
SDSoC Environment User Guide

UG1027 (v2017.2) August 16, 2017

Revision History

The following table shows the revision history for this document.

Date Version Revision

08/16/2017 2017.2 • Updated for SDx™ IDE 2017.2.
• Added Compiling Your OpenCL Kernel Using the Xilinx OpenCL

Compiler (xocc).

06/20/2017 2017.1 • Updated for SDx IDE 2017.1.
• Added Getting Started with Examples.

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

2

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=2
www.xilinx.com

Table of Contents
The SDSoC Environment

Getting Started...7

Feature Overview...7

User Design Flows

Creating a Project for a Target Platform ..9

Compiling and Running Applications on an ARM Processor ..12

Compiling and Running Applications on a MicroBlaze Processor...13

Profiling and Instrumenting Code to Measure Performance..14

Moving Functions into Programmable Logic ...15

System Emulation...17

SDSoC Environment Troubleshooting..18

Coding Guidelines

Guidelines for Invoking SDSCC/SDS++...22

Makefile Guidelines..22

General C/C++ Guidelines...23

Hardware Function Argument Types...24

Hardware Function Call Guidelines ...25

Getting Started with Examples

Installed Examples..26

GitHub Examples..27

Synthesizeable FIR Filter...29

Matrix Multiplication ...29

Using a C-Callable RTL Library...29

C++ Design Libraries ...30

Using C-Callable IP Libraries

C-Callable Libraries...32

SDSCC/SDS++ Performance Estimation Flow Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

3

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=3
www.xilinx.com

Improving System Performance

Data Motion Network Generation in SDSoC..43

Increasing System Parallelism and Concurrency..51

Using External I/O ..53

Improving Hardware Function Parallelism ..57

Debugging an Application

Debugging Linux Applications in the SDSoC IDE ..69

Debugging Standalone Applications in the SDSoC IDE...69

Debugging FreeRTOS Applications ..70

Peeking and Poking IP Registers ...70

Debugging Performance Tips ..70

Hardware/Software Event Tracing

Hardware/Software System Runtime Operation ...72

Software Tracing...73

Hardware Tracing ...74

Implementation Flow ...75

Runtime Trace Collection..76

Trace Visualization..77

Performance Measurement Using the AXI Performance Monitor ...79

Troubleshooting ...86

SDSoC Pragma Specification

Data Transfer Size...87

Memory Attributes...90

Data Access Pattern..91

Data Mover Type..92

SDSoC Platform Interfaces to External Memory ..93

Hardware Buffer Depth ..93

Asynchronous Function Execution ..94

Specifying Resource Binding ...96

Specifying Partitions...96

Trace Monitoring..97

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

4

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=4
www.xilinx.com

SDSCC/SDS++ Compiler Commands and Options

Command Synopsis ..99

General Options ... 100

Hardware Function Options.. 103

Compiler Macros .. 105

System Options .. 106

Compiler Toolchain Support ... 110

Exporting a Library for GCC

Building a Shared Library.. 113

Compiling and Linking Against a Library.. 115

Exporting a Shared Library.. 116

Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)

Running Software and Hardware Emulation in XOCC Flow .. 128

SDSoC Environment API

Additional Resources and Legal Notices

References ... 132

Please Read: Important Legal Notices... 133

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

5

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=5
www.xilinx.com

The SDSoC Environment
The SDSoC™ (software-defined system-on-chip) environment is a tool suite that includes an
Eclipse-based integrated development environment (IDE) for implementing heterogeneous
embedded systems. SDSoC supports ARM® Cortex-based applications using the Zynq®-7000
All Programmable SoCs and Zynq UltraScale+™ MPSoCs, as well as MicroBlaze™ processor-
based applications on all Xilinx SoCs and FPGAs. The SDSoC environment also includes system
compilers that transform C/C++ programs into complete hardware/software systems with select
functions compiled into programmable logic.

The SDSoC system compilers analyze a program to determine the data flow between software
and hardware functions, and generate an application specific system-on-chip to realize the
program. To achieve high performance, each hardware function runs as an independent thread;
the system compilers generate hardware and software components that ensure synchronization
between hardware and software threads, while enabling pipelined computation and
communication. Application code can involve many hardware functions, multiple instances of a
specific hardware function, and calls to a hardware function from different parts of the program.

The SDSoC IDE supports software development workflows including profiling, compilation,
linking, system performance analysis, and debugging. In addition, the SDSoC environment
provides a fast performance estimation capability to enable "what if" exploration of the
hardware/software interface before committing to a full hardware compile.

The SDSoC system compilers target a base platform and invoke the Vivado® High-Level
Synthesis (HLS) tool to compile synthesizeable C/C++ functions into programmable logic. They
then generate a complete hardware system, including DMAs, interconnects, hardware buffers,
and other IPs, and an FPGA bitstream by invoking the Vivado Design Suite tools. To ensure all
hardware function calls preserve their original behavior, the SDSoC system compilers generate
system-specific software stubs and configuration data. The program includes function calls to
drivers required to use the generated IP blocks. Application and generated software is compiled
and linked using a standard GNU toolchain.

By generating complete applications from “single source”, the system compilers allow you to
iterate over design and architecture changes by refactoring at the program level, dramatically
reducing the time needed to achieve working programs running on the target platform.

Chapter 1

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

6

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=6
www.xilinx.com

Getting Started

Download and install the SDSoC™ environment according to the directions provided in SDx
Environments Release Notes, Installation, and Licensing Guide (UG1238). This guide provides
detailed instructions and hands-on tutorials to introduce the primary work flows for project
creation, specifying functions to run in programmable logic, system compilation, debugging,
and performance estimation. Working through these tutorials is the best way to get an overview
of the SDSoC environment, and should be considered prerequisite to application development.

NOTE: The SDSoC environment includes the entire tools stack to create a bitstream, object code, and
executables. If you have installed the Xilinx® Vivado® Design Suite and Software Development Kit tools
independently, you should not attempt to combine these installations with the SDSoC environment.

Feature Overview

The SDSoC™ environment inherits many of the tools in the Xilinx® Software Development Kit
(SDK), including GNU toolchains and standard libraries (for example, glibc) as well as the Target
Communication Framework (TCF) and GDB interactive debuggers, a performance analysis
perspective within the Eclipse/CDT-based GUI, and command-line tools.

The SDSoC environment includes system compilers (sdscc/sds++) that generate complete
hardware/software systems, an Eclipse-based user interface to create and manage projects and
workflows, and a system performance estimation capability to explore different "what if"
scenarios for the hardware/software interface.

The SDSoC system compilers employ underlying tools from the Vivado Design Suite (System
Edition), including Vivado® HLS, IP integrator, IP libraries for data movement and interconnect,
and the RTL synthesis, placement, routing, and bitstream generation tools.

The principle of design reuse underlies workflows you employ with the SDSoC environment,
using well established platform-based design methodologies. The SDSoC system compiler
generates an application-specific system on chip by customizing a target platform. The SDSoC
environment includes a number of platforms for application development and others are
provided by Xilinx partners. The SDSoC Environment Platform Development Guide (UG1146)
describes how to capture platform metadata so that a pre-existing design built using the Vivado
Design Suite, and corresponding software run-time environment can be used to build an SDSoC
platform and used in the SDSoC environment.

An SDSoC platform defines a base hardware and software architecture and application context,
including processing system, external memory interfaces, custom input/output, and software run
time including operating system (possibly "bare metal"), boot loaders, drivers for platform
peripherals and root file system. Every project you create within the SDSoC environment targets
a specific platform, and you employ the tools within the SDSoC IDE to customize the platform
with application-specific hardware accelerators and data motion networks connecting
accelerators to the platform. In this way, you can easily create highly tailored application-specific
systems-on-chip for different base platforms, and can reuse base platforms for many different
application-specific systems-on-chip.

Chapter 1: The SDSoC Environment

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

7

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=7
www.xilinx.com

User Design Flows
The SDSoC environment is a tool suite for building efficient application-specific systems-on-
chip, starting from a platform SoC that provides a base hardware and target software
architecture including boot options.

The figure below shows a representative top-level user visible design flow that involves key
components of the tool suite. For the purposes of exposition, the design flow proceeds linearly
from one step to the next, but in practice you are free to choose other work flows with different
entry and exit points. Starting with a software-only version of the application that has been
cross-compiled for ARM CPUs, the primary goal is to identify portions of the program to move
into programmable logic and to implement the application in hardware and software built upon
a base platform.

Figure 1: User Design Flow

Optimize data transfer and
parallelism using SDSoC guidelines

Optimize accelerator code

Analyze performance

Estimate performance

Build application to generate
software and hardware

Run on the board

SD Card Image

C/C++ Application
running on ARM

Mark functions for HW acceleration

Profile application

X14740-070215

Chapter 2

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

8

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=8
www.xilinx.com

The first step is to select a development platform, cross-compile the application, and ensure it
runs properly on the platform. You then identify compute-intensive hot spots to migrate into
programmable logic to improve system performance, and to isolate them into functions that can
be compiled into hardware. You then invoke the SDSoC system compiler to generate a complete
system-on-chip and SD card image for your application. You can instrument your code to
analyze performance, and if necessary, optimize your system and hardware functions using a set
of directives and tools within the SDSoC environment.

