.3 Creating My First PSoC 1 Project	
		5.1.4 Verify Output	
	5.2	Multifunction Expansion Card Light Sensor	
		5.2.1 Device Configuration	
		5.2.2 Flowchart	
		5.2.3 Verity Output	61

5.3	Multifunction Expansion Card Proximity Sensor	63
	5.3.1 Device Configuration	63
	5.3.2 Flowchart	64
	5.3.3 Verify Output	65
5.4	Multifunction Expansion Card Temperature Sensor	66
	5.4.1 Device Configuration	66
	5.4.2 Flowchart	67
	5.4.3 Verify Output	68
5.5	Ultra Low Power Wireless Temperature Sensor (RF_ULP_TEMP)	69
	5.5.1 Project Description	69
	5.5.2 Hardware Connections	69
	5.5.3 Device Configuration	70
	5.5.4 Flowchart	71
	5.5.5 Verify Output	73
5.6	PC Bridge Wireless HUB	74
	5.6.1 Device Configuration for Slave CY8C24894	74
	5.6.2 Device Configuration	75
	5.6.3 Flowchart	76
	5.6.4 Verify Output	77
5.7	Wireless I2C Bridge for RF Expansion Card	77
-	5.7.1 Device Configuration	
	5.7.2 Flowchart	
	5.7.3 Verify Output	

A. Appendix

83

A.1	Schematics	83
A.2	PC Bridge Layout	90
A.3	RF Expansion Layout	91
A.4	MF Expansion Layout	92
A.5	AAA Battery Layout	93
A.6	Coin Battery Layout	94
A.7	Bill of Materials (BOM)	95

Thank you for your interest in the CY3271-PSoC 1 FirstTouch[™] Starter Kit with CyFi[™] Low-Power RF. This kit can be used with the Sense and Control Dashboard (SCD) tool. This kit uses the Cypress 2.4 GHz (ISM band) CyFi Low-Power RF technology to exhibit the simple, power efficient wireless connectivity to embedded designs; see the CyFi data sheet for more information.

Chapter 2 of this document describes the installation and configuration of the kit software. Chapter 3 explains the programming of a PSoC 1 device with PSoC Programmer and how to use the kit with the help of a code example. Chapter 4 describes the hardware operation. Chapter 5 provides instructions to create a simple project. The Appendix section provides the schematics and bill of materials (BOM) for the kit. The CY3271-PSoC 1 FirstTouch RF (FTRF) Kit is configured with the Multifunction Expansion Card CapSense[®] Slider code example when shipped. See Chapter 5 for more details. Evaluate the sample projects provided with the kit and then experiment with the kit hardware and software to create your own designs.

1.1 Kit Contents

The CY3271-FTRF kit hardware consists of the following components:

- PC bridge (FTPC)
- RF expansion card (FTRF)
- Multifunction expansion card (FTMF)
- AAA power pack (AAA)
- CR2032 power pack (CR2032)
- CY8C20634-12FDXI sample silicon
- CY3271-FTRF kit CD/DVD
 - □ PSoC Designer installation file
 - □ PSoC Programmer installation file
 - □ Bridge Control Panel installation file (packaged along with PSoC Programmer)
 - Code examples
 - □ Hardware files
 - □ Kit guide
 - Quick start guide
 - Release notes

Inspect the contents of the kit. If any parts are missing, contact your nearest Cypress sales office for further assistance.

1.2 Sense and Control Dashboard

SCD enables to log data and monitor wired and wireless sensors created using PSoC 1. The features include data logging, calibration, alarms, and data aggregation from hundreds of sensors. In the CY3271, SCD is used to log data from wireless sensors connected to the PC, using the FTRF.

1.3 Additional Learning Resources

Visit www.cypress.com for additional learning resources in the form of data sheets, technical reference manual, and application notes.

- Application Note Features and Performance of a Wide Array of PSoC Analog-to-Digital Converters: http://www.cypress.com/?rID=2641
- PSoC CY8C21434 Chip Features and Functional Overview: http://www.cypress.com/?rID=3345
- PSoC CY8C27443 Chip Features and Functional Overview: http://www.cypress.com/?rID=3324
- For more information regarding PSoC Designer functionality and releases: www.cypress.com/go/psocdesigner
- For more information regarding PSoC Programmer, supported hardware and COM layer: www.cypress.com/go/psocprogrammer
- For a list of PSoC Designer-related trainings: http://www.cypress.com/?rID=40543

1.4 Document History

Revision	PDF Creation Date	Origin of Change	Description of Change
**	10/17/2008	VED	Initial version of kit guide
*A	05/04/2010	SHEA	CDT based updates
*B	01/31/2011	RKPM	Extensive content updates
*C	07/08/2011	RKPM	Added My First Code Example section. Text and image updates throughout the document
*D	09//21/2011	RKPM	Updated section 2.4 Configuring Sense and Control Dashboard. Minor content updates.
*E	05/01/2013	ELIN	No technical updates. Completing Sunset Review.

1.5 Documentation Conventions

Convention	Usage
Courier New	Displays file locations, user entered text, and source code: C:\cd\icc\
Italics	Displays file names and reference documentation: Read about the <i>sourcefile.hex</i> file in the <i>PSoC Designer User Guide.</i>
[Bracketed, Bold]	Displays keyboard commands in procedures: [Enter] or [Ctrl] [C]
File > Open	Represents menu paths: File > Open > New Project
Bold	Displays commands, menu paths, and icon names in procedures: Click the File icon and then click Open .
Times New Roman	Displays an equation: 2+2=4
Text in gray boxes	Describes cautions or unique functionality of the product.

Table 1-1. Document Conventions for Guides

Introduction

This chapter describes how to install and configure the CY3271-PSoC 1 FirstTouch RF (FTRF) kit.

2.1 Kit Installation

To install the kit software, follow these steps:

1. Insert the kit CD/DVD into the CD/DVD drive of your PC. The CD/DVD is designed to auto-run and the kit installer startup screen appears.

Note You can also download the latest installer from http://www.cypress.com/go/CY3271-FTRF. Three different types of installers are available for download:

- a. CY3271-FTRF_ISO: This file (ISO image) is an archive file of the optical disc provided with the kit. You can use this to create an installer CD/DVD or extract information using WinRar or similar tools.
- b. CY3271-FTRF_Single Package: This executable file installs the CD/DVD contents, which includes PSoC Programmer, PSoC Designer, code examples, kit hardware files, and user documents.
- c. CY3271-FTRF_Single Package (without prerequisites): This executable file installs only the kit contents, which includes kit code examples, hardware files, and user documents.
- 2. Click Install CY3271-FTRF Kit to start the installation, as shown in Figure 2-1.

Figure 2-1. Kit Installer Startup Screen

Note If auto-run does not execute, double-click *cyautorun.exe* file on the root directory of the CD/DVD, as shown in Figure 2-2.

Figure 2-2. Root Directory of CD/DVD

- 3. The **InstallShield Wizard** screen appears. On this screen, choose the folder location to install the setup files. You can change the location of the folder for the setup files using **Change**, as shown in Figure 2-3.
- 4. Click **Next** to launch the kit installer.

Figure 2-3. InstallShield Wizard

CY3271-FTRF - InstallShield Wizard				
	Welcome to the InstallShield Wizard for CY3271-FTRF The InstallShield Wizard will install CY3271-FTRF on your computer. To continue, click Next.			
	Select folder where setup will install files. Install CY3271-FTRF to: C:\Program Files\CypressChange			
	< Back Next > Cancel			

- 5. On the **Product Installation Overview** screen, select the installation type that best suits your requirement. The drop-down menu has three options **Typical, Custom,** and **Complete**, as shown in Figure 2-4.
- 6. Click **Next** to start the installation.

Figure 2-4. Installation Type Options

Cyinstaller for CY3271-FTRF 1.0	? 🗙
Product Installation Overview Choose the install type that best suits your needs	
Choose the type of installation Produce: CY3271-FTRF Installation Type: Typical Installs the most common features of CY3271-FTRF Installs the most common features of CY3271-FTRF The following products need to be installed manually Adobe Reader	
Contact Us Next > Can	icel

- 7. When the installation begins, a list of packages appears on the **Installation Page**. A green check mark appears adjacent to every package that is downloaded and installed; see Figure 2-5.
- 8. Wait until all the packages are downloaded and installed successfully.

CyInstaller for CY3271-FTRF 1.0 **?** 🗙 Installation Page Please wait while setup installs/configures CY3271-FTRF on your computer Downloading ^ Single-Click Integrated Build Process ✓ PSoCProgrammerSetup PSoCProgrammer3.12.6.870 · Synthesize hardware, place and route hardware, compile and link ClockProgrammer1.3.0.870 ftware in one simple step VSBBootloader.870 BridgeControlPanel1.2.0.870 ExampleCode.870 changes to both hardware and software 💎 PSoCDesignerSetup PSoCDesigner_Core5.1.2110.0 design changes PSoCDesigner_Content5.1.2110.0 PSoCDesigner_Doc5.1.2110.0 Г SCD20Setup CY3271-FTRF Kit CYPRES < > Status Contact Us <u>C</u>ancel

Figure 2-5. Installation Page

9. Click Finish to complete the installation, as shown in Figure 2-6.

After software installation, verify that you have all hardware and drivers set up for the CY3271-FTRF kit by connecting the kit to your PC via its USB interface. Because this is the first time you have connected this board to the PC, initial drivers are installed. Follow the instructions for USB detection to complete the installation process. Now, verify your installation and setup by opening PSoC Programmer with the kit board attached.

Note Advanced users can go to Code Examples on page 41.

2.2 **PSoC Designer**

- 1. Click Start > All Programs > Cypress > PSoC Designer <version> > PSoC Designer <version>.
- Click File > New Project, to create a new project; click File > Open Project to work with an existing project.

Figure 2-7. PSoC Designer Interconnect View

3. To experiment with the code examples, go to Code Examples on page 41.

Note For more details on PSoC Designer, see the PSoC Designer IDE Guide located at: <Install_Directory>:\Cypress\PSoC Designer\<version>\Documentation.

See Additional Learning Resources on page 6 for links to PSoC Designer training. The PSoC Designer quick start guide is available at: http://www.cypress.com/?rID=47954.

2.3 **PSoC Programmer**

- 1. Click Start > All Programs > Cypress > PSoC Programmer <version> > PSoC Programmer <version>.
- 2. Select the MiniProg from Port Selection, as shown in Figure 2-8.