The system generation process is orchestrated by the sdscc/sds++ system compilers through
the SDSoC IDE or in an SDSoC terminal shell using the command line and makefiles. Using the
SDSoC IDE or sdscc command line options, you select functions to run in hardware, specify
accelerator and system clocks, and set properties on data transfers (for example, interrupt vs.
polling for DMA transfers). You can insert pragmas into application source code to control the
system mapping and generation flows, providing directives to the system compiler for
implementing the accelerators and data motion networks.

Because a complete system compile can be time-consuming compared with an "object code"
compile for a CPU, the SDSoC environment provides a faster performance estimation capability.
The estimate allows you to approximate the expected speed-up over a software-only
implementation for a given choice of hardware functions and can be functionally verified and
analyzed through system emulation. The system emulation feature uses a QEMU model
executing the software and RTL model of the hardware functions to enable fast and accurate
analysis of the system.

As shown in the preceding figure (User Design Flow), the overall design process involves
iterating the steps until the generated system achieves your performance and cost objectives.

It is assumed that you have already worked through the introductory tutorials (see SDSoC
Environment Tutorial: Introduction (UG1028)) and are familiar with project creation, hardware
function selection, compilation, and running a generated application on the target platform. If
you have not done so, it is recommended you do so before continuing.

Creating a Project for a Target Platform

In the SDSoC IDE, click on File→New→Xilinx SDx Project to create a new project and open up
the New Project wizard. After entering the project name, the first step is to select a platform
target for development from the Choose Hardware Platform window. The platform includes a
base hardware system, software runtime (including operating system), boot loaders, and root file
system. For an SDSoC environment project, the platform must be one of the hardware platforms
from the Zynq-7000 or Zynq UltraScale+ families.

NOTE: The hardware platform is fixed and the command line options are automatically inserted into every
makefile. To retarget a project to a new platform, you must create a new project with the new platform and
copy the source files from your current project into the new project.

Chapter 2: User Design Flows

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

9

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1028-sdsoc-intro-tutorial.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=9
www.xilinx.com

In addition to the available base platforms, you can manage other aspects of the hardware
target from this window:

• Add Custom Platform: This allows you to add your own platform to the list of available
platforms. Simply navigate to the top-level directory of the custom platform, select it and
press OK to add the new platform. The custom platform is immediately available for
selection from the list of available platforms. You can find sample platforms in the
<sds_root>/samples/platforms directory.

• Manage Repositories: This allows you to both add or remove standard and custom
platforms. If a custom platform is added, the path to the new platform is automatically
added to the repositories. Removing any platform from the list of repositories removes the
platform from the Choose Hardware Platform selection.

• Add Devices/Platforms: This allows you to manage which Xilinx devices (FPGAs) and
platforms are installed. If a device or platform is not selected for inclusion during the
installation process, the device will not be available for selection and any platform that uses
the device will not be available for selection.

The menu option Xilinx→Add Custom Platform can be used at any time to directly add custom
platforms and manage the repositories.

NOTE: The clCreateBuffer flag option CL_MEM_USE_HOST_PTR is not supported. OpenCL is only supported
in the Linux environment.

In the Choose Software Platform and Target CPU window, select a System Configuration which
defines the software environment that runs on the hardware platform, including the CPU and
operating system (OS). For OpenCL support, the System Configuration must be set to A53
OpenCL Linux: the Runtime selection will automatically update to OpenCL. C/C++ is supported
for all platforms.

Next, in the Templates window, select Empty Application to create a blank project into which
you can add files or select from one of the available templates. Finally, review the application
description to determine if it is a good starting point for your project, and click Finish to open
the project.

In addition to the SDSoC IDE, a command line interface is provided.

• For C based projects this is invoked using sdscc command.
• For C++ projects this is invoked using the sds++ command.
• For OpenCL projects this is invoked using the xocc command.
• The command line executables are located in <sdx_root>/bin.

If you are using the command line interface and writing makefiles outside of the SDSoC IDE, you
must include the platform using the -sds-pf command line option on every call to sdscc. You
can also specify the software platform, which includes the operating system that runs on the
target CPU, using the -sds-sys-config <system_configuration> command line option.

sdscc -sds-pf <platform path name>

Here, the platform is either a file path or a named platform within the
<sdsoc_root>/platforms directory. To view the available base platforms from the command
line, run the following command.

sdscc -sds-pf-list

Chapter 2: User Design Flows

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

10

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=10
www.xilinx.com

In the SDSoC environment, you control the system generation process by structuring hardware
functions and calls to hardware functions to balance communication and computation, and by
inserting pragmas into your source code to guide the sdscc system compiler.

The hardware/software interface is defined implicitly in your application source code once you
have selected a platform and a set of functions in the program to be implemented in hardware.
The sdscc/sds++ system compilers analyze the program data flow involving hardware
functions, schedule each such function call, and generate a hardware accelerator and data
motion network realizing the hardware functions in programmable logic. They do so not by
implementing each function call on the stack through the standard ARM application binary
interface, but instead by redefining hardware function calls as calls to function stubs having the
same interface as the original hardware function. These stubs are implemented with low-level
function calls to a send/receive middleware layer that efficiently transfers data between the
platform memory and CPU and hardware accelerators, interfacing as needed to underlying
kernel drivers.

The send/receive calls are implemented in hardware with data mover IP cores based on
program properties like memory allocation of array arguments, payload size, the corresponding
hardware interface for a function argument, as well as function properties such as memory
access patterns and latency of the hardware function.

Data Motion Network Clock

Every platform supports one or more clock sources, one of which is selected by default if you do
not make an explicit choice. This default clock is defined by the platform provider, and is used
for the data motion network (data mover IPs and control buses) generated by sdscc during
system generation. You can view the platform clocks by selecting the Platform link in the
General panel of the SDx Project Settings window. You can select a different platform clock
frequency with the Data Motion Network Clock Frequency pull-down menu in the Options
panel of the SDx Project Settings window, or on the command line with the -dmclkid option.

sdscc -sds-pf zc702 -dmclkid 1

Chapter 2: User Design Flows

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

11

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=11
www.xilinx.com

To see the available clocks for a platform from the command line, execute the following:

$ sdscc -sds-pf-info zc702
Platform Information
====================
Name: zc702

Device

Architecture: zynq

Device: xc7z020
Package: clg484

Speed grade: -1

System Clocks

Clock ID Frequency
----------|------------

666.666687
0 166.666672
1 142.857132
2 100.000000
3 200.000000

Platform: zc702 (/opt/Xilinx/SDx/2017.2/platforms/zc702)
Description: Basic platform targeting the ZC702 board, which includes 1GB
of DDR3, 16MB Quad-SPI Flash and an SDIO card interface. More information
at https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
Available system configurations:

linux (linux Linux OS on a9_0)
standalone (standalone Standalone OS on a9_0)
freertos (freertos FreeRTOS on a9_0)
ocl (ocl Linux OS on a9_0)

Compiling and Running Applications on an ARM
Processor

A first step in application development is to cross-compile your application code to run on the
target platform. Every platform included in the SDSoC environment includes a pre-built SD card
image from which you can boot and run cross-compiled application code. When you do not
select any functions for hardware in your project, this pre-built image is used.

When you make code changes, including changes to hardware functions, it is valuable to rerun a
software-only compile to verify your changes did not adversely change your program. A
software-only compile is much faster than a full system compile, and software-only debugging is
a much quicker way to detect logical program errors than hardware/software debugging.

The SDSoC environment includes two distinct toolchains for the ARM® Cortex™-A9 CPU within
Zynq®-7000 SoCs.

1. arm-linux-gnueabihf - for developing Linux applications
2. arm-none-eabi - for developing standalone ("bare-metal") and FreeRTOS applications

Chapter 2: User Design Flows

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

12

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=12
www.xilinx.com

For the ARM Cortex-A53 CPUs within the Zynq UltraScale+™ MPSoCs, the SDSoC environment
includes two toolchains:

• aarch64-linux-gnu - for developing Linux applications
• aarch64-none-elf - for developing standalone ("bare-metal") applications

For the ARM Cortex-R5 CPU provided in the Zynq UltraScale+ MPSoCs, the following toolchain
is include in the SDSoC environment:

• armr5-none-eabi - for developing standalone ("bare-metal") applications

The underlying GNU toolchain is defined when you select the operating system during project
creation. The SDSoC system compilers (sdscc/sds++) automatically invoke the corresponding
toolchain when compiling code for the CPUs, including all source files not involved with
hardware functions.

The SDSoC system compilers generate an SD card image by default in a project subdirectory
named sd_card. For Linux applications, this directory includes the following files:

• README.TXT- contains brief instructions on how to run the application
• BOOT.BIN - the boot image contains first stage boot loader (FSBL), boot program (U-Boot),

and the FPGA bitstream
• image.ub - contains the Linux boot image (platforms can be created that include uImage,
devicetree.dtb, and uramdisk.image.gz files)

• <app>.elf - the application binary executable

To run the application, copy the contents of sd_card directory onto an SD card and insert into
the target board. Open a serial terminal connection to the target and power up the board (for
more information see SDSoC Environment Tutorial: Introduction (UG1028)). Linux boots,
automatically logs you in as root, and enters a bash shell. The SD card is mounted at /mnt, and
from that directory you can run <app>.elf.

For standalone applications, the ELF, bitstream, and board support package (BSP) are contained
within BOOT.BIN, which automatically runs the application after the system boots.