Figure 2-8. PSoC Programmer Window

PSoC Programmer File Load				
File View Options Help Program Dower				
i 🔁 🔾 💿 BB 🕻				
Port Selection	rogrammer Utilities JTAG			
MINIProg1/0821580C331A	Programming Parameters File Path; ExBrisa_Oypress1\Data\CY3210-PSOCEVAL1\Firmware\ASM_Example_LED_Logic\ASM_Example_LED_LOGIC\ASM_Example_LED_LOGIC\ASM_Example_LED_LOGIC\ASM_Example_LED_LOGIC\ASM_Example_XAM_Example_LED_LOGIC\ASM_Example_LED_LOGIC\AS			
	AutoDetection: On O Off Clock Speed: 16 MHz			
Device Panily 23x66 ✓ Device CY8C29466-24PXI	Programmer Characteristics Status Protocol: JTAG SWD ● ISSP I2C Voltage: ● 5.0 V 3.3 V 2.5 V 1.8 V			
Actions	Results	^		
Power On at 1:14:10 PM Program Finished at 1:11:05 PM	M MINIProg1/08215B0C331A Programming Succeeded Doing Checksum Doing Protect Verify Succeeded Verify Starting Programming Succeeded Programming Succeeded Programming Starting Erase Succeeded	III.		
Device set to CY8C29466-24PXI at 32768 FLASH bytes 1:10:00 PM				
Device Family set to				
25x00 at 1:10:00 PA	Automatically Detected Device: CY8C29466-24PXI	~		
For Help, press F1	Cor	nected		

- 3. Click File Load to load the hex file.
- 4. Use the **Program** button to program the hex file on to the chip.
- 5. When programming is successful, **Programming Succeeded** appears in the Actions pane.
- 6. Close PSoC Programmer.

Note For more details on PSoC Programmer, see the user guide at the following location: <Install_Directory>:\Program Files\Cypress\Programmer\<version>\Documents.

2.4 Configuring Sense and Control Dashboard

- 1. Click Start > All Programs > Cypress > Sense and Control Dashboard <version> > Sense and Control Dashboard <version> to open the SCD software.
- 2. Select Startup Action window; select the options Start new system configuration, Unbind all nodes, and Start logging data; click Continue.

Figure 2-9. Startup Action Window

Select Startup Action		
Choose the action:		
O Restore from Backup		
O Import a system configuration from a file		
 Start a new system configuration 		
✓ Unbind all nodes		
Validate the system configuration		
Start logging data		
Modify the system configuration		
O Exit		
Don't show again. Remember last action.		
Continue		
Modify the system configuration Exit Don't show again. Remember last action. Continue		

- 3. Select a location to save the configuration file (SDF).
- 4. Connect the PC Bridge (FTPC) USB dongle on to a free USB port in the PC.
- 5. Connect the Multifunction board to the RF Bridge board. Power up this assembly using the AAA power pack board provided with the kit.
- 6. Attach a node to the wireless hub and configure the SCD to view the node data; to do this, follow these instructions.
- 7. Click the Manage button to add a new node, as shown in Figure 2-10.

Figure 2-10. Manage Button in SCD Dashboard

🧱 Cypress Sense and Control Dashboard - Configuration #0
<u>Eile View I</u> ools <u>H</u> elp
Manage Export - Stop Stop
Sensors Zoom 100% 🕒 🕞 🕜 🖓 Page 1/1 💭 🚳 Page
Page-1

8. In the Manage System Configuration screen, click Add.

Figure 2-11. Manage System Configuration - Add

Manage System Configuration 🛛 ? 🔀				
System Nodes Actuator Rules	System Informatio	n		
Node Name	Sensors Ac	stuators Signal	Radio ID Node '	VendorID
		Add	. Edit	Remove
System Debug Console				ОК

9. The Add Node Wizard opens up; Select the Add Node option and click Next in the Add Node Wizard; then, click on Start Binding in the subsequent window.

💥 Add Node Wizard 🔹 💽 🔀	💥 Add Node Wizard 🔹 🕄
Select type	Node Binding (1 of 2)
• Add Node A Node is a wireless device composed of an RF interface and a PSoC (whether discrete or single-chip) which can have any combination of sensors and actuators on-board.	Step 1 # VendorID ProductID SerialN 0 0x0484 0xF115 0819DDC31321 Image: Step 2 Start Binding Step 2 Press the "Connect" button on the Node Remaining time: 00:00 Binding will timeout within 10:30 seconds if it is unsuccessful. Result
< Back Next > Cancel	< Back Next > Cancel

Figure 2-12. Add Node and Start Binding

10. Press the **Bind** button on the RF Bridge board; this ensures that the node is in Bind mode and allows the hub to discover the node.

Note Press the Bind button within 30 secs of pressing the button on the GUI; otherwise, binding does not occur and the result is shown as 'Time out'.

Figure 2-13. Bind Button

11. Verify the success of the bind and click Next.

Figure 2-14. Successful Bind

💥 Add Node Wizard		? [K
Node Binding (1 of 2)		
Step 1			
# VendorID	ProductID	SerialN	
0 0x04B4	0xF115	0819DDC31321	
<		>	
	Start Binding		
Char 2			
Press the "Connect" b	utton on the Nod	e	
Bemaining time:		00:00	
Rinding will timeout wit	hin 10-20 second	la if it is upsuccessful	
	nin ro-so second	is inicis ansaccessiai.	
Result			
SUCCESS		Retry	
Node bound with Nod	e ID		
Found Node with Radi	o ID	0.05050.741	
	010	0x6565D741	
<	Back Ne	ext > Cancel	

12. On the next screen, assign a name to the node.

Figure 2-15. Enter Node Name

💥 Add Node Wizard 🛛 🔹 💽 🗙			
Node Binding (2 of 2)			
Node Information ID 1 Radio ID 0x6565D741			
Hub Information Vendor ID Product ID Serial N Manufacturing ID 0x04B4 0xF115 0819DDC31321 0x2BA88A94			
Assign a Unique Name to the N Slidernode			
O Load Node configuration from a file			
Make further edits to Node configuration			
Edit Node configuration manually			
< Back Finish Cancel			

- 13. In the Node Configuration section, the option Edit Node Configuration manually is selected by default. For this kit, the node configuration is completed and stored as xml files. On successful binding of the node, choose Load Node Configuration from a file option and select the appropriate xml file from <Install_Directory>:\Cypress\CY3271-FTRF\<version>\Firm-ware\DeviceTemplates. Click Finish.
- 14. To edit the node manually, select Edit Node Configuration manually and click Finish.
- 15. Click **Add** on the **Configure Node** screen to configure the sensor parameters.

Figure 2-16. Configure Sensor Parameters

Configure Node					? 🛛
Node Name Slider	Load/Save Load Save	Node Information Radio ID 0x6565D741 Bound Node ID 1	Signal 31	SNP Hub Info VendorID 0x04B4 SerialN Manufacturin	mation ProductID 0xF115 0819DDC31321 pID 0x2BA88A94
On-Board Sensors On-Board A	ctuators				
Sensor	Starting Bit	Length	Format	Scaling	Physical Unit
			A	id E	dit Remove
					ОК

- 16. The Configure Sensor window opens up. The following parameters can be configured for the sensor:
 - a. Sensor Data Format Unsigner Integer, Two's Complement Integer, and so on
 - b. Senor Bit Range
 - c. Data Length Bits or Bytes
 - d. Scaling/Multiplication Factor (if any)
 - e. Sensor Physical Unit KPa, Lux, and so on. This is used in the graphical display of node data. **Note** Figure 2-17 shows the default values.

Figure 2-17. Configure Sensor Parameters

Configure Sensor	? 🛛
Configuring Sensor On Node: Slider Sensor Name Sensor #0 Sensor Physical Unit	Sensor Bit Range Define the bit range in the Node's incoming data packets that contain this sensor's data. Starting Bit
Sensor Data Format Define how the binary data in the sensor's bit range is to be interpreted.	Length 2 Bytes Scaling/Multiplication Factor If the sensor's data is multiplied by a scaling factor before transmission, specify that multiplication factor bere
Format Sign-Magnitude Integer	Factor No Scaling - x 1
	OK Cancel Restore Defaults

- 17. The SCD GUI provides the options to calibrate the sensor, specify the conversion expression, and display options (Tile options). Click on the respective buttons to enter the context specific menus and options.
- 18. After configuring the node, click **OK** on all subsequent screens to return to the main screen where the data logging has started.
- 19. Configuring the sensor can even be done at a later time by clicking on the appropriate button in the main menu

Figure 2-18. Main Menu Buttons

😎 Cypress Sense and Control Dashboard - Configuratio	on #0	
Elle Yew Iools Help		
Manage 🛗 Export + 💽 Console 🔘 Stop 💂	Configure 🗾 Tile Options 🔮 Calibrate	Send Command

3.1 Introduction

The CY3271-FTRF kit examples help you develop applications using the PSoC 1 family of devices. The kit is designed to develop analog applications using PSoC 1. Being a development platform, the board also has test points to enable low power measurements for low power application development and evaluation.

The kit components are shown in the following figures.

Figure 3-2. RF Expansion Card (FTRF)

Figure 3-3. Multifunction Expansion Card (FTMF)

Figure 3-4. AAA Battery Pack

Figure 3-5. Coin Battery

3.1.1 RF Expansion Card

3.1.1.1 Connecting RF Expansion Card Using PC Bridge

The CY3271-FTRF Kit uses a PSoC CY8C27443 on the RF expansion board. Because the FTRF expansion card has its own PSoC 1, connect the RF expansion card to the PC bridge. The USB port of the bridge is then connected to the PC. The PSoC 1 on the RF expansion board can be programmed using the PC bridge.

3.1.1.2 Programming FTRF

The RF expansion card can be programmed using PSoC Programmer, by programming the hex file on to the chip using PC bridge.

When using on-board programming, it is not necessary to power the board from the 9-V DC supply or a battery. The USB power to the programming section can power the board.

3.1.1.3 Working with FTRF

The project files are located in the firmware directory. After installation, firmware projects are available at <Install_Directory>:\Cypress\CY3271-FTRF\<version>\Firmware.

Figure 3-6. Connect FTRF to AAA Batteries

FTRF can be connected to AAA power pack for power, or with CR2032 power pack for ultra low-power applications, as shown in Figure 3-6 and Figure 3-7, respectively.

Figure 3-7. Connect FTRF to CR2032 Batteries

- 3.1.2 Multifunction Expansion Card
- 3.1.2.1 Connecting FTMF
- 3.1.2.2 FTMF card is connected to the PC bridge, as shown in Figure 3-8.

Figure 3-8. Connect Multifiuction Expansion Card to PC Bridge

3.1.2.3 Programming FTMF

FTMF is programmed using PC bridge; power supply to the card is via USB. PSoC Programmer is used to write the hex file on to the FTMF card.

3.1.2.4 Working with FTMF

The project files are located in the firmware directory. FTMF can be powered using the CR2032 power pack. After installation firmware projects are available at <Install_Directory>:\ Cypress\CY3271-FTRF\<version>\Firmware.

Note When powering the board via an external power source, ensure that the battery board is plugged in with the power supply connected to the empty battery terminal leads.

4. Hardware

4.1 System Block Diagram

The PSoC 1 FirstTouch Starter Kit with CyFi low-power RF has the following contents:

- PC Bridge
- RF Expansion Card
- Multifunction Card
- AAA Power Pack
- CR2032 Power Pack

4.2 Functional Description

Figure 4-1. PC Bridge.

Figure 4-3. Multifunction Board

Figure 4-5. Coin Cell Battery Block Diagram

4.2.1 FirstTouch PC Bridge (FTPC)

The PC bridge consists of the hub CY8C24894, the master CY8C24894, and the CYRF7936 2.4 GHz CyFi transceiver. It contains a 16-pin connector to connect to the RF expansion board or the multifunction board, for application data exchange or ISSP programming. The FTPC bridge is the interface bridge between the expansion card, the PC, and the various applications.

Because the FTPC bridge enumerates as a special type of 'composite device' that contains a PSoC MiniProg interface, the standard PSoC Programmer utility can identify and communicate with the FTPC bridge. This ensures that your FTRF kit is automatically compatible with PSoC Designer.

Note When using the FTPC bridge to program a target board with the CY8C24894 device (for example, the Weather Station board in the CY3271-EXP1 Kit), ensure that the target board is connected to the FTPC while programming. Otherwise, the FTPC programs its own CY8C24894 device.

4.2.1.1 CYRF7936 Transceiver

The CYRF7936 CyFi transceiver is a radio IC designed for low power embedded wireless applications. It can be used only with Cypress's PSoC programmable system-on-chip. Combined with the PSoC 1 and a CyFi network protocol stack, CYRF7936 can be used to implement a complete CyFi wireless system.

The CYRF7936 IC is designed to implement wireless device links operating in the worldwide 2.4-GHz ISM frequency band.

In addition, the CYRF7936 IC has a power management unit (PMU), which allows direct connection of the device to any battery voltage in the range 1.8 V to 3.6 V.

The CYRF7936 contains a 2.4-GHz CyFi radio modem, which features a 1-Mbps GFSK radio frontend, packet data buffering, packet framer, DSSS baseband controller, and RSSI. CYRF7936 features a SPI interface for data transfer and device configuration, as shown in Figure 4-6.

Figure 4-7. CY8C24894 Master Chip Schematic

Table 4-1.	CY8C24894	Port Connectivity
------------	-----------	-------------------

Pin No.	Port No.	Description	Connected To
1	P2[3]	Direct switched capacitor block input	LP_SCLK,TV8
2	P2[1]	Direct switched capacitor block input	
3	P4[7]		
4	P4[5]		
5	P4[3]		
6	P4[1]		
7	P3[7]		
8	P3[5]		
9	P3[3]		
10	P3[1]	LED2	LED2
11	P5[7]		
12	P5[5]		
13	P5[3]		
14	P5[1]		
15	p1[7]	I2C Serial Clock (SCL).	SCL

Pin No.	Port No.	Description	Connected To
16	P1[5]	I2C Serial Data (SDA).	SDA
17	P1[3]		nPASSIVE/ACTIVE
18	P1[1]	I2C Serial Clock (SCL), ISSP SCLK*.	LOCAL_CLK
19	Vss	Ground connection.	GND1
20	D+		DP
21	D-		DM
22	Vdd	Supply voltage.	Vdd1
23	P7[7]		
24	P7[0]		SW1
25	P1[0]	I2C Serial Data (SDA), ISSP SDATA*.	LOCAL_DAT
26	P1[2]		
27	P1[4]		
28	P1[6]		
29	P5[0]		TV1
30	P5[2]		TV2
31	P5[4]		TV3
32	P5[6]		TV4
33	P3[0]	LED1	LED1
34	P3[2]		
35	P3[4]		
36	XRES	Active high external reset with internal pull down.	LOCAL_XRES
37	P4[0]		
38	P4[2]		
39	P4[4]		
40	P4[6]		
41	P2[0]	Direct switched capacitor block input.	LP_MISO,TV7
42	P2[2]	Direct switched capacitor block input.	
43	P2[4]	External Analog Ground (AGND) input	
44	P2[6]	External Voltage Reference (VREF) input.	LP_IRQ,TV10
45	P0[0]	Analog column mux input.	
46	P0[2]	Analog column mux input.	FTPC0[2]
47	P0[4]	Analog column mux input VREF.	FTPC0[4]
48	P0[6]	Analog column mux input.	FTPC0[6]
49	Vdd	Supply voltage.	Vdd2
50	Vss	Ground connection.	GND2
51	P0[7]	Analog column mux input,.	
52	P0[5]	Analog column mux input and column output.	FTPC0[5]
53	P0[3]	Analog column mux input and column output.	FTPC0[3]
54	P0[1]	Analog column mux input.	
55	P2[7]		LP_nSS,TV11
56	P2[5]		LP_MOSI,TV9
57	EPAD		EPAD

Table 4-1. CY8C24894 Port Connectivity (continued)

The master CY8C24894 (Figure 4-4) also acts as a programmer and downloads the firmware hex file on to the application CY8C24894.

4.2.2 Programming PC Bridge Application Processor

Select **FirstTouch RF** from the list of programmer devices and then choose the hex file to program the application processor. Make sure that there are no expansion cards connected to the expansion connector.

4.3 **RF Expansion Card Overview**

4.3.1 RF Expansion Card

The RF expansion card acts as the node device. It contains the PSoC CY8C27443, which is the application MCU that controls the radio transceiver CYRF7936 and sensors. The RF expansion board also contains the onboard thermistor.

The RF expansion card is designed to plug and play with the FTPC bridge. All power for the included expansion cards is provided by either the AA or the coin cell battery packs. Connect the FTPC expansion port through the 8×2 pin header on the expansion card. The FirstTouch expansion cards have a dedicated host PSoC 1 device installed. The particular PSoC installed is chosen as an example to indicate which PSoC 1 is most suitable for the types of applications supported by a particular expansion card. This also makes it easier to transfer your design from the CY3271-FTRF kit to your hardware.

Note When powering the board via an external power source, ensure that the battery board is plugged in with the power supply connected to the empty battery terminal leads.

4.3.1.1 Application PSoC 1 (CY8C27443)

Port P1[0] and P1[1] are connected to ISSP DAT and ISSP CLK, respectively. Two LEDs are driven by P1[2] and P1[3]. P1[5] and P1[7] are used to drive I2C SDA and I2C SCL, respectively. Port P0[0] is used to sense temperature "VTEMP" (temperature sensor output voltage). P0[1] to P0[6] are general purpose I/O ports. It acts as a master to control other devices connected to P0[2] and P0[4]. P1[4] is used as External Clock Input. P1[6] is used as output connect.P2[6] is used as External Voltage Reference (VRef), and P2[4] is used as External Analog Ground.

4.3.2 Hardware Design

The following figure shows the hardware design for a temperature sensor design using a thermistor.

Figure 4-11. Hardware Design

In this operation, P2.2 is supplied with 3.3 V, by driving a high (logic '1') to the port pin. This drives the 390- Ω resistor, the reference 10-k resistor, and the thermistor. P0.1 and P0.0 are the analog inputs to the ADC. The resistance of the thermistor changes according to temperature and it is about 10 k at 25 °C.

The 390- Ω resistor helps to prevent the input signal to the ADC from exceeding the supply voltage rails. The ratio of the voltages at P0.0 and P0.1 is proportional to the absolute temperature. This ratiometric reading eliminates inaccuracies because of supply voltage.

4.3.3 LED Connections

Two LEDs are available on the FTRF expansion board. The green LED is connected to P1.3 and the red LED is connected to P1.2 on the CY8C27443 on the RF expansion board. P1.2 and P1.3 are configured as active LOW outputs.

Green LED: The green LED is turned on when the node enters Bind mode. The green LED is turned off if the bind is successful or when the Bind mode times out. The node firmware causes the green LED to blink on successful transmission of a data packet. Success of a transmission is determined by reception of the 'ACK' packet from the hub when a data packet is sent.

Red LED: The red LED blinks at a five second interval when bound. When SW2 is pressed for more than two seconds, the red LED illuminates solid indicating that the report interval was advanced to the next interval. When SW2 is released the red LED flashes according to the selected interval:

- 1 = 1 second
- 2 = 5 seconds
- 3 = 30 seconds
- 4 = 1 minute
- 5 = 5 minutes

The power on default is five seconds.

4.4 FirstTouch Multifunction (FTMF) Expansion Card

The FTMF expansion card contains a PSoC CY8C21434 that acts as the 'host' for various demonstrations. The FTMF expansion card has hardware to support the following PSoC powered peripheral applications:

- CapSense 7-Element Touch Slider
- CapSense NonTouch/Proximity Detection
- Ambient Light-Level Detection
- Thermistor-based Temperature Measurement

In addition to the above input sensors, the FTMF card also provides the following output devices:

- Red-Green-Blue Triple LED Cluster
- Buzzer
- I2C Digital Communications
- Four Unused A/D GPIO Lines for User Functions

The dedicated sensors and output devices on the FTMF expansion card help you quickly evaluate and experiment with a variety of PSoC applications, without having to build any hardware. Your PSoC Designer project completely determines the remaining FTMF expansion card functions. The kit installation contains demonstration projects that use the following input sensors:

- CapSense slider
- Temperature sensor
- Ambient light sensor
- CapSense proximity sensor

The FTMF expansion card uses a standard FirstTouch expansion header to connect to the FirstTouch RF expansion board or other target hardware.

Figure 4-13. FTMF Expansion Card

Note that the 8×2 pin expansion header also includes four GPIO connections labeled P02 to P05. These are hard wired to four unused Port 0 I/O pins on the CY8C21434 host and allow you to easily connect the FTMF expansion card to specific hardware or sensors. These I/O pins are specifically chosen because they can operate as analog outputs, analog inputs, digital inputs, digital outputs, or any combination of the four types. This pin selection makes them true analog or digital GPIO.

You can use the sensors and output devices in any way you want within your project, but always assign the correct pins within your project. Failure to do so may cause unpredictable or unplanned project results.

Figure 4-14. On-Board Thermistor Schematic

P0[0] is used to sense temperature incident on MF card. A thermistor is used to measure the temperature and is given as the input to PSoC. LEDs are used to represent the different values acquired from the device. The buzzer can be used as a sound alert when the data goes above or below a certain level.

Figure 4-15. CapSense Slider Schematic

P2[1] to P2[7] to sense the touch on the 7-Element CapSense region of the card. The PSoC CY8C21434 that resides on the FTMF expansion card detects finger position on the CapSense touch sensing slider and controls the LED output. Adopting capacitive sensing as an interface technology in high-volume, high-visibility applications such as portable media players and mobile hand-sets has created demand for the same technology in more conventional consumer electronics. Figure 4-13 shows the hardware details.

Port P0[6] "LSENSE" is connected to the light sensor to receive signals for light sensitivity. Ambient light sensors consist of a filter to sample visible light, a photo diode for detection of brightness, a digital filter, and a digital/analog converter.