Compiling and Running Applications on a MicroBlaze
Processor

The SDSoC environment includes the standard SDK toolchain for MicroBlaze processors,
including microblaze-xilinx-elf for developing standalone ("bare-metal") and FreeRTOS
applications. A MicroBlaze platform in SDSoC is a standard MicroBlaze processor system built
using the Vivado tools and SDK that must be a self-contained system with a local memory bus
(LMB) memory, MicroBlaze Debug Module (MDM), UART, and AXI timer. By default, the SDSoC
system compilers do not generate an SD card image for projects targeting a MicroBlaze
platform. A user can package the bitstream and corresponding ELF executable as needed for
their application. To run an application, the bitstream must be programmed onto the device
before the ELF can be downloaded to a MicroBlaze core. The SDSoC environment includes
Vivado tools and SDK facilities to create MCS files, insert an ELF file into a bitstream, and boot
the system from an SD card.

Chapter 2: User Design Flows

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

13

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1028-sdsoc-intro-tutorial.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=13
www.xilinx.com

Profiling and Instrumenting Code to Measure
Performance

The first major task in creating a software-defined SoC is to identify portions of application code
that are suitable for implementation in hardware, and that significantly improve overall
performance when run in hardware. Program hot-spots that are compute-intensive are good
candidates for hardware acceleration, especially when it is possible to stream data between
hardware and the CPU and memory to overlap the computation with the communication.
Software profiling is a standard way to identify the most CPU-intensive portions of your
program.

The SDSoC environment includes all performance and profiling capabilities that are included in
the Xilinx SDK, including gprof, the non-intrusive Target Communication Framework (TCF)
Profiler, and the Performance Analysis perspective within Eclipse.

To run the TCF Profiler for a standalone application, run the following steps:

1. Set the active build configuration to Debug by right-clicking on the project in the Project
Explorer and selecting Build Configurations→Set Active→Debug.

2. In the SDSoC Project Overview window, click on Debug application.

NOTE: The board must be connected to your computer and powered on. The application automatically
breaks at the entry to main().

3. Launch the TCF Profiler by selecting Window→Show View→Other→Debug→TCF Profiler.
4. Start the TCF Profiler by clicking on the green Start button at the top of the TCF Profiler tab.

Enable Aggregate per function in the Profiler Configuration dialog box.
5. Start the profiling by clicking on the Resume button. The program runs to completion and

breaks at the exit() function.
6. View the results in the TCF Profiler tab.

Profiling provides a statistical method for finding hot spots based on sampling the CPU program
counter and correlating to the program in execution. Another way to measure program
performance is to instrument the application to determine the actual duration between different
parts of a program in execution.

The sds_lib library included in the SDSoC environment provides a simple, source code
annotation based time-stamping API that can be used to measure application performance.

/*
* @return value of free-running 64-bit Zynq(TM) global counter
*/

unsigned long long sds_clock_counter(void);

Chapter 2: User Design Flows

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

14

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=14
www.xilinx.com

By using this API to collect timestamps and differences between them, you can determine
duration of key parts of your program. For example, you can measure data transfer or overall
round trip execution time for hardware functions as shown in the following code snippet:

class perf_counter
{
public:

uint64_t tot, cnt, calls;
perf_counter() : tot(0), cnt(0), calls(0) {};
inline void reset() { tot = cnt = calls = 0; }
inline void start() { cnt = sds_clock_counter(); calls++; };
inline void stop() { tot += (sds_clock_counter() - cnt); };
inline uint64_t avg_cpu_cycles() { return (tot / calls); };

};

extern void f();
void measure_f_runtime()
{

perf_counter f_ctr;
f_ctr.start();
f()
f_ctr.stop();
std::cout << "Cpu cycles f(): " << f_ctr.avg_cpu_cycles()

<< std::endl;
}

The performance estimation feature within the SDSoC environment employs this API by
automatically instrumenting functions selected for hardware implementation, measuring actual
run-times by running the application on the target, and then comparing actual times with
estimated times for the hardware functions.

NOTE: While off-loading CPU-intensive functions is probably the most reliable heuristic to partition your
application, it is not guaranteed to improve system performance without algorithmic modification to
optimize memory accesses. A CPU almost always has much faster random access to external memory than
you can achieve from programmable logic, due to multi-level caching and a faster clock speed (typically 2x
to 8x faster than programmable logic). Extensive manipulation of pointer variables over a large address
range, for example, a sort routine that sorts indices over a large index set, while very well-suited for a CPU,
may become a liability when moving a function into programmable logic. This does not mean that such
compute functions are not good candidates for hardware, only that code or algorithm restructuring may be
required. This issue is also well-known for DSP and GPU coprocessors.

Moving Functions into Programmable Logic

When you have created a new project, you can open up the SDSoC Project Overview by
double-clicking on the project.sdsoc file in the Project Explorer.

Chapter 2: User Design Flows

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

15

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=15
www.xilinx.com

Click on the symbol in the Hardware Functions panel to display the list of candidate
functions within your program. The list of Hardware Functions consists of functions in the call
graph rooted at the Root Function as defined in the General panel as shown above, and is set
to main by default. The Root Function can be changed by clicking on the ... button and
selecting an alternative function root.

From within the popup window, you can select one or more functions for hardware acceleration
and click OK. The selected functions appear in the list box. Note that the Eclipse CDT indexing
mechanism is not foolproof, and you might need to close and reopen the selection popup to
view available functions. If a function does not appear in the list, you can navigate to its
containing file in the Project Explorer, expand the contents, right-click on the function
prototype, and select Toggle HW/SW.

From the command line, select a function foo in the file foo_src.c for hardware with the
following sdscc command line option.

-sds-hw foo foo_src.c -sds-end

If foo invokes sub-functions contained in files foo_sub0.c and foo_sub1.c, use the -files

option.

-sds-hw foo foo_src.c -files foo_sub0.c,foo_sub1.c -sds-end

Although the control buses and data mover IPs within the data motion network run off of a
single clock, it is possible to run hardware functions and zero_copy data buses at different clock
rates to achieve higher performance. In the Hardware Functions panel, select functions from
the list and use the Clock Frequency pull-down menu to choose their clocks. Be aware that it
might not be possible to implement the hardware system with some clock selections.

To set a clock on the command-line, determine the corresponding clock id using sdscc -sds-

pf-info <platform> and use the -clkid option.

-sds-hw foo foo_src.c -clkid 1 -sds-end

When moving a function optimized for CPU execution into programmable logic, you usually
need to revise the code to achieve best performance. See Improving Hardware Function
Parallelism and Coding Guidelines for programming guidelines.

Chapter 2: User Design Flows

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

16

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=16
www.xilinx.com

For xFAST libraries, right-click and select Toggle Hardware from the associated header files in
the project includes in project explorer. Also add the function chooser GUI.

System Emulation

After the hardware functions are identified, the logic can be compiled into hardware and the
entire system (PS and PL) verified using emulation. This provides the same level of accuracy as
the final implementation without the need to compile the system into a bitstream and program
the FPGA on the board.

Within the SDx Project Settings, select Generate Emulation Model to enable system emulation.
Because emulation does not require a full system compile, you might be asked to disable
Generate Bitstream and you are encouraged to do so to improve run time. The bitstream
generation takes more time to complete than any other part of the development flow. System
emulation allows you to verify and debug the system with the same level of accuracy as a full
bitstream compilation.

To capture waveform data from the PL hardware emulation for viewing and debugging, select
the Debug pull-down menu option. For faster emulation without capturing this hardware debug
information, select the Optimized pull-down menu option. Use the Build toolbar button to
compile the system for emulation after selecting Debug or Optimized mode. Once the system
is compiled for emulation, the system emulator is invoked using Xilinx Tools > Start/Stop
Emulator. When the Emulation window opens you can choose to run the emulation with or
without waveforms.

Leaving the Show Waveform option unselected allows you to run emulation with output
directed solely to the console pane. The console pane shows all system messages including the
results of any print statements in the source code. Some of these statements might include the
values transferred to and from the hardware functions, if desired, or simply a statement that the
application has completed successfully, which would verify that the source code running on the
PL and the compiled hardware functions running in the PS are functionally correct.

Selecting the Show Waveform option in the Emulation windows provides the same
functionality in the console window plus an RTL waveform window. The RTL waveform window
allows you to see the value of any signal in the hardware functions over time. When using this
option, signals should be manually added to the waveform window before starting the
emulation. Use the Scopes pane to navigate the design hierarchy, then select the signals in the
Object pane you wish to monitor and use right-click to add the signals to the waveform pane.
Press the Run All toolbar button to start updates to the waveform window.

NOTE: Running with RTL waveforms results in a slower run time, but enables detailed analysis into the
operation of the hardware functions.

Chapter 2: User Design Flows

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

17

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=17
www.xilinx.com

The system emulation is started by selecting the active project in the Project Navigator and
right-clicking to select the menu options Run→Run As→Launch on the Emulator menu or
Debug→Debug As→Launch on the Emulator menu. You will see the program output in the
console tab, and if the Show Waveform option was selected, you will also see any appropriate
response in the hardware functions in the RTL waveform. With the system emulation running, it
can be paused by breakpoints in Debug mode and analysis performed in the debug perspective.
During any pause in the execution of the code, the RTL waveform window continues to execute
and update, just like an FPGA running on the board. The emulation can be stopped at any time
using the menu option Xilinx Tools→Start/Stop Emulator and selecting Stop. For an example
suitable for emulation, create a project using the Emulation Example template. The
README.txt file in the project has a step-by-step guide for doing emulation on both the SDx
GUI and the command line.