The proximity detector requires the use of a proximity antenna and can sense an object in an approximate range of 2 to 3 inches. In the CY3271-FTRF kit, this sense antenna is formed by attaching the provided wire into the pin socket labeled PRX1.

Note On power up, the FTMF establishes a baseline reading of the proximity antenna. It is therefore necessary to connect the proximity antenna before plugging in the CY3271-FTRF kit. The project is set up to recalculate this baseline approximately every 30 seconds. Also, notice how the shape and position of the wire affects the demonstration operation and the proximity sensing distance.

4.4.1 CY8C21434 Chip

Port P0[6] "LSENSE" is connected to light sensor to receive signals for light sensitivity, P0[0] to sense temperature incident on MF card. P1[6] drives a buzzer. P1[2], P1[3], and P1[4] drive the blue, red, and green LEDs, respectively. P2[1] to P2[7] senses the touch on the 7-Element CapSense region of the card.

Figure 4-18. CY8C21434 Master Schematic

Pin Number	Port Number	Design Function
1	P0[1]	CapSense modulator capacitor
2	P2[7]	CapSense slider element 7
3	P2[5]	CapSense slider element 5
4	P2[3]	CapSense slider element 3
5	P2[1]	CapSense slider element 1
6	P3[3]	Unused/no-connect
7	P3[1]	CapSense feedback resistor
8	P1[7]	I2C clock line (SCL)
9	P1[5]	I2C data line (SDA)
10	P1[3]	Red LED drive
11	P1[1]	In system programming clock (ISSP_SCLK)
12	GND	
13	P1[0]	In system programming data (ISSP_DAT)
14	P1[2]	Blue LED drive
15	P1[4]	Green LED drive
16	P1[6]	Alarm/buzzer FET drive
17	XRES	In system programming reset pin (ISSP_XRES)
18	P3[0]	Unused / no-connect
19	P3[2]	Unused / no-connect

Table 4-2. CY8C21434 Hardware Connectivity

Pin Number	Port Number	Design Function
20	P2[0]	CapSense proximity antenna pad (PRX1)
21	P2[2]	CapSense slider element 2
22	P2[4]	CapSense slider element 4
23	P2[6]	CapSense slider element 6
24	P0[0]	Thermistor temperature sensor analog input
25	P0[2]	User A/D-GPIO
26	P0[4]	User A/D-GPIO
27	P0[6]	Ambient light detector analog input
28	+Vdd	
29	P0[7]	Thermistor drive-voltage reference analog input
30	P0[5]	User A/D-GPIO
31	P0[3]	User A/D-GPIO
32	GND	

Table 4-2. CY8C21434 Hardware Connectivity (contin	ued)
--	------

4.5 AAA Power Pack

The AAA power pack can hold two AAA batteries and is used to power the RF expansion cards. It also contains a 16-pin connection header to connect with the RF board.

Figure 4-19. AAA Power Pack Schematic

Figure 4-20. 8x2 Pin Connector Schematic

Board Regulator U1(LTC3525-3.3) in Figure 4-19 is a high efficiency synchronous step-up DC/DC converter with output disconnect that can start up with an input as low as 1 V. It offers a compact, high efficiency alternative to charge pumps in single cell or dual cell alkaline or Li-ion applications. The switch SW1 is used to supply power to FirstTouch RF expansion card. J1 is the 3-pin header, which acts as the jumper to the target board. The 8×2 connector is used to connect FirstTouch RF to the battery pack.

4.6 CR2032 Power Pack

The CR2032 power pack can hold one CR2032 coin cell battery and is used to power the RF expansion cards. This enables coin cell ultra low-power operation. It also contains a 16-pin connection header to connect with the RF board.

Figure 4-21. CR2032 Power Pack Schematic

Figure 4-22. 8x2 Pin Connector

SW1 is used as the switch to the coin cell CR2032. VBATT and V33 is used to supply power for RF expansion board and FTMF board. A resistor is connected between TV1 and TV2 and a capacitor is connected between TV2 and TV3. TV1, TV2, and TV3 can be used as the test points. A 8×2 connector is used to connect FTRF expansion board and multifunction expansion board to battery pack.

All code examples are available on the CY3271-FTRF kit CD/DVD at the following location: <Install_Directory>:\Cypress\CY3271-FTRF\<version>\Firmware.

Note To view the output on the SCD, make sure that the FTRF board is programmed with the RF_I2C_BRIDGE.hex file, located at <Install_Directory>:\Cypress\CY3271-FTRF\<version>\Firmware\RF_I2C_BRIDGE\RF_I2C_BRIDGE\output\ in the kit CD/DVD.

5.1 My First Code Example

5.1.1 Project Objective

This code example demonstrates the CapSense feature of the FTMF board. The LED color changes with the finger position on the board.

The project contains the following user modules:

CSD: The CSD module is used to scan the CapSense sensors and determine the finger position on the slider when touched.

LED: The LED module is used to display the output based on the data from CapSense.

EzI2Cs: The EzI2Cs module configures the PSoC on a multifunction board as I2C slave. The slave data is available for acquisition using a bridge board that is configured as I2C master.

5.1.2 Flowchart

5.1.3 Creating My First PSoC 1 Project

- 1. Open PSoC Designer.
- 2. To create a new project, click **File > New Project**. The New Project window opens.
- 3. In this window, select the **Chip-level** icon. Name the project **Example_My_First_PSoC_Project**, as shown in Figure 5-1.
- 4. Click **Browse** and navigate to the directory in which the project must be created.

Figure 5-1. New Project Window

New Project	?	
Project types:		
Creates an empty p	roject, that supports User Module selection and placement.	
<u>N</u> ame:	Example_My_First_PSoC_Project	
Location:	C:\ <u>B</u> rowse	
Workspace na <u>m</u> e:	Example_My_First_PSoC_Project Create directory for workspace	
	<u>K</u> ancel	

- 5. Click **OK**. The Select Project Type window opens.
- 6. In this window, under Select Target Device, click View Catalog; see Figure 5-2.

Figure 5-2. Select Project Type Window

🗯 Select	Project Type - Chip-level	? 🛛
Clone pro Path:	j ect: │	<u>B</u> rowse Cl <u>e</u> ar Path
Select T Device:	CY8C21434-24LFXI	
	Generate 'Main' file using:	
		K <u>C</u> ancel

- 7. The Device Catalog window opens. Click on the All Devices tab.
- 8. Click CY8C21434-24LFXI and then click Select. See Figure 5-3.

	Part Number	Analog Blocks	Digital Blocks	Flash	RAM	IO Count	Supply Voltage	SMP	USB Int
	* *	**	**	* *	A 🕶	* *	**	* *	
	Click here to Remove All Filters	all 💙	all 💌	all 💙	all 💙	all 💙	all 💌	all 💌	all
	CY8C20666A-24LTXI	1	0	32K	2K	36	1.71 to 5.5	N/A	Full-
	CY8C20666AS-24LTXI	1	0	32K	2K	36	1.71 to 5.5	N/A	Full-
	CY8C20746A-24FDXC	1	0	16K	2K	27	1.71 to 5.5	N/A	1
	CY8C20766A-24FDXC	1	0	32K	2K	27	1.71 to 5.5	N/A	1
	CY8C21123-24SXI	0 + *4	4	4K	256	6	2.4 to 5.25	N/A	4
	CY8C21223-24LGXI	0 + *4	4	4K	256	12	2.4 to 5.25	N/A	1
	CY8C21223-24SXI	0 + *4	4	4K	256	12	2.4 to 5.25	Yes	P
	CY8C21234-24SXI	0 + *4	4	8K	512	12	2.4 to 5.25	Yes	1
	CY8C21234B-24SXI	0 + *4	4	8K	512	12	2.4 to 5.25	Yes	1
	CY8C21312-24PVXA	1	1	8K	512	16	3.0 to 5.25	N/A	P
	CY8C21323-24LFXI	0 + *4	4	4K	256	16	2.4 to 5.25	Yes	٢
	CY8C21323-24PVXI	0 + *4	4	4K	256	16	2.4 to 5.25	N/A	P
	CY8C21334-12PVXE	0 + *4	4	8K	512	16	4.75 to 5.25	N/A	P
	CY8C21334-24PVXA	0 + *4	4	8K	512	16	3.0 to 5.25	N/A	P
	CY8C21334-24PVXI	0 + *4	4	8K	512	16	2.4 to 5.25	N/A	١
	CY8C21334B-24PVXI	0 + *4	4	8K	512	16	2.4 to 5.25	N/A	1
	CY8C21345-12PVXE	6	4	8K	512	24	4.75 to 5.25	N/A	1
	CY8C21345-24PVXA	6	4	8K	512	24	3.0 to 5.25	N/A	1
	CY8C21345-24SXI	6	4	8K	512	24	3.0 to 5.25	N/A	1
	CY8C21434-24LFXI	0 + *4	4	8K	512	28	2.4 to 5.25	N/A	B
	CY8C21434B-24LQXI	0 + *4	4	8K	512	28	2.4 to 5.25	N/A	P
	CY8C21434B-24LTXI	0 + *4	4	8K	512	28	2.4 to 5.25	N/A	1
	CY8C21512-24PVXA	1	1	8K	512	24	3.0 to 5.25	N/A	٢
<									>

Figure 5-3. Device Catalog Window

9. Under Generate 'Main' File Using, select **C** and then click **OK**.

10.By default, the project opens in chip view, as shown in Figure 5-4.

Figure 5-4. Default View

11. In the User Modules window, select the Cap Sensors folder and expand it.

Figure 5-5. User Modules Window

12. In this folder, right-click on CSD and select Place.

Figure 5-6. User Modules Window-CSD Select

13.A pop-up window opens with the options for configuration of the CSD module. Click **Select CSD** without clock prescaler, as shown in Figure 5-7. Click **OK**.

Figure 5-7. CSD Configuration Window Select

14. The CSD user module is placed in the analog and digital blocks, as shown in Figure 5-8.

Figure 5-8. CSD User Module Placement

15.Rename CSD_1 as **CSD** and configure the CSD properties.