A system emulation session run from the command-line is shown in the following figure, with
the QEMU console shown at left and the PL waveform shown on the right.

SDSoC Environment Troubleshooting

There are several common types of issues you might encounter using the SDSoC™ environment
flow.

• Compile/link time errors can be the result of typical software syntax errors caught by
software compilers, or errors specific to the SDSoC environment flow, such as the design
being too large to fit on the target platform.

• Runtime errors can be the result of general software issues such as null-pointer access, or
SDSoC environment-specific issues such as incorrect data being transferred to/from
accelerators.

• Performance issues are related to the choice of the algorithms used for acceleration, the
time taken for transferring the data to/from the accelerator, and the actual speed at which
the accelerators and the data motion network operate.

• Incorrect program behavior can be the result of logical errors in code that fails to
implement algorithmic intent.

Chapter 2: User Design Flows

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

18

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=18
www.xilinx.com

Troubleshooting Compile and Link Time Errors

Typical compile/link time errors are indicated by error messages issued when running make. To
probe further, look at the log files and rpt files in the _sds/reports subdirectory created by
the SDSoC™ environment in the build directory. The most recently generated log file usually
indicates the cause of the error, such as a syntax error in the corresponding input file, or an error
generated by the tool chain while synthesizing accelerator hardware or the data motion
network.

Some tips for dealing with SDSoC environment specific errors follow.

• Tool errors reported by tools in the SDSoC environment chain.

◦ Check whether the corresponding code adheres to Coding Guidelines.
◦ Check the syntax of pragmas.
◦ Check for typos in pragmas that might prevent them from being applied to the correct

function.

• Vivado Design Suite High-Level Synthesis (HLS) cannot meet timing requirement.

◦ Select a slower clock frequency for the accelerator in the SDSoC IDE (or with the
sdscc/sds++ command line parameter).

◦ Modify the code structure to allow HLS to generate a faster implementation. See
Improving Hardware Function Parallelism for more information on how to do this.

• Vivado tools cannot meet timing.

◦ In the SDSoC IDE, select a slower clock frequency for the data motion network or
accelerator, or both (from the command line, use sdscc/sds++ command line
parameters).

◦ Synthesize the HLS block to a higher clock frequency so that the synthesis/
implementation tools have a bigger margin.

◦ Modify the C/C++ code passed to HLS, or add more HLS directives to make the HLS
block go faster.

◦ Reduce the size of the design in case the resource usage (see the Vivado tools report in
_sds/p0/_vpl/ipi/*.log and other log files in the subdirectories there) exceeds 80%
or so. See the next item for ways to reduce the design size.

• Design too large to fit.

◦ Reduce the number of accelerated functions.
◦ Change the coding style for an accelerator function to produce a more compact

accelerator. You can reduce the amount of parallelism using the mechanisms described
in Improving Hardware Function Parallelism.

◦ Modify pragmas and coding styles (pipelining) that cause multiple instances of
accelerators to be created.

◦ Use pragmas to select smaller data movers such as AXIFIFO instead of AXIDMA_SG.
◦ Rewrite hardware functions to have fewer input and output parameters/arguments,

especially in cases where the inputs/outputs are continuous stream (sequential access
array argument) types that prevent sharing of data mover hardware.

Chapter 2: User Design Flows

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

19

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=19
www.xilinx.com

Troubleshooting System Hangs and Runtime Errors

Programs compiled using sdscc/sds++ can be debugged using the standard debuggers
supplied with the SDSoC™ environment or Xilinx® SDK. Typical runtime errors are incorrect
results, premature program exits, and program “hangs.” The first two kinds of errors are familiar
to C/C++ programmers, and can be debugged by stepping through the code using a debugger.

A program hang is a runtime error caused by specifying an incorrect amount of data to be
transferred across a streaming connection created using #pragma SDS data

access_pattern(A:SEQUENTIAL), by specifying a streaming interface in a synthesizeable
function within Vivado HLS, or by a C-callable hardware function in a pre-built library that has
streaming hardware interfaces. A program hangs when the consumer of a stream is waiting for
more data from the producer but the producer has stopped sending data.

Consider the following code fragment that results in streaming input/output from a hardware
function.

#pragma SDS data access_pattern(in_a:SEQENTIAL, out_b:SEQUENTIAL)
void f1(int in_a[20], int out_b[20]); // declaration

void f1(int in_a[20], int out_b[20]) { // definition
int i;
for (i=0; i < 19; i++) {

out_b[i] = in_a[i];
}

}

Notice that the loop reads the in_a stream 19 times but the size of in_a[] is 20, so the caller of
f1 would wait forever (or hang) if it waited for f1 to consume all the data that was streamed to
it. Similarly, the caller would wait forever if it waited for f1 to send 20 int values because f1

sends only 19. Program errors that lead to such “hangs” can be detected by using system
emulation to review whether the data signals are static (review the associated protocol signals
TLAST, ap_ready, ap_done, TREADY, etc.) or by instrumenting the code to flag streaming access
errors such as non-sequential access or incorrect access counts within a function and running in
software. Streaming access issues are typically flagged as improper streaming access
warnings in the log file, and it is left to the user to determine if these are actual errors. Running
your application on the SDSoC emulator is a good way to gain visibility of data transfers with a
debugger. You will be able to see where in software the system is hanging (often within a
cf_wait() call), and can then inspect associated data transfers in the simulation waveform view,
which gives you access to signals on the hardware blocks associated with the data transfer.

The following list shows other sources of run-time errors:

• Improper placement of wait() statements could result in:

◦ Software reading invalid data before a hardware accelerator has written the correct
value

◦ A blocking wait() being called before a related accelerator is started, resulting in a
system hang

• Inconsistent use of memory consistency #pragma SDS data mem_attribute can result in
incorrect results.

Chapter 2: User Design Flows

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

20

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=20
www.xilinx.com

Troubleshooting Performance Issues

The SDSoC environment provides some basic performance monitoring capabilities in the form
of the sds_clock_counter() function described earlier. Use this to determine how much time
different code sections, such as the accelerated code, and the non-accelerated code take to
execute.

Estimate the actual hardware acceleration time by looking at the latency numbers in the Vivado
HLS report files (_sds/vhls/…/*.rpt). In the SDSoC IDE Project Platform Details tab, you can
determine the CPU clock frequency, and in the Project Overview you can determine the clock
frequency for a hardware function. A latency of X accelerator clock cycles is equal to X *
(processor_clock_freq/accelerator_clock_freq) processor clock cycles. Compare this with
the time spent on the actual function call to determine the data transfer overhead.

For best performance improvement, the time required for executing the accelerated function
must be much smaller than the time required for executing the original software function. If this
is not true, try to run the accelerator at a higher frequency by selecting a different clkid on the
sdscc/sds++ command line. If that does not work, try to determine whether the data transfer
overhead is a significant part of the accelerated function execution time, and reduce the data
transfer overhead. Note that the default clkid is 100 MHz for all platforms. More details about
the clkid values for the given platform can be obtained by running sdscc –sds-pf-info

<platform name>.

If the data transfer overhead is large, the following changes might help:

• Move more code into the accelerated function so that the computation time increases, and
the ratio of computation to data transfer time is improved.

• Reduce the amount of data to be transferred by modifying the code or using pragmas to
transfer only the required data.

Debugging an Application

The SDSoC™ environment allows projects to be created and debugged using the SDSoC IDE.
Projects can also be created outside the SDSoC IDE (user-defined makefiles) and debugged
either on the command line or using the SDSoC IDE.

See SDSoC Environment Tutorial: Introduction (UG1028) for information on using the interactive
debuggers in the SDSoC IDE.

Chapter 2: User Design Flows

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

21

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1028-sdsoc-intro-tutorial.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=21
www.xilinx.com

Coding Guidelines
This contains general coding guidelines for application programming using the SDSoC system
compilers, with the assumption of starting from application code that has already been cross-
compiled for the ARM CPU within the Zynq® device, using the GNU toolchain included as part
of the SDSoC environment.

Guidelines for Invoking SDSCC/SDS++

The SDSoC IDE automatically generates makefiles that invoke sds++ for all C++ files and sdscc

for all C files, but the only source files that must be compiled with sdscc/sds++ are those
containing code that:

• Define a hardware function
• Call a hardware function
• Use sds_lib functions, for example, to allocate or memory map buffers that are sent to

hardware functions
• Files that contain functions in the transitive closure of the downward call graph of the above

All other source files can safely be compiled with the ARM GNU toolchain.

A large software project may include many files and libraries that are unrelated to the hardware
accelerator and data motion networks generated by sdscc. If the sdscc compiler issues errors
on source files unrelated to the generated hardware system (for example, from an OpenCV
library), you can compile these files through GCC instead of sdscc by right-clicking on the file (or
folder) Properties→C/C++ Build→Settings and setting the Command to GCC.

Makefile Guidelines

The makefiles provided with the designs in <sdsoc_root>/samples consolidate all sdscc
hardware function options into a single command line. This is not required, but has the benefit
of preserving the overall control structure and dependencies within a makefile without requiring
change to the makefile actions for files containing a hardware function.