Figure 5-9. Configured CSD Parameters Window

a	rameters - CSD_1	→ 中 ×			
	Name	CSD			
	User Module	CSD			
	Version	1.50			
	FingerThreshold	40			
	NoiseThreshold	20			
	BaselineUpdateThreshol	200			
	Sensors Autoreset	Enabled			
	Hysteresis	10			
	Debounce	3			
	NegativeNoiseThreshold	20			
	LowBaselineReset	50			
	Scanning Speed	Normal			
	Resolution	12			
	Reference	VBG			
	Ref Value	2			
	ShieldElectrodeOut	None			
N In	Name Indicates the name used to identify this User Module instance				

16. Right-click on the CSD folder and select CSD Wizard.

17. Open the CSD Wizard window.

Figure 5-11. Default CSD Wizard Window

CapSense Wizard	
Global Settings Buttons 1 Sliders 1 Radial Sliders 0 Modulator Capacitor F P0[1] Feedback Resistor Pi P1[1]	Swo
Buttons Buttons Sensors Count Chip Pin Assignment View Table Pin Assignment View	S1(4) S1(2) S1(2) S1(3)
S S A 1 30 29 28 27 26 25	
P0[1] 1 24 P0[0] P2[7] 2 CY8C21434 23 P2[6] P2[5] 3 MLF 21 P2[2] P2[3] 4 MLF 21 P2[2] P2[1] 5 20 P2[0] P3[3] 6 19 P3[2] P3[1] 7 18 P3[0] P1[7] 8 17 XRES	
9 10 11 12 13 14 15 16 9 $\overline{(0, 0)} = \overline{(0, 0)} = $	Legend for Chip: Legend for Chip:
Total Sensors: 6 Switches: 1 Sliders: 1 Radial Sliders: 0	OK Cancel

18. Figure 5-12 shows the default settings in the Global Settings window. Configure the parameters in the window, as shown in Figure 5-13.

Figure 5-12. Default Global Settings Window

Gl	obal Settings	Sensors	Settings		
	Buttons		1		
	Sliders		1		
	Radial Slider	s	0		
	Modulator Ca	apacitor F	P0[1]		
	Feedback R	esistor Pi	P1[1]		
Buttons Buttons Sensors Count					

Figure 5-13. Configured Global Settings Window

Glo	obal Settings	Sensors	Settings		
	Buttons		0		
	Sliders		1		
	Radial Slider	s	0		
	Modulator Ca	apacitor F	P0[1]		
	Feedback Resistor Pi		P3[1]		
F	Feedback Resistor Pin Feedback Resistor Pin				

19. Click on the **Slider** in the CSD Wizard. The default settings in the Sensors Settings window are shown in the following figure.

Figure 5-14. Default Sensors Settings

Global Settings	Sensors	Settings	
Diplex		False	
Resolution		100	
Sensors Cou	int	5	
Diplex Diplex			

20. Configure the parameters in the Sensors Settings, as shown in Figure 5-15.

Figure 5-15. Configured Sensor Settings

Global Settings	Sensors	Settings	
Diplex		False	
Resolution		100	
Sensors Cou	unt	8	
Sensors Cou Slider Sensor C	i nt Count.		

21. To assign the sensor on the particular pin, click and drag from the sensor block to the required pin in either the Chip Pin Assignment View or Table Pin Assignment View in the CapSense wizard. Drag and drop S1 (0) of the slider to pin P2 [0]. The sensor pin assignment can be done in either Table Pin Assignment View (Figure 5-16) or Chip Pin Assignment View (Figure 5-17).

Figure 5-16. S1 (0) Placed on P2 [0] Pin Block

CapSense Wizard			
Global Settings Sensors Settings			
Diplex False			
Resolution 100			
Sensors Count 8			
Canada Caunt			
Slider Sensor Count.			
Chip Pin Assignment View Table Pin Assignment View			
P0[0] P1[0] P2[0] P3 [0]			
P0[2] P1[2] P2[2] P3[2]			
P0(3) P1(3) P2(3) P3(3)			
P0[4] P1[4] P2[4]			
P0[5] P1[5] P2[5]			
P0[6] P1[6] P2[6]			
	Legend for Chip:		
P0[7] P1[7] P2[7]	Unavailable pins Help		
	Locked pins		
	Assigned pins OK Cancel		
Tablerow 0 Colored 1 Chan 1 DebiChan 0			
Total Sensors: 9 Switches: 1 Sliders: 1 Hadial Sliders: U			

CanEenco Winned	
Clubel Cating Sensors Setting	
Diplex False Resolution 100 Sensors Count 8	
Sensors Count Slider Sensor Count.	
Chip Pin Assignment View Table Pin Assignment View	
P0[1] 1 24 P0[0] P2[7] 2 CY8C21434 23 P2[8] P2[5] 3 MLF 22 P2[4] P2[3] 4 MLF 21 P2[2] P2[1] 5 20 Pe[0] P3[3] 6 19 P3[2] P3[1] 7 18 P3[2] P3[1] 7 8 17 VRES	
9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16 10 11 12 13 14 15 15 16 16 10 11 12 13 14 15 15 16 16 10 11 12 13 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Legend for Chip: Unavailable pins Locket dins
	Available pins CAssigned pins OK Cancel
Total Sensors: 9 Switches: 1 Sliders: 1 Radial Sliders: 0	

Figure 5-17. S1 (0) Assigned to Pin P2 [0]

22. Similarly, assign all the sensors from S1(1) through S1(7) to pins P2[1] through P2[7], as shown in Figure 5-18 and click **OK**.

Figure 5-18. Sensors Assigned - Table Pin Assignment View

CapSense Wizard			
Global Settings Settings Diplex False Resolution 100 Sensors Count 8			
Sensors Count Slider Sensor Count. Chip Pin Assignment View Table Pin Assignment View		52 PS2102 52 PS210 52 PS210 52 PS210 52 PS210 52 PS210 52 PS210 52 PS2	
P0(0) P1(0) P2(0) P3(0) P0(1) P1(1) P2(1) P3(1) S1(1) S1(1) S1(1)			
P0[2] P1[2] P2[2] P3[2] P3[3] P3[3] <th< th=""><td></td><td></td></th<>			
P0[5] P1[5] P2[5] P0[6] P1[6] P2[6]			
P0[7] P1[7] P2[7] S1(7)		Legend for Chip: Unavailable pins Locked pins Available pins OK Cancel	

23.After configuration, the pins to which sensors are assigned are seen in the Chip Level diagram. Figure 5-19. CSD Component

24. In the User Modules window, expand the **Digital Comm** folder, select **Ezl2Cs**, right-click and select **Place**.

Figure 5-20. EzI2Cs User Module Selection

- 25. The EzI2Cs module does not require any digital or analog blocks for placement. It requires either (configurable) P1[0] and P1[1] or P1[5] and P1[7] port pins to operate as SCL and SDA.
- 26. Configure the EzI2Cs properties, as shown in Figure 5-21.

Parameters - EzI2Cs 🚽 🗸 🗙			
	Name	Ezl2Cs	
	User Module	Ezl2Cs	
	Version	1.30	
	Slave_Addr	5	
	Address_Type	Static	
	ROM_Registers	Disable	
	12C Clock	50K Standard	
	I2C Pin	P[1]5-P[1]7	

27. The EzI2Cs module can be seen in the Chip window, as shown in the following figure.

Figure 5-22. Ezl2Cs Component

28. In the User Modules window, expand the **Misc Digital** folder, right-click on **LED**, and select **Place** to place the LED.

Figure 5-23. User Modules Window - LED Select

User Modules	-		×	
🛃 User Modules			^	
😥 🚞 ADCs				
🗄 🛅 Amplifiers				
😟 🛅 Cap Sensors				
🗄 🛅 Counters				
😟 🛅 Digital Comm				
🗄 🛅 Legacy				
😑 🗁 Misc Digital				
📲 DigBuf				
📲 Diglnv				
E2PROM	📲 E2PROM			
0r Datasheet				
The properties Properties				
Sleenna				

29. Configure the LED properties and rename as LED_BLUE, as shown in Figure 5-24.

Figure	5-24.	LED	Properties
--------	-------	-----	------------

Parameters - LED_BLU	IE	→ ∓ X
Name	LED_BLUE	
User Module	LED	
Version	1.40	
Port	Port_1	
Pin	Port_1_2	
Drive	Active High	
Drive	Active High	

30.After configuration, the LED_BLUE is assigned and is visible in the Chip Level diagram.

· ·	7 (
Port 0 0	I
Port_0_1 csp	
Port_0_2	
Port_0_3	
Port_0_4	
Port_0_5	
Port_0_6	
Port_0_7	
Port_1_0	
Port_1_1	
Port_1_2 LED_BLUE	
Port 1 3	
Port_1_4	
Port_1_5 Ezi2Cs	
Port_1_6	
Port_1_/ Ezi2Cs	
Port_2_0 csb	
Port_2_1 CSD	
Pon_2_2 CSD	
Port 2 d asp	
Port 2 5 cop	
Port 2 6 cop	
Port 2 7 csp	
Port 3.0	
Port 3 1 cep	
Port 3 2	
Port 3 3	

Figure 5-25. LED User Module Placement

31. Similarly, place two more LED modules and configure, as shown in Figure 5-26 and Figure 5-27.

Figure 5-26. LED Properties

Parameters - LED_RED 🚽 🗸 🛪		
Name	LED_RED	
User Module	LED	
Version	1.40	
Port	Port_1	
Pin	Port_1_3	
Drive	Active High	

Figure 5-27. LED Properties

Parameters - LED_GREEN 🚽 🗸 🗙		
	Name	LED_GREEN
	User Module	LED
	Version	1.40
	Port	Port_1
	Pin	Port_1_4
	Drive	Active High

32.LED_GREEN, LED_RED, and LED_BLUE are placed in their respective ports.

Figure 5-28. All LEDs Placed

33.Keep the default values for Global Resources window.

Figure 5-29. Global Resources Window

Global Resources - example_my_first_psoc_project 💿 👻 🕈 🗙			
	Power Setting [Vcc / 9	5.0V / 24MHz	
	CPU_Clock	SysClk/8	
	Sleep_Timer	512_Hz	
	VC1= SysClk/N	16	
	VC2=VC1/N	16	
	VC3 Source	VC2	
	VC3 Divider	256	
	SysClk Source	Internal 24_MHz	
	SysClk*2 Disable	No	
	Trip Voltage [LVD (SMI	4.81V (5.00V)	
	LVDThrottleBack	Disable	
	Watchdog Enable	Disable	
Power Setting [Vcc / SysClk freg]			
Selects the nominal operation voltage and System Clock			
(SysClk) source, from which many internal clocks (V1, V2, V3,			
and CPU clocks) are derived. IR egisters Affected: ICPU_SCR10			

34. Open the existing *main.c* file within Workspace Explorer. Replace the existing *main.c* content with the content of *Example_My_First_PSoC_Project_Main.c* file, which is attached to this document.

Figure 5-30. Workspace Explorer Window

Workspace Explorer 🚽 🕈 🗙
Workspace 'Example_My_First_PSoC_Project' (1 project)
😑 🦢 Example_My_First_PSoC_Project [CY8C21434-2
🖨 💾 Example_My_First_PSoC_Project [Chip]
😑 🦢 Loadable Configurations
😑 🗁 example_my_first_psoc_project - 5 User Mod
CSD
Ezl2Cs
LED_BLUE
LED_RED
LED_GREEN
Example_My_First_PSoC_Project [Pinout]
🖻 🇁 Example_My_First_PSoC_Project
🖨 🗁 Source Files
inain.c
🎃 🛅 External Headers

- 35. Save the project.
- 36. Click on Build > Generate/Build 'Example_My_First_PSoC_Project'.
- 37.Connect the PC bridge to a free USB port on the PC.
- 38. Connect the FTMF card to the PC bridge
- 39.Click on **Program > Program Part**.