• You can define make variables to capture the entire SDSoC environment command line, for
example: CC = sds++ ${SDSFLAGS} for C++ files, invoking sdscc for C files. In this way, all
SDSoC environment options are consolidated in the ${CC} variable. Define the platform
and target OS once in this variable.

Chapter 3

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

22

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=22
www.xilinx.com

• There must be a separate -sds-hw/-sds-end clause in the command line for each file that
contains a hardware function. For example:

-sds-hw foo foo.cpp -clkid 1 -sds-end

For the list of the SDSoC compiler and linker options, see SDSCC/SDS++ Compiler
Commands and Options or use sdscc --help.

General C/C++ Guidelines

• Hardware functions can execute concurrently under the control of a master thread. Multiple
master threads are supported.

• A top-level hardware function must be a global function, not a class method, and it cannot
be an overloaded function.

• There is no support for exception handling in hardware functions.
• It is an error to refer to a global variable within a hardware function or any of its sub-

functions when this global variable is also referenced by other functions running in
software.

• Hardware functions support scalar types up to 1024 bits, including double, long long,
packed structs, etc.

• A hardware function must have at least one argument.
• An output or inout scalar argument to a hardware function can be assigned multiple times,

but only the last written value will be read upon function exit.
• Use predefined macros to guard code with #ifdef and #ifndef preprocessor statements;

the macro names begin and end with two underscore characters ‘_’. For examples, see
SDSCC/SDS++ Compiler Commands and Options.

◦ The __SDSCC__ macro is defined and passed as a -D option to sub-tools whenever
sdscc or sds++ is used to compile source files, and can be used to guard code
dependent on whether it is compiled by sdscc/sds++ or by another compiler, for
example a GNU host compiler.

◦ When sdscc or sds++ compiles source files targeted for hardware acceleration using
Vivado HLS, the __SDSVHLS__ macro is defined and passed as a -D option, and can be
used to guard code dependent on whether high-level synthesis is run or not.

◦ In 2017.2 running on the Windows operating system, you will typically have to use
these macros to guard code that will be synthesized within SDx with type long long
(which should be 64 bits).

◦ Vivado HLS employs some 32-bit libraries irrespective of the host machine.
Furthermore, the tool does not provide a true cross-compilation.

Chapter 3: Coding Guidelines

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

23

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=23
www.xilinx.com

All object code for the ARM CPUs is generated with the GNU toolchains, but the sdscc (and
sds++) compiler, built upon Clang/LLVM frameworks, is generally less forgiving of C/C++
language violations than the GNU compilers. As a result, you might find that some libraries
needed for your application cause front-end compiler errors when using sdscc. In such cases,
compile the source files directly through the GNU toolchain rather than through sdscc, either in
your makefiles or by setting the compiler to arm-linux-gnueabihf-g++ by right-clicking on the
file (or folder) in the Project Explorer and selecting C/C++ Build→Settings→SDSCC/SDS++
Compiler.

Hardware Function Argument Types

The SDSoC™ environment sdscc/sds++ system compilers support hardware function
arguments with types that resolve to a single or array of C99 basic arithmetic type (scalar), a
struct or classwhose members flatten to a single or array of C99 basic arithmetic type
(hierarchical structs are supported), an array of struct whose members flatten to a single C99
basic arithmetic type. Scalar arguments must fit in a 1024-bit container. The SDSoC™
environment automatically infers hardware interface types for each hardware function argument
based on the argument type and the following pragmas:

#pragma SDS data copy|zero_copy

#pragma SDS data access_pattern

To avoid interface incompatibilities, you should only incorporate Vivado® HLS interface type
directives and pragmas in your source code when sdscc/sds++ fails to generate a suitable
hardware interface directive.

• Vivado® HLS provides arbitrary precision types ap_fixed<int>, ap_int<int>, and an
hls::stream class. In the SDSoC environment, ap_fixed<int> types must be specified as
having widths greater than 7 but less than 1025 (7 < width < 1025). The hls::stream data
type is not supported as the function argument to any hardware function.

• By default, an array argument to a hardware function is transferred by copying the data,
that is, it is equivalent to using #pragma SDS data copy. As a consequence, an array
argument must be either used as an input or produced as an output, but not both. For an
array that is both read and written by the hardware function, you must use #pragma SDS

data zero_copy to tell the compiler that the array should be kept in the shared memory
and not copied.

• To ensure alignment across the hardware/software interface, do not use hardware function
arguments that are an array of bool.

IMPORTANT: Pointer arguments for a hardware function require special consideration. Hardware functions
operate on physical addresses, which typically are not available to userspace programs, so pointers cannot
be embedded in data structures passed to hardware functions.

Chapter 3: Coding Guidelines

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

24

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=24
www.xilinx.com

IMPORTANT:

By default, in the absence of any pragmas, a pointer argument is taken to be a scalar parameter, even
though in C/C++ it might denote a one-dimensional array type. The following are the permitted pragmas.

• This pragma provides pointer semantics using shared memory.

#pragma SDS data zero_copy

• This pragma maps the argument onto a stream, and requires that array elements are accessed in index
order. The data copy pragma is only required when the sdscc system compiler is unable to determine
the data transfer size and issues an error.

#pragma SDS data copy(p[0:<p_size>])

#pragma SDS data access_pattern(p:SEQUENTIAL)

IMPORTANT: When you require non-sequential access to the array in the hardware function, you should
change the pointer argument to an array with an explicit declaration of its dimensions, for example,
A[1024].

Hardware Function Call Guidelines

• Stub functions generated in the SDSoC™ environment transfer the exact number of bytes
according the compile-time determinable array bound of the corresponding argument in
the hardware function declaration. If a hardware function admits a variable data size, you
can use the following pragma to direct the SDSoC environment to generate code to transfer
data whose size is defined by an arithmetic expression:

#pragma SDS data copy|zero_copy(arg[0:<C_size_expr>])
#pragma SDS data zero_copy(arg[0:<C_size_expr>])

where the <C_size_expr> must compile in the scope of the function declaration.

The zero_copy pragma directs the SDSoC environment to map the argument into shared
memory.

IMPORTANT: Be aware that mismatches between intended and actual data transfer sizes can cause the
system to hang at runtime, requiring laborious hardware debugging.

• Align arrays transferred by DMAs on cache-line boundaries (for L1 and L2 caches). Use the
sds_alloc() API provided with the SDSoC environment instead of malloc() to allocate
these arrays.

• Align arrays to page boundaries to minimize the number of pages transferred with the
scatter-gather DMA, for example, for arrays allocated with malloc.

• You must use sds_alloc to allocate an array for the following two cases:

1. You are using zero-copy pragma for the array.
2. You are using pragmas to explicitly direct the system compiler to use Simple-DMA.

Note that in order to use sds_alloc() from sds_lib.h, it is necessary to include stdlib.h

before including sds_lib.h. stdlib.h is included to provide the size_t type.

Chapter 3: Coding Guidelines

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

25

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=25
www.xilinx.com

Getting Started with Examples
All Xilinx SDx™ Environments are provided with examples designs:

• To help you quickly get started.
• To demonstrate useful coding styles.
• To highlight important optimization techniques.

Example designs are provided with the tool installation and additional examples may be
downloaded from the Xilinx® GitHub repository.

Installed Examples

The installed examples are provided through the Create SDx™ Project wizard. Select Create SDx
Project from the SDx Development Environment Welcome page to open the new project
wizard. After selecting your hardware platform and software platform, the final page of the
wizard lists the available templates.

NOTE: Not all available platforms have an installed example.

You may select examples from the Templates page, as shown below.

Chapter 4

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

26

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=26
www.xilinx.com

Figure 2: Templates Page

After selecting Finish, the example is copied into the local workspace and can be used.

GitHub Examples

The GitHub examples may be accessed from the menu Xilinx > Open SDx Example Store.
When the SDx Example Store dialog box opens it lists all the available examples and indicates
if the examples are already installed or not.

The SDx Examples folder lists all installed examples and shows they are already installed.

Chapter 4: Getting Started with Examples

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

27

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=27
www.xilinx.com

Figure 3: SDx Examples Folder

The SDx Example Store dialog also lists the GitHub exmaples provided for specific SDx
environments. For example, the SDSoC folder lists all GitHub examples for the SDSoC
environment.

Figure 4: SDx Examples for SDSoC

The GitHub examples also indicate if they are installed or not. Use the Refresh button to ensure
you have the latest update from the repository. Click Install to download and install the
example design.

Once the example design has been installed, it may be accessed during new project creation in
the same manner as the installed examples.

Chapter 4: Getting Started with Examples

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

28

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=28
www.xilinx.com

Synthesizeable FIR Filter

Many of the functions in the Vivado HLS source code libraries included in the SDSoC
environment do not comply with the SDSoC environment Coding Guidelines. To use these
libraries in the SDSoC environment, you typically have to wrap the functions to insulate the
SDSoC system compilers from non-portable data types or unsupported language constructs.

The Synthesizeable FIR Filter example demonstrates a standard idiom to use such a library
function that in this case, computes a finite-impulse response digital filter. This example uses a
filter class constructor and operator to create and perform sample-based filtering. To use this
class within the SDSoC environment, the example wraps within a function wrapper as follows.

void cpp_FIR(data_t x, data_t *ret)
{

static CF<coef_t, data_t, acc_t> fir1;
*ret = fir1(x);

}

This wrapper function becomes the top-level hardware function that can be invoked from
application code.