Note While programming the board through PSoC Designer, close any open instance of PSoC Programmer.

Figure 5-31. Program Part Window

🐺 Program Part 🛛 🔀					
Hex file path:					
C:\Example_My_First_PSoC_Project\Example_My_First_PSoC_Pr					
Programming Settings					
Port Selection: FirstTouch/	42464A0A0140 🗸 🜗				
Acquire Mode: Reset 	O Power Cycle				
<u>Verification:</u> 🔘 On	⊙ Off				
Power Settings: 5.0 V	• ()				
FirstTouch Programmer Version 1.90					
Powered Connected					

40. In the Program Part window, set the following:

- a. In Port Selection drop down box, select FirstTouch/<MiniProg Number> and Connected
- b. Acquire Mode: Power Cycle
- c. Verification: Off
- d. Power Settings: 5.0 V
- 41. Click on the **Program** button to start programming the board.
- 42. The board starts programming; you can observe the status on the progress bar (Figure 5-32).

Figure 5-32. Programming Status

🔻 Program Part 🛛 🕅						
Hex file path:						
C:\Example_My_Fi	C:\Example_My_First_PSoC_Project\Example_My_First_PSoC_Pr					
Programming Setti	ngs					
Port Selection:	FirstTouch	/42464A0A014				
Acquire Mode:	Reset	O Power Cy	cle			
Verification:	🔿 On) Off				
Power Settings:	5.0 V	~	0			
Programming Starting						
BL	JSY P	owered	Connected			

43. When the programming is done successfully, the 'Operation Succeeded!' message is shown.

Figure 5-33. 'Operation Succeeded!' Message

44. Disconnect the PC bridge from the USB port of the PC.

5.1.4 Verify Output

- 1. Move your finger across the CapSense slider to detect LED color change.
 - a. When the finger is on slider position CSB1-CSB3, the LED emits the color blue.
 - b. When the finger is on slider position CSB4 or CSB5, the LED emits the color green.
 - c. When the finger is on slider position CSB6 or CSB7, the LED emits the color red.
- 2. For all other slider positions, the LED is off. This includes the absence of a finger on the slider.

Slider Position: CSB1-CSB3

Slider Position: CSB4-CSB5

Slider Position: CSB6-CSB7

To configure and connect FTMF board to the SCD and verify the output, see Configuring Sense and Control Dashboard on page 15. Load Template CapSense Slider.node.xml and view the output on the GUI.

Figure 5-35. Connect RF Expansion Board to 2x AAA Alkaline Cell Battery and Multifunction Board

5.2 Multifunction Expansion Card Light Sensor

This project demonstrates how to use a light sensor to control the brightness of the LED array. The project includes the following user modules:

- ADC: This module converts the analog input to the digital form. The ADC module is used to obtain the digital values for light intensity.
- LED: This module is used to display the output based on data from CapSense.
- **EzI2Cs**: This module configures PSoC on the multifunction board as I2C slave. The slave data is available for acquisition using a bridge board that is configured as I2C master.

5.2.1 Device Configuration

The Chip Level View of the project after placing all the required user modules is shown in Figure 5-37.

5.2.2 Flowchart

5.2.3 Verify Output

When there is light, the LED is switched on; when there is no light, the LED is switched off.

Figure 5-38. Light Sense Output - LED Off

Figure 5-39. Light Sense Output - LED On

To configure and connect FTMF board to the SCD and verify the output, see Configuring Sense and Control Dashboard on page 15. Load the *Template Light.node.xml* and view the output on the GUI.

Figure 5-40. Connect RF Expansion Board to 2x AAA Alkaline Battery and Multifunction Board

Figure 5-41. SCD Output

5.3 Multifunction Expansion Card Proximity Sensor

This project demonstrates the capacitive sensing and proximity detection capability of the PSoC technology. Proximity detection requires that you use the supplied blue proximity antenna. Insert the bare end of the wire in the PRX1 connector located in the middle of the board. As you move your finger near and far from the proximity detection antenna, the red and green LED turn on and off. The project includes the following user modules:

- **CSD**: This module is used to scan CapSense-based proximity sensor and determine the proximity of an object to the antenna.
- **LED**: LED is used to display the output based on the data from CapSense.
- **EzI2Cs**: The EzI2Cs module configures the PSoC on multifunction board as I2C slave. The slave data is available for acquisition using a bridge board that is configured as I2C master.

5.3.1 Device Configuration

The Chip Level View of the project after placing all the required user modules is shown in Figure 5-42.

Figure 5-42. Device Configuration of Proximity Sensor

5.3.2 Flowchart

5.3.3 Verify Output

LED color changes to green when the finger is brought near the proximity antenna. LED color remains red when the finger is not present near antenna.

To configure and connect FTMF board to the SCD and verify the output see Configuring Sense and Control Dashboard on page 15. Load *Template Proximity.node.xml* and view the output on the GUI.

Figure 5-44. Connect RF Expansion Board to 2x AAA Alkaline Battery and Multifunction Board

Figure 5-45. SCD Output

5.4 Multifunction Expansion Card Temperature Sensor

This project demonstrates the temperature sensing, thermistor reading, and calibrating capabilities of the PSoC device. Depending on the temperature range within which a particular temperature reading is recorded, different colored LEDs blink (red, green, and blue). When the temperature goes above or below a certain threshold, a buzzer is sounded out as an alert mechanism. The project includes the following user modules.

- ADC: This module converts analog input in digital form. The ADC module is used to obtain the digital values for the temperature.
- LED: This module is used to display the output based on the data from CapSense.
- **EzI2Cs**: The EzI2Cs module configures the PSoC on multifunction board as I2C slave. The slave data is available for acquisition using a bridge board that is configured as I2C master.

5.4.1 Device Configuration

The Chip Level View of the project after placing the required user modules is shown in Figure 5-46.

Figure 5-46. Device Configuration

5.4.2 Flowchart

5.4.3 Verify Output

- The red LED is 'On' only if the temperature is between 28 °C and 55 °C.
- The green LED is 'On' only when the temperature is between 16 °C and 28 °C.
- The blue LED is 'On' only when the temperature is between 16 °C and −10.1 °C.

Figure 5-47. Temperature Reading and Updated LED Status

To configure and connect FTMF board to the SCD verify the output, see Configuring Sense and Control Dashboard on page 15. Load *Template Temperature.node.xml* and view the output on the GUI.

Figure 5-48. Connect RF Expansion Board into 2x AAA Alkaline Battery and Multifunction Board

5.5 Ultra Low Power Wireless Temperature Sensor (RF_ULP_TEMP)

5.5.1 Project Description

This project demonstrates how the hub board connects to an RF expansion board driven by AAA/ CR-2032 coin cell. The RF expansion board transmits temperature data acquired from an onboard thermistor. The hub receives this data and sends it to the host PC, which displays the temperature data in text or graph form on the SCD. The project includes the following user modules:

- **CYFISNP:** This module implements the entire star network wireless protocol and all protocol modes, in addition to low level radio communication and radio control by the MCU.
- ADCINC: The incremental ADC is used to calculate counts proportional to the voltages at P0.0 and P0.1. These values are used to measure the ambient temperature.
- **DigBuf:** This module generates an interrupt on the rising edge of Output1.
- **PGA:** This module facilitates the route ability of the analog inputs to the ADC analog block.
- **TX8:** This module is used for serial communication with host and for debugging.
- **Timer8:** This module implements an 8-bit timer that is clocked by a divider of SysClk. It is used to calibrate the sleep timer that is clocked by the 32 kHz system oscillator.

5.5.2 Hardware Connections

This demonstration showcases a low power RF solution that runs on a coin cell. It operates at 0 dBm RF power output.

Figure 5-50. Connect RF Expansion Board to CR-2032 Coin Cell

5.5.3 Device Configuration

Figure 5-51. Device Configuration

5.5.4 Flowchart

no

5.5.5 Verify Output

- 1. Connect the PC dongle to a free USB port of the PC.
- 2. Connect the FTRF board to the PC dongle.
- 3. Program the FTRF board with RF_ULP_TEMP.hex.

- 4. On programming the board successfully, disconnect it from the PC dongle and connect to CR2032 power pack board.
- 5. Insert the coin cell into the CR2032 power pack board with '+' upwards.
- 6. Slide the switch SW1 on the board to 'ON' position.
- 7. To configure and connect FTRF board to the SCD and verify the output, see Configuring Sense and Control Dashboard on page 15. Load *Template ULP Temp Sensor.node.xml* and view the output on the GUI.

Figure 5-52. SCD Output

5.6 PC Bridge Wireless HUB

The PC bridge consists of two CY8C24894 processors. One device is used for the master microprocessor that provides USB to I2C bridge functionality in addition to programming support for all kit elements. The second CY8C24894 processor acts as the wireless hub and communicates with the SCD application via an I2C interface to the master processor USB/I2C bridge. This section discusses the architecture, firmware source code modules, and configuration options for the slave process or the wireless hub application processor.

The slave CY8C24894 is configured using the Device Editor in PSoC Designer. The bridge uses the CYFISNP, EzI2Cs, LEDs (red and green), and TX8 user modules. The Wireless Hub application uses the CyFiSNP user module configured as a hub to communicate with the wireless nodes. All configuration and node data is communicated over a I2C interface.

5.6.1 Device Configuration for Slave CY8C24894

The Chip Level View of the project after placing the required user modules is shown in Figure 5-53.

- **CYFISNP:** This user module implements the entire Star network wireless protocol and all protocol modes, in addition to low level radio communication and radio control by the MCU.
- EzI2Cs: This user module implements the I2C slave functionality and takes care of data communication through the I2C interface with the master CY8C24894.
- LED: There are two instances of this user module one is configured as RED and the other as GREEN. These implement the API to turn on and off the LEDs according to the needs of the application. The application firmware can call simple APIs to manipulate the LEDs.
- **TX8:** This module is used for serial communication with host and for debugging.

5.6.2 Device Configuration

Figure 5-53. Device Configuration for PC Bridge Wireless HUB

5.6.3 Flowchart

5.6.4 Verify Output

Connect the PC dongle to a free USB port in the PC. On successful programming of the board, the blue LED starts blinking

Figure 5-54. Verify Output

5.7 Wireless I2C Bridge for RF Expansion Card

This project demonstrates the firmware implementation when using the RF expansion board as an I2C bridge to retrieve data packets from an external board and transmit data back to the central hub. The CY3271-FTRF kit uses a PSoC CY8C27443 on the RF expansion board. This application processor controls the CyFi Radio and the other components on the board. The project includes the following user modules.

Timer8: This user module implements an 8-bit timer that is clocked by a divider of SysClk. This is used to calibrate the sleep timer that is clocked by the 32 kHz system oscillator.

I2C: This module transfers data between the RF expansion board and the add-on board connected externally.

5.7.1 Device Configuration

5.7.2 Flowchart

Code Examples

5.7.3 Verify Output

When the RF board is connected to the PC dongle, the red LED on the board starts blinking. Figure 5-56. Verify Output

The schematic and board layouts are available on the CY3271-FTRF kit CD are at the following location: <Install_Directory>:\Cypress\CY3271-FTRF\<version>\Hardware.

A.1 Schematics

Figure A-2. PC Bridge Schematic

Figure A-6. AAA Power Pack Schematic

8x2 0.100" FEMALE FTRF/FTMF Receptacle

VIN = 1.8VDC(min) to 3.6VDC(max)

Figure A-7. CR2032 Power Pack Schematic

8x2 0.100" FEMALE FTRF/FTMF Receptacle

		I	PCB: PDCR-9457		
			CYPRESS SEMICONDUCTOR © 2007		
		1	Fitle Fi	RST TOUCH POWERPACK CR2032	
		5	Size D B R	ocument Number EF-14693	
			Date:	Friday, September 05, 2008 Sheet 1 of 1	
4	3	2		1	

A.2 PC Bridge Layout

Figure A-8. PC Bridge Top View

Figure A-9. PC Bridge Bottom View

A.3 RF Expansion Layout

Figure A-10. RF Expansion Top View

Figure A-11. RF Expansion Bottom View

A.4 MF Expansion Layout

Figure A-12. Multifunction Expansion Top View

Figure A-13. Multifunction Expansion Bottom View

A.5 AAA Battery Layout

Figure A-14. AAA Battery Top View

Figure A-15. AAA Battery Bottom View

A.6 Coin Battery Layout

Figure A-16. Coin Battery Top View

Figure A-17. Coin Battery Bottom View

A.7 Bill of Materials (BOM)

Table A-1. PC Bridge BOM

Item	Qty	Reference	Description	Manufacturer	Mfr Part Number
			PCB	Cypress	PDCR-9439
1	1	ANT1	ANTENNA CHIP 2.4GHZ SMD LEFT FD	Antenova	3030A5839-01
2	4	C1,C22,C25,C30	CAP 27PF 50V CERAMIC NPO 0402	Kemet	C0402C270J5GACTU
3	2	C2,C5	CAP .10UF 10V CERAMIC X5R 0402	Kemet	C0402C104K8PACTU
4	3	C3,C4,C24	CAP CER 2PF 50V S 0402 UHI Q	Johanson	500R07S2R0BV4T
5	8	C6,C26,C27,C28,C29,C34, C35,C36	CAP 0.1 uF 10% 10V CERAMIC X5R 0402	Panasonic - ECG	ECJ-0EB1A104K
6	6	C8,C9,C10,C11,C13,C14	CAP CERM .047UF 10% 16V X5R 0402	AVX	0402YD473KAT2A
7	2	C12,C39	CAP CER .47UF 6.3V X5R 0402	Murata	GRM155R60J474KE19D
8	5	C15,C16,C31,C32,C33	CAP 18PF 50V CERAMIC 0402 SMD	Panasonic - ECG	ECJ-0EC1H180J
9	1	C17	CAP CER 1PF 50V S 0402 UHI Q	Johanson	500R07S1R0BV4T
10	1	C23	CAP CER 10PF 5% 50V S 0402	Panasonic - ECG	ECJ-0EC1H100D
11	5	C40,C41,C45,C46,C47	CAP .10UF 16V CERAMIC X7R 0603	Kemet	C0603C104J4RACTU
12	1	C44	CAP CER 2.2UF 10V 10% X7R 0805	Murata Electronics North America	GRM21BR71A225KA01L
13	1	C48	CAP CERAMIC 1.0UF 10V X5R 0603	Kemet	C0603C105K8PACTU
14	1	C49	CAP 560PF 50V CERAMIC NPO 0603	Panasonic - ECG	ECJ-1VC1H561J
15	1	C50	CAP CER 10UF 16V X5R 0805	Murata Electronics North America	GRM21BR61C106KE15L
16	1	D1	LED BLUE CLEAR 0603 SMT	ROHM	SML512BC4T
17	1	D2	LED GREEN CLEAR 0603 SMD	Lite-On Trading USA, Inc.	LTST-C190GKT
18	1	D3	LED RED CLEAR 0603 SMD	Lite-On Trading USA, Inc.	LTST-C190CKT
19	1	FLT1	MULTILAYER BANDPASS FILTER	ТDК	DEA202450BT-1213C1
20	1	F1	THERMISTOR PTC 6V .35A RESETTABL	Littelfuse Inc	1206L035YR
21	1	J3	CONN PLUG USB 4POS RT ANG SMD	Molex/Waldom Electronics Corp	48037-1000
22	1	L1	INDUCTOR 47NH +-5% FIXED 0603	Panasonic - ECG	ELJ-RE47NJFA
23	2	L4,L2	INDUCTOR 2.2NH +3NH FIXED 0402	Panasonic - ECG	ELJ-RF2N2DFB
24	1	L3	INDUCTOR 12NH 5% FIXED 402 SMD	Panasonic - ECG	ELJ-RF12NJF
25	1	L5	INDUCTOR 5.6NH +3NH 0402 SMD	Panasonic - ECG	ELJ-RF5N6DFB
26	1	P1	PC Board Connector, Dual Row, Right Angle 16 Circuits	Molex/Waldom Electronics Corp	90152-2116
27	2	R4,R5	RES 160 OHM 1/16W 1% 0402 SMD	Yageo	RC0402FR-07160RL
28	6	R19,R20,R21,R38,R39,R40	RES 2.2K OHM 1/10W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ222V
29	2	R22,R33	RES CHIP 100K OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-07100KL
30	2	R23,R24	RES 2.2K OHM 1/16W 5% 0402 SMD	Panasonic - ECG	ERJ-2GEJ222X
31	2	R26,R25	RES ZERO OHM 1/16W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEY0R00V
32	2	R30,R31	RES 100 OHM 1/16W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ101V
33	2	R37,R27	RES 560 OHM 1/10W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ561V
34	1	R36	RES 330 OHM 1/16W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ331V
35	2	R29,R28	RES 22 OHM 1/16W 1500PPM 5% 0603	Panasonic - ECG	ERA-V15J220V
36	1	R34	RES 10K OHM 1/16W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ103V
37	2	R42,R41	RES ZERO OHM 1/16W 0402 SMD	Panasonic - ECG	ERJ-2GE0R00X
38	1	SW1	SWITCH TACT 6MM 150GF SPST SMD	Omron Electronic Components	B3FS-1052
39	1	U1	IC, 2.4 GHz CyFi Transceiver SoC QFN-40	Cypress Semiconductor	CYRF7936-40LFXC
40	1	U3	GaAs POWER AMPLIFIER	NEC Electronics Corporation	µPG2250T5N-E2-A
41	2	U5,U6	GaAs IC SWITCH SPDT 6-MINIMOLD	NEC Electronics Corporation	UPG2214TK-E2-A

ltem	Qty	Reference	Description	Manufacturer	Mfr Part Number
42	2	U8,U7	PSoC Mixed-Signal Array	Cypress Semiconductor	CY8C24894-24LFXI
43	1	U9	IC REGULATOR LDO 3.3V 500MA SO8	Linear Technology	LT1763CS8-3.3#PBF
44	2	U10,U11	IC BUFFER ULP-A SGL SC70-5	Fairchild	NC7SV34P5X
45	1	Y1	Crystal 12 Mhz 10pf 6035 SMD	eCERA	FX1200065
46	1	LABEL1	Serial Number		
47	1	LABEL2	PCA LABEL		121R-43900 Rev**
NO LOAD Components					
48	1	R9	RES NO LOAD 0402 SMD	NA	NA
49	1	R32	RES CHIP 100K OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-07100KL
50	1	C43	CAP 0.01UF 50V CERAMIC X7R 0603	Panasonic	ECJ-1VB1H103K
51	1	J1	CONN HEADER VERT 5POS .100 TIN	Molex/Waldom Electronics	22-28-4050
52	13	TV1,TV2,TV3,TV4,TV5,TV6 ,TV7,TV8,TV9,TV10,TV11, TV12,TV13	TEST VIA 40 HOLE 20 PLATED	NONE	

Table A-2. RF Expansion Card BOM

Item	Qty	Reference	Description	Manufacturer	Mfr Part Number
			PCB	Cypress	PDCR-9400
1	1	ANT1	ANTENNA CHIP 2.4GHZ SMD LEFT FD	Antenova	3030A5839-01
2	4	C1,C22,C25,C30	CAP 27PF 50V CERAMIC NPO 0402	Kemet	C0402C270J5GACTU
3	4	C2,C18,C38,C41	CAP .10UF 10V CERAMIC X5R 0402	Kemet	C0402C104K8PACTU
4	1	C4	CAP CER 1.2PF 50V S 0402 UHI Q	Johanson	500R07S1R2BV
5	8	C6,C26,C27,C28,C29,C34, C35,C36	CAP 0.1 uF 10% 10V CERAMIC X5R 0402	Panasonic - ECG	ECJ-0EB1A104K
6	1	C8	CAP CER 10UF 6.3V X5R 0603	Murata	GRM188R60J106ME47D
7	1	C9	CAP 1 uF 6.3V CERAMIC X5R 0402	Panasonic	ECJ-0EB0J105M
8	6	C10,C11,C13,C14,C19,C20	CAP CERM .047UF 10% 16V X5R 0402	AVX	0402YD473KAT2A
9	2	C12,C39	CAP CER .47UF 6.3V X5R 0402	Murata	GRM155R60J474KE19D
10	5	C15,C16,C31,C32,C33	CAP 18PF 50V CERAMIC 0402 SMD	Panasonic - ECG	ECJ-0EC1H180J
11	1	C23	CAP CER 10PF 5% 50V S 0402	Panasonic - ECG	ECJ-0EC1H100D
12	1	C40	CAP 100PF 50V CERAMIC 0402 SMD	Panasonic - ECG	ECJ-0EC1H101J
13	3	C44,C45,C46	CAP CER 10UF 16V X5R 0805	Murata Electronics North America	GRM21BR61C106KE15L
14	1	D1	LED RED CLEAR 0603 SMD	Lite-On Trading USA, Inc.	LTST-C190CKT
15	1	D2	LED GREEN CLEAR 0603 SMD	Lite-On Trading USA, Inc.	LTST-C190GKT
16	1	FLT1	MULTILAYER BANDPASS FILTER	TDK	DEA202450BT-1213C1
17	1	J1	CONN HEADER 16POS .100" R/A TIN	Molex/Waldom Electronics Corp	90122-0128
18	1	L1	INDUCTOR 47NH +-5% FIXED 0603	Panasonic - ECG	ELJ-RE47NJFA
19	2	L4,L2	INDUCTOR 2.2NH +3NH FIXED 0402	Panasonic - ECG	ELJ-RF2N2DFB
20	1	L3	INDUCTOR 12NH 5% FIXED 402 SMD	Panasonic - ECG	ELJ-RF12NJF
21	1	L5	INDUCTOR 5.6NH +3NH 0402 SMD	Panasonic - ECG	ELJ-RF5N6DFB
22	1	L6	COIL PWR CHOKE 10UH 700MA SMD	Murata	LQH32PN100MN0
23	1	P1	PC Board Connector, Dual Row, Right Angle 16 Circuits	Molex/Waldom Electronics Corp	90152-2116
24	1	RT1	THERMISTOR NTC 10K OHM LEADED	BC Components	2381 640 55103
25	1	R2	RES ZERO OHM 1/16W 0402 SMD	Panasonic - ECG	ERJ-2GE0R00X
26	1	R3	RES 1.00 OHM 1/16W 1% 0402 SMD	Vishay/Dale	CRCW04021R00FNED
27	1	R4	RES 140 OHM 1/16W 1% 0402 SMD	Yageo	RC0402FR-07140RL