Matrix Multiplication

Matrix multiplication is a common compute-intensive operation for many application domains.
The SDSoC IDE provides template examples for all base platforms, and the code for these
provide instructive use of SDSoC environment system optimizations for memory allocation and
memory access described in Improving System Performance, and Vivado HLS optimizations like
function inlining, loop unrolling and pipelining, and array partitioning, described in Optimization
Guidelines.

Using a C-Callable RTL Library

The SDSoC system compilers can incorporate libraries with hardware functions that are
implemented using IP blocks written in register transfer level (RTL) in a hardware description
language (HDL) like VHDL or Verilog. The process of creating such a library is described in Using
C-Callable IP Libraries. This example demonstrates how to incorporate the library in an SDSoC
project.

To build this example in the SDSoC IDE, create a new SDSoC project and select the C-callable
RTL Library template. As described in src/SDSoC_project_readme.txt, you must first build the
library from an SDSoC terminal window at the command line.

To use the library and build the application, you must add the -l and -L linker options as
described in Using C-Callable IP Libraries. Right-click on the project in the Project Explorer and
select C/C++ Build Settings→SDS++ Linker→Libraries, to add the -lrtl_arraycopy and -

L<path to project> options.

Chapter 4: Getting Started with Examples

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

29

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=29
www.xilinx.com

C++ Design Libraries

A number of design libraries are provided with the SDSoC installation. The C libraries allow
common hardware design constructs and functions to be easily modeled in C and synthesized
to RTL. The following C libraries are provided:

• reVISION and Machine Learning ibraries
• Arbitrary Precision Data Types Library
• HLS Stream Library
• HLS Math Library
• HLS Video Library
• HLS IP Library
• HLS Linear Algebra Library
• HLS DSP Library

You can use each of the C libraries in your design by including the library header file. These
header files are located in the include directory in the SDSoC Environment installation area
($HOME_SDSOC/Vivado_HLS/include).

IMPORTANT: The header files for the Vivado HLS C libraries do not have to be in the include path if the C++
code is used in the SDSoC environment.

Chapter 4: Getting Started with Examples

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

30

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=30
www.xilinx.com

Using C-Callable IP Libraries
Using a C-callable library is similar to using any software library. You #include header files for
the library in appropriate source files and use the sdscc -I<path> option to compile your
source, for example

> sdscc –c –I<path to header> –o main.o main.c

When you are using the SDSoC IDE, you add these sdscc options by right-clicking on your
project, selecting C/C++ Build Settings->SDSCC Compiler->Directories (or SDS++
Compiler->Directories for C++ compilation).

To link the library into your application, you use the -L<path> and -l<lib> options.

> sdscc –sds-pf zc702 ${OBJECTS} –L<path to library> -l<library_name> –o
myApp.elf

As with the standard GNU linkers, for a library called libMyLib.a, you use -lMyLib.

When you are using the SDSoC IDE, you add these sdscc options by right-clicking on your
project, selecting C/C++ Build Settings→SDS++ Linker→Libraries.

You can find code examples that employ C-callable libraries in the SDSoC™ environment
installation under the samples/fir_lib/use and samples/rtl_lib/arraycopy/use

directories.

Chapter 5

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

31

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=31
www.xilinx.com

C-Callable Libraries

This section describes how to create a C-callable library for IP blocks written in a hardware
description language like VHDL or Verilog. User applications can statically link with such libraries
using the SDSoC system compilers, and the IP blocks will be instantiated into the generated
hardware system. A C-callable library can also provide sdscc-compiled applications access to IP
blocks within a platform (see Creating a Library).

Figure 5: Create and Use a C-Callable Library

Use the libraryUse the libraryLibraryLibraryCreate a LibraryCreate a Library

The packaged IP must use
supported AXI and control

interfaces

#include fir.h
void main (){
 ….
 x= ….
 fir (x,y);
 ….

…
LFLAGS = -lfir
#LFLAGS = -lfirsw...

SDSoC
(SDK/Vivado)

PS

I/O I/O

libfir.a

sdslib

void fir (int*a, int*b);

<xd:parameter
xd:name=”Data_Width”
xd.value=”8"/> ...

void fir (int*a, int*b){
}

<xd:arg xd:name=”a”
xd:busInterfaceRef=”S_
AXIS_DATA” ...

Vivado Packaged fir IPVivado Packaged fir IP

Header file fir.hHeader file fir.h

IP Parameters (.xml)IP Parameters (.xml)

Empty stub file (fir.c)Empty stub file (fir.c)

Arg to Port map (.xml)Arg to Port map (.xml)
OptionalOptional: Latency, resources: Latency, resources

../include
Fir.h

PL

Platform

firfir

X14779-042516

The following is the list of elements that are part of an SDSoC platform software callable library:

• Header File

◦ Function prototype

Chapter 5: Using C-Callable IP Libraries

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

32

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=32
www.xilinx.com

• Static Library

◦ Function definition
◦ IP core
◦ IP configuration parameters
◦ Function argument mapping

Header File

A library must declare function prototypes that map onto the IP block in a header file that can
be #included in user application source files. These functions define the function call interface
for accessing the IP through software application code.

For example:

// FILE: fir.h
#define N 256
void fir(signed char X[N], short Y[N]);

Static Library

An SDSoC environment static library contains several elements that allow a software function to
be executed on programmable resources.

Function Definition

The function interface defines the entry points into the library, as a function or set of functions
that can be called in user code to target the IP. The function definitions can contain empty
function bodies since the SDSoC compilers will replace them with API calls to execute data
transfers to/from the IP block. The implementation of these calls depend upon the data motion
network created by the SDSoC system compilers. The function definition must #include stdlib.h
and stdio.h, which are used when the function body is replaced and compiled.

For example:

// FILE: fir.c
#include "fir.h"
#include <stdlib.h>
#include <stdio.h>
void fir(signed char X[N], short Y[N])
{

// SDSoC replaces function body with API calls for data transfer
}

NOTE: Application code that links to the library must also #include stdlib.h and stdio.h, which are required
by the API calls in the stubs generated by the SDSoC system compilers.

Chapter 5: Using C-Callable IP Libraries

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

33

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=33
www.xilinx.com

IP Core

An HDL IP core for a C-callable library must be packaged using the Vivado® tools. This IP core
can be located in the Vivado tools IP repository or in any other location. When the library is
used, the corresponding IP core is instantiated in the hardware system.

You must package the IP for the Vivado Design Suite as described in the Vivado Design Suite
User Guide: Designing with IP (UG896). The Vivado IP Packager tool creates a directory structure
for the HDL and other source files, and an IP Definition file (component.xml) that conforms to
the IEEE-1685 IP-XACT standard. In addition, the packager creates an archive zip file that
contains the directory and its contents required by Vivado Design Suite.

The IP can export AXI4, AXI4-Lite, and AXI4 Stream interfaces. The IP control register must exist
at address offset 0x0, and can support two different task protocols:

1. 'none' - in this mode, the control register must be tied to a constant value 0x6. The core then
is assumed to run continuously upon power up, with all data synchronized through AXI4
stream interfaces or through asynchronous read or writes to memory-mapped registers via an
axilite bus.

2. 'axilite' - in this mode, the control register must conform to the following specification,
which coincides with the axilite control interface for an IP generated by Vivado HLS.

The control signals are generally self-explanatory. The ap_start signal initiates the IP execution,
ap_done indicates IP task completion, and ap_ready indicates that the IP is can be started. For
more details, see the Vivado HLS documentation for the ap_ctrl_hs bus definition.

// 0x00 : Control signals
// bit 0 - ap_start (Read/Write/COH)
// bit 1 - ap_done (Read/COR)
// bit 2 - ap_idle (Read)
// bit 3 - ap_ready (Read)
// bit 7 - auto_restart (Read/Write)
// others - reserved
// (COR = Clear on Read, COH = Clear on Handshake)

IMPORTANT: For details on how to integrate HDL IP into the Vivado Design Suite, see Vivado Design Suite
User Guide: Creating and Packaging Custom IP (UG1118).

IP Configuration Parameters

Most HDL IP cores are customizable at synthesis time. This customization is done through IP
parameters that define the IP core’s behavior. The SDSoC environment uses this information at
the time the core is instantiated in a generated system. This information is captured in an XML
file.

The xd:component name is the same as the spirit:component name, and each xd:parameter

name must be a parameter name for the IP. To view the parameter names in IP Integrator, right-
click on the block and select Edit IP Meta Data to access the IP Customization Parameters.

Chapter 5: Using C-Callable IP Libraries

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

34

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=34
www.xilinx.com

For example:

<!—- FILE: fir.params.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<xd:component xmlns:xd="http://www.xilinx.com/xd" xd:name="fir_compiler">

<xd:parameter xd:name="DATA_Has_TLAST" xd:value="Packet_Framing"/>
<xd:parameter xd:name="M_DATA_Has_TREADY" xd:value="true"/>
<xd:parameter xd:name="Coefficient_Width" xd:value="8"/>
<xd:parameter xd:name="Data_Width" xd:value="8"/>
<xd:parameter xd:name="Quantization" xd:value="Integer_Coefficients"/>
<xd:parameter xd:name="Output_Rounding_Mode" xd:value="Full_Precision"/>
<xd:parameter xd:name="CoefficientVector"

xd:value="6,0,-4,-3,5,6,-6,-13,7,44,64,44,7,-13,-6,6,5,-3,-4,0,6"/>
</xd:component>

Function Argument Map

The SDSoC system compiler requires a mapping from any function prototypes in the library onto
the hardware interface defined by the IP block that implements the function. This information is
captured in a "function map" XML file. XML attribute literals, for example array sizes, must be
constants and not macros (the SDSoC environment does not use macros in header files to
resolve literals in the XML file).

Chapter 5: Using C-Callable IP Libraries

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

35

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=35
www.xilinx.com

The information includes the following.

• XML namespace - the namespace must be defined as
xmlns:xd="https://www.xilinx.com/xd"

• Function name – the name of the function mapped onto a component
• Component reference – the IP type name from the IP-XACT Vendor-Name-Library-Version

identifier.

◦ If the function is associated with a platform, then the component reference is the
platform name. For example, see SDSoC Environment Platform Development Guide
(UG1146).

• C argument name – an address expression for a function argument, for example x (pass
scalar by value) or *p (pass by pointer).

NOTE: argument names in the function map must be identical to the argument in the function
definition, and they must occur in precisely the same order.

• Function argument direction – either in (an input argument to the function) or out (an
output argument to the function). Currently the SDSoC environment does not support
inout function arguments.

• Bus interface – the name of the IP port corresponding to a function argument. For a
platform component, this name is the platform interface xd:name, not the actual port name
on the corresponding platform IP.

• Port interface type – the corresponding IP port interface type, which currently must be
either aximm (slave only), axis.

• Address offset – hex address, for example, 0x40, required for arguments mapping onto
aximm slave ports (this must be a constant).

• Data width – number of bits per datum (this must be a constant).
• Array size – number of elements in an array argument (this must be a constant).

The function mapping for a configuration of the Vivado FIR Filter Compiler IP from samples/

fir_lib/build is shown below.

Chapter 5: Using C-Callable IP Libraries

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

36

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=36
www.xilinx.com

<!—- FILE: fir.fcnmap.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<xd:repository xmlns:xd="https://www.xilinx.com/xd">

<xd:fcnMap xd:fcnName="fir" xd:componentRef="fir_compiler">
<xd:arg xd:name="X"

xd:direction="in"
xd:portInterfaceType="axis"
xd:dataWidth="8"
xd:busInterfaceRef="S_AXIS_DATA"
xd:arraySize="32"/>

<xd:arg xd:name="Y"
xd:direction="out"
xd:portInterfaceType="axis"
xd:dataWidth="16"
xd:busInterfaceRef="M_AXIS_DATA"
xd:arraySize="32"/>

<xd:latencyEstimates xd:worst-case="20" xd:average-case="20"
xd:best-case="20"/>

<xd:resourceEstimates xd:BRAM="0" xd:DSP="1 xd:FF="200"
xd:LUT="200"/>

</xd:fcnMap>
</xd:repository>

Creating a Library

Xilinx provides a utility called sdslib that allows the creation of SDSoC libraries.

Usage

sdslib [arguments] [options]

Arguments (mandatory)

Argument Description
-lib <libname> Library name to create or append to

<function_name

file_name>+

One or more <function, file> pairs.

For example: fir fir.c

-vlnv

<v>:<l>:<n>:<v>

Use IP core specified by this vlnv. For example, -vlnv
xilinx.com:ip:fir_compiler:7.1

-ip-map <file> Use specified <file> as IP function map
-ip-params <file> Use specified <file> as IP parameters
-pfunc IP core is a platform function

Chapter 5: Using C-Callable IP Libraries

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

37

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=37
www.xilinx.com

Option Description
-ip-repo <path> Add HDL IP repository search path

-target-os <name> Specify target Operating System

• linux (default)
• standalone (bare-metal)

--help Display this information

-target-cpu <name> Specify target CPU

• cortex-a9 (default)
• cortex-a53
• cortex-r5
• microblaze

As an example, to create an SDSoC library for a fir filter IP core, call:

> sdslib -lib libfir.a \
fir fir.c \
fir_reload fir_reload.c \
fir_config fir_config.c \
-vlnv xilinx.com:ip:fir_compiler:7.1 \
-ip-map fir_compiler.fcnmap.xml \
-ip-params fir_compiler.params.xml

In the above example, sdslib uses the functions fir (in file fir.c), fir_reload (in file
fir_reload.c) and fir_config (in file fir_config.c) and archives them into the libfir.a

static library. The fir_compiler IP core is specified using -vlnv and the function map and IP
parameters are specified with –ip-map and –ip-params respectively.

Testing a Library

To test a library, create a program that uses the library. Include the appropriate header file in
your source code. When compiling the code that calls a library function, provide the path to the
header file using the –I switch.

> sdscc –c –I<path to header> –o main.o main.c

To link against a library, use the –L and –l switches.

> sdscc –sds-pf zc702 ${OBJECTS} –L<path to library> -lfir –o
fir.elf

In the example above, the compiler uses the library libfir.a located at <path to library>.

Chapter 5: Using C-Callable IP Libraries

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

38

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=38
www.xilinx.com

C-Callable Library Example: Vivado FIR Compiler IP

You can find an example on how to build a library in the SDSoC environment installation under
the samples/fir_lib/build directory. This example employs a single-channel reloadable filter
configuration of the FIR Compiler IP within the Vivado® Design Suite. Consistent with the
design of the IP, all communication and control is accomplished over AXI4-Stream channels.

You can also find an example on how to use a library in the SDSoC environment installation
under the samples/fir_lib/use directory.

C-Callable Library Example: HDL IP

You can find an example of a Vivado tools-packaged RTL IP in the samples/rtl_lib/

arraycopy/build directory. This example includes two IP cores, each of which copies M
elements of an array from its input to its output, where M is a scalar parameter that can vary
with each function call.

• arraycopy_aximm - array transfers using an AXI master interface in the IP.
• arraycopy_axis - array transfers using AXI4-Stream interfaces.

The register mappings for the IPs are as follows.

// arraycopy_aximm
// 0x00 : Control signals
// bit 0 - ap_start (Read/Write/COH)
// bit 1 - ap_done (Read/COR)
// bit 2 - ap_idle (Read)
// bit 3 - ap_ready (Read)
// bit 7 - auto_restart (Read/Write)
// others - reserved
// 0x10 : Data signal of ap_return
// bit 31~0 - ap_return[31:0] (Read)
// 0x18 : Data signal of a
// bit 31~0 - a[31:0] (Read/Write)
// 0x1c : reserved
// 0x20 : Data signal of b
// bit 31~0 - b[31:0] (Read/Write)
// 0x24 : reserved
// 0x28 : Data signal of M
// bit 31~0 - M[31:0] (Read/Write)
// 0x2c : reserved
// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH =
Clear on Handshake)

// arraycopy_axis
// 0x00 : Control signals
// bit 0 - ap_start (Read/Write/COH)
// bit 1 - ap_done (Read/COR)
// bit 2 - ap_idle (Read)
// bit 3 - ap_ready (Read)
// bit 7 - auto_restart (Read/Write)

Chapter 5: Using C-Callable IP Libraries

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

39

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=39
www.xilinx.com

// others - reserved
// 0x10 : Data signal of ap_return
// bit 31~0 - ap_return[31:0] (Read)
// 0x18 : Data signal of M
// bit 31~0 - M[31:0] (Read/Write)
// 0x1c : reserved
// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH =
Clear on Handshake)

The makefile indicates how to use stdlib to create the library. To build the library, open a
terminal shell in the SDSoC IDE, and from within the build directory, run

• make librtl_arraycopy.a - to build a library for Linux applications
• make standalone/lib_rtl_arraycopy.a - to build a library for standalone applications

A simple test example that employs both IPs is available in the samples/rtl_lib/arraycopy/

use directory. In an SDSoC terminal shell, run make to create a Linux application that exercises
both hardware functions.

Chapter 5: Using C-Callable IP Libraries

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

40

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=40
www.xilinx.com

SDSCC/SDS++ Performance Estimation
Flow Options

A full bitstream compile can take much more time than a software compile, so sdscc provides
performance estimation options to compute the estimated run-time improvement for a set of
hardware function calls. In the SDSoC environment Project Overview window, invoke the
estimator by clicking on Estimate Performance, which enables performance estimation for the
current build configuration and builds the project.

Estimating the speed-up is a two phase process. First, the SDSoC environment compiles the
hardware functions and generates the system. Instead of synthesizing the system to bitstream,
sdscc computes an estimate of the performance based on estimated latencies for the hardware
functions and data transfer time estimates for the callers of hardware functions. In the generated
Performance report, select Click Here to run an instrumented version of the software on the
target to determine a performance baseline and the performance estimate (see SDSoC
Environment Tutorial: Introduction (UG1028) for more information).

You can also generate a performance estimate from the command line. As a first pass to gather
data about software runtime, you use the -perf-funcs option to specify functions to profile
and -perf-root to specify the root function encompassing calls to the profiled functions. The
sdscc compiler then automatically instruments these functions to collect run-time data when
the application is run on a board. When you run an "instrumented" application on the target, the
program creates a file on the SD card called swdata.xml, which contains the run-time
performance data for the run.

Copy swdata.xml to the host and run a build that estimates the performance gain on a per
hardware function caller basis and for the top-level function specified by the –perf-root

function in the first pass run. Use the –perf-est option to specify swdata.xml as input data for
this build.