Item	Qty	Reference	Description	Manufacturer	Mfr Part Number
28	1	R5	RES 160 OHM 1/16W 1% 0402 SMD	Yageo	RC0402FR-07160RL
29	1	R6	RES 47 OHM 1/16W 5% 0402 SMD	Panasonic - ECG	ERJ-2GEJ470X
30	3	R15,R16,R17	RES CHIP 1.0K OHM 1/16W 5% 0402 SMD	Yageo	RC0402JR-071KL
31	1	R18	RES CHIP 10.0K OHM 1/16W .1% 0603 SMD	Panasonic - ECG	ERA-3AEB103V
32	1	R21	RES 390 OHM 1/16W 1% 0603 SMD	Panasonic - ECG	ERJ-3EKF3900V
33	1	R26	RES 560 OHM 1/10W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ561V
34	2	R27,R28	RES 2.2K OHM 1/16W 5% 0402 SMD	Panasonic - ECG	ERJ-2GEJ222X
35	1	R29	RES 330 OHM 1/16W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ331V
36	2	R32,R30	RES CHIP 100K OHM 1/16W 1% 0402 SMD	Vishay	CRCW0402100KFKED
37	2	R31,R35	RES 237K OHM 1/16W 1% 0402 SMD	Vishay	CRCW0402237KFKED
38	1	R33	RES CHIP 10K OHM 1/16W 5% 0402 SMD	Yageo	RC0402JR-0710KL
39	2	SW1,SW2	SWITCH LT 4.7MMX3.5MM 250GF SMD	Panasonic - ECG	EVQ-P2H02B
40	1	U1	IC, LP 2.4 GHz RADIO SoC QFN-40	Cypress Semiconductor	CYRF6936-40LFXC
41	1	U2	IC STEP-UP DC/DC CONVERTER SC70-6	Linear Technology	LTC3525ESC6-3.3#TRPBF
42	1	U3	GaAs POWER AMPLIFIER	NEC Electronics Corporation	µPG2250T5N-E2-A
43	1	U4	IC PROGRAMMABLE SOC SSOP28	Cypress Semiconductor	CY8C27443-24PVXI
44	2	U5,U6	GaAs IC SWITCH SPDT 6-MINIMOLD	NEC Electronics Corporation	UPG2214TK-E2-A
45	2	U7,U8	IC BUFFER ULP-A SGL SC70-5	Fairchild	NC7SV34P5X
46	1	Y1	Crystal 12 Mhz 10pf 6035 SMD	eCERA	FX1200065
47	1	LABEL1	Serial Number		
48	1	LABEL2	PCA LABEL		121R-40000 Rev 4
NO LO	DAD C	Components	-		
49	7	R1,R8,R19,R22,R23,R24,R 25	RES NO LOAD 0402 SMD	NA	NA
50	1	R7	RES ZERO OHM 1/16W 0402 SMD	Panasonic - ECG	ERJ-2GE0R00X
51	1	R20	RES 390 OHM 1/16W 1% 0603 SMD	Panasonic - ECG	ERJ-3EKF3900V
52	1	R34	RES 10 OHM 1/16W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ100V
53	3	C3,C17,C24	CAP 2.0 PF 50V CERAMIC NPO 0402	Kemet	C0402C209C5GACTU
54	1	C37	CAP .10UF 10V CERAMIC X5R 0402	Kemet	C0402C104K8PACTU
55	1	C42	CAP 0.01UF 50V CERAMIC X7R 0603	Panasonic	ECJ-1VB1H103K
56	1	C43	CAP CER 10UF 16V X5R 0805	Murata Electronics North America	GRM21BR61C106KE15L
57	10	TV1,TV2,TV3,TV4,TV5,TV6 ,TV7,TV8,TV9,TV10	TEST VIA 40 HOLE 20 PLATED	NONE	

Table A-3.	Multifunction	Expansion	BOM
------------	---------------	-----------	-----

ltem	Qty	Reference	Description	Manufacturer	Mfr Part Number
1	1	C1	CAP 10000PF 16V CERM X7R 0603	Panasonic	ECJ-1VB1C103K
2	2	C2,C3	CAP .10UF 10V CERAMIC X5R 040	Kemet	C0402C104K8PACTU
3	1	C4	CAP 4.7UF 16V Tantalum 3216	Nichicon	F931C475MAA
4	1	D1	LED 3.2X3.6MM R/G/B WTR CLR SMD	Kingbright Corp	APF3236SURKVGAPBA
5	1	D4	DIODE ZENER 2.4V 150MW S-MINI 2P	Panasonic - SSG	MAZ802400L
6	1	J1	CONN HEADER 16POS .100" R/A TIN	Molex/Waldom Electronics Corp	90122-0128
7	1	LS1	BUZZER MAGNETIC 8.5MM 3-5V SMD	CUI Inc	CSS-J4D20
8	1	PRX1	Low Profile Single Pin Socket Thru Hole	Samtec	CES-101-01-T-S
9	1	PR1	IC AMBIENT LIGHT DETECTOR 1206	Microsemi-IPG	LX1972IBC-TR
10	1	Q1	MOSFET N-CH 60V 115MA SOT-23	Diodes Inc	2N7002-7-F
11	1	RT1	THERMISTOR NTC 10K OHM 1% LEADED	BC Components	2381 640 55103
12	1	R1	RES CHIP 10.0K OHM 1/16W .1% 0603 SMD	Panasonic - ECG	ERA-3AEB103V
13	1	R11	RES CHIP 10.0K OHM 1/16W 1% 0603 SMD	Phycomp USA Inc	9C06031A1002FKHFT
14	1	R2	RES 680 OHM 1/10W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ681V
15	1	R3	RES 1.6K OHM 1/10W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ162V
16	2	R4,R5	RES 2.0K OHM 1/16W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ202V
17	1	R6	RES 1.0K OHM 1/16W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ102V
18	1	R8	RES 100 OHM 1/16W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ101V
19	2	R10,R9	RES 2.2K OHM 1/10W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ222V
20	1	R19	RES 4.99K OHM 1/16W 1% 0603 SMD	Panasonic - ECG	ERJ-3EKF4991V
21	9	R7,R12,R13,R14,R15, R16,R17,R18,R20	RES 560 OHM 1/10W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ561V
22	1	U3	IC PROGRAMMABLE SOC MLF32	Cypress Semiconductor	CY8C21434-24LFXI
23	1	PCB	PRINTED CIRCUIT BOARD	Cypress Semiconductor	PDCR-9402 Rev **
24	1	LABEL1	Serial Number		
25	1	LABEL2	PCA LABEL		121R-40201 Rev**
DO N	OT IN	STALL			
26	7	CSB1-CSB7	CapSense Touch Element FTMF	NA	NA
27	8	TV1,TV2,TV3,TV4,TV5,TV6 ,TV7,TV8	TEST VIA 40 HOLE 20 PLATED	NONE	

Item	Qty	Reference	Description	Manufacturer	Mfr Part Number
			PCB	Cypress	PDCR-9456
1	1	BH1	BATTERY HOLDER 2AAA CELL PC MT	Keystone Electronics	2468
2	1	C1	CAP ELECT 1500UF 6.3V FK SMD	Panasonic	EEE-FK0J152P
3	3	C3,C4,C5	CAP CER 10UF 16V X5R 0805	Murata Electronics North America	GRM21BR61C106KE15L
4	1	J1	CONN HEADR BRKWAY .100 03POS STR	Tyco Electronics/Amp	5-146280-3
5	1	L1	COIL PWR CHOKE 10UH 700MA SMD	Murata	LQH32PN100MN0
6	1	P1	PC Board Connector, Dual Row, Right Angle 16 Circuits	Molex/Waldom Electronics Corp	90152-2116
7	1	R1	RES 100K OHM 1/16W 5% 0402 SMD	Panasonic - ECG	ERJ-2GEJ104X
8	1	SW1	SWITCH SLIDE SPDT .3A RT ANGLE	E-Switch	EG1270
9	1	U1	IC STEP-UP DC/DC CONVERTER SC70-6	Linear Technology	LTC3525ESC6-3.3#TRPBF
10	1	N/A	SHUNT/JUMPER 2POS .100 BLACK	Superior Tech Co	MJPB-D02BG1CA-A
11	1	LABEL1	Serial Number		
12	1	LABEL2	PCA LABEL		121R-45600 Rev**
NO LO	DAD C	Components			
13	1	C2	CAP CER 10UF 16V X5R 0805	Murata Electronics North America	GRM21BR61C106KE15L
14	1	C6	CAP 0.01UF 50V CERAMIC X7R 0603	Panasonic	ECJ-1VB1H103K
15	1	R2	RES 10 OHM 1/16W 5% 0603 SMD	Panasonic - ECG	ERJ-3GEYJ100V
16	5	TV1,TV2,TV3,TV4,TV5	TEST VIA 40 HOLE 20 PLATED	NONE	

Table A-4. AAA Power Pack BOM

Table A-5. CR2302 Power Pack BOM

Item	Qty	Reference	Description	Manufacturer	Mfr Part Number
			PCB	Cypress	PDCR-9457
1	1	BH1	BATTERY CLIP COIN CELL 20mm	KEYSTONE	3002
2	1	C1	CAP ELECT 1500UF 6.3V FK SMD	Panasonic	EEE-FK0J152P
3	1	P1	PC Board Connector, Dual Row, Right Angle 16 Circuits	Molex/Waldom Electronics Corp	90152-2116
4	1	R1	RES 47 OHM 1/10W 1% 0805 SMD	Yageo America	RC0805FR-0747RL
5	1	SW1	SW SLIDE DPDT 6VDC 0.3A PCMNT	C&K Components	JS202011AQN
6	1	LABEL1	Serial Number		
7	1	LABEL2	PCA LABEL		121R-45700 Rev*A
NO L	OAD C	Components			
8	3	TV1,TV2,TV3	TEST VIA 40 HOLE 20 PLATED	NONE	