The following table specifies the sdscc options normally used to build an application.

Option Description
-perf-funcs

function_name_list

Specify a comma separated list of all functions to be profiled in the
instrumented software application.

-perf-root

function_name

Specify the root function encompassing all calls to the profiled
functions. The default is the function main.

-perf-est

data_file

Specify the file contain runtime data generated by the instrumented
software application when run on the target. Estimate performance
gains for hardware accelerated functions. The default name for this
file is swdata.xml.

Chapter 6

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

41

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1028-sdsoc-intro-tutorial.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=41
www.xilinx.com

Option Description
-perf-est-hw-only Run the estimation flow without running the first pass to collect

software run data. Using this option provides hardware latency and
resource estimates without providing a comparison against baseline.

CAUTION!

After running the sd_card image on the board for collecting profile data, run cd /; sync; umount /mnt;.
This ensures that the swdata.xml file is written out to the SD card.

A complete example of the makefile-based flow for performance estimation can be found in
<sdsoc_root>/samples/mmult_performance_estimation.

Chapter 6: SDSCC/SDS++ Performance Estimation Flow Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

42

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=42
www.xilinx.com

Improving System Performance
There are many factors that affect overall system performance. A well-designed system generally
balances computation and communication so that all hardware components remain occupied
doing meaningful work. Some applications will be compute-bound, and for these, you should
concentrate on maximizing throughput and minimizing latency in hardware accelerators. Others
may be memory-bound, in which case you might need to restructure algorithms to increase
temporal and spatial locality in the hardware, for example, by adding copy-loops or memcopy to
pull blocks of data into hardware rather than making random array accesses to external
memory.

This chapter describes underlying principles and inference rules within the SDSoC system
compiler to assist the programmer in controlling the compiler to improve overall system
performance through

• An understanding of the data motion network: default behavior and user specification
• Increased system parallelisim and concurrency
• Improved access to external memory from programmable logic
• Increased parallelism in the hardware function

Control over the various aspects of optimization is provided through the use of pragmas in the
code. A complete description of the pragmas discussed in this chapter is located in SDSoC
Pragma Specification.

Data Motion Network Generation in SDSoC

This section describes the components that make up the data motion network in the SDSoC™
environment. It helps the user understand the data motion network generated by the SDSoC
compiler. The section also provides guidelines to help you guide the data motion network
generation by using appropriate SDSoC pragmas.

Every transfer between the software program and a hardware function requires a data mover,
which consists of a hardware component that moves the data, and an operating system-specific
library function. The following table lists supported data movers and various properties for each.

Chapter 7

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

43

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=43
www.xilinx.com

Figure 6: SDSoC Data Movers Table

SDSoC
Data Mover

Vivado IP
Data Mover

Accelerator
IP Port Types

Transfer
Size

Contiguous
Memory Only

axi_lite processing_system7 register, axilite

axi_dma_simple axi_dma bram, ap_fifo, axis < 8 MB ✓
axi_dma_sg axi_dma bram, ap_fifo, axis

axi_fifo axi_fifo_mm_s bram, ap_fifo, axis (≤ 300 B)

zero_copy accelerator IP aximm master ✓
X14762-052217

Scalar variables are always transferred over an AXI4-Lite bus interface with the axi_lite data
mover. For array arguments, the data mover inference is based on transfer size, hardware
function port mapping, and function call site information. The selection of data movers is a trade
off between performance and resource, for example:

• The axi_dma_simple data mover is the most efficient bulk transfer engine, but only
supports up to 8 MB transfers, so it is only for larger transfers.

• The axi_fifo data mover does not require as many hardware resources as the DMA, but
due to its slower transfer rates, is preferred only for payloads of up to 300 bytes.

• The axi_dma_sg (scatter-gather DMA) data mover provides slower DMA performance and
consumes more hardware resources but has fewer limitations, and in the absence of any
pragma directives, is often the best default data mover.

,

You can override the data mover selection by inserting a pragma into program source
immediately before the function declaration, for example,

#pragma SDS data data_mover(A:AXIDMA_SIMPLE)

NOTE: #pragma SDS is always treated as a rule, not a hint, so you must ensure that their use conforms with
the data mover requirements in the preceding figure (SDSoC Data Movers Table).

The data motion network in the SDSoC environment is made up of three components:

• The memory system ports on the PS (A)
• Data movers between the PS and accelerators as well as among accelerators (B)
• The hardware interface on an accelerator (C)

The following figure illustrates these three components.

Figure 7: Data Motion Network Components

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

44

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=44
www.xilinx.com

Without any SDS pragma, the SDSoC environment generates the data motion network based on
an analysis of the source code. However, the SDSoC environment also provides pragmas for you
to guide the data motion network generation.

System Port

A system port connects a data mover to the PS. It can be an ACP, AFI (corresponding to high-
performance ports), or MIG (corresponding to a PL-based DDR memory controller) port on the
Zynq Ultrascale+ MPSoC or Zynq-7000 AP SoC. The ACP port is a cache-coherent port and the
cache coherency is maintained by the hardware. The AFI port is a non-cache-coherent port.
Cache coherency (i.e. cache flushing and cache invalidation) is maintained by software if needed.
Selecting between the ACP port versus the AFI port depends on the cache requirement of the
transferred data.

The system port choice is dependent on the data’s cache attribute and data size. If the data is
allocated with sds_alloc_non_cacheable() or sds_register_dmabuf(), it is better to
connect to the AFI port to avoid cache flushing/invalidation. If the data is allocated in other
ways, it is better to connect to the ACP port for fast cache flushing/invalidation.

SDSoC compiler analyzes these memory attributes for the data transferred to and received from
the accelerator, and connects data movers to the appropriate system port. However, if the user
would like to override the compiler decision, or in some cases, the compiler is not able to do
such analysis, the user can use the following pragma to specify the system port.

#pragma SDS data sys_port(arg:port)

Where port can be either ACP, AFI, or MIG.

The data size pragmas (#pragma SDS data copy and #pragma SDS data zero_copy) have
been discussed previously. Notice the user must make sure the specified pragma is correct.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

45

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=45
www.xilinx.com

Data Mover

The data mover transfers data between PS and accelerators, and among accelerators. SDSoC™
can generate various types of data movers based on the properties and size of the data being
transferred.

Scalar

Scalar data is always transferred by the AXI_LITE data mover.

Array

SDSoC can generate AXIDMA_SG, AXIDMA_SIMPLE, AXIFIFO, zero_copy (accelerator-
mastered AXI4 bus), or AXI_LITE data movers, depending on the memory attributes and data
size of the array. For example, if the array is allocated using malloc(), the memory is not
physically contiguous, and SDSoC generates a scatter-gather DMA (AXI_DMA_SG). However,
if the data size is less than 300 bytes, AXI_FIFO is generated instead because the data transfer
time is less than AXI_DMA_SG, and it occupies much less PL resource.

Struct or Class

The implementation of structs depends on how the struct is passed to the hardware—passed
by value, passed by reference, or as an arrays of structs—and the type of datamover
selected. The following table shows the various implementations.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

46

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=46
www.xilinx.com

Table 1: Struct Implementations

Struct
Pass
Method

Default
(no
pragma)

#pragma
SDS data
zero_copy
(arg)

#pragma SDS
data
zero_copy
(arg[0:SIZE])

#pragma SDS
data copy (arg)

#pragma SDS
data copy
(arg[0:SIZE])

pass by
value
(struct
RGB arg)

Each field
is flattened
and
passed
individually
as a scalar
or an array.

This is not
supported
and will
result in
an error.

This is not
supported and
will result in an
error.

The struct is
packed into a
single wide
scalar.

Each field is
flattened and
passed individually
as a scalar or an
array.

The value of SIZE
is ignored.

pass by
pointer
(struct
RGB *arg)
or
reference
(struct
RGB
&arg)

Each field
is flattened
and
passed
individually
as a scalar
or an array.

The struct
is packed
into a
single
wide scalar
and
transferred
as a single
value.

The data is
transferred
to the
hardware
accelerator
via an
AXI4 bus.

The struct is
packed into a
single wide
scalar.

The number of
data values
transferred to
the hardware
accelerator via
an AXI4 bus is
defined by the
value of SIZE.

The struct is
packed into a
single wide
scalar.

The struct is
packed into a
single wide scalar.

The number of
data values
transferred to the
hardware
accelerator via an
AXIDMA_SG or
AXIDMA_SIMPLE is
defined by the
value of SIZE.

array of
struct

(struct
RGB
arg[1024])

Each struct
element of
the array is
packed
into a
single wide
scalar.

Each struct
element of
the array is
packed
into a
single
wide
scalar.

The data is
transferred
to the
hardware
accelerator
via an
AXI4 bus.

Each struct
element of the
array is packed
into a single
wide scalar.

The data is
transferred to
the hardware
accelerator via
an AXI4 bus.

Each struct
element of the
array is packed
into a single
wide scalar.

The data is
transferred to
the hardware
accelerator via a
data mover such
as AXIDMA_SG
or
AXIDMA_SIMPLE.

Each struct
element of the
array is packed
into a single wide
scalar.

The data is
transferred to the
hardware
accelerator via a
data mover such
as AXIDMA_SG or
AXIDMA_SIMPLE.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

47

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=47
www.xilinx.com

Struct
Pass
Method

Default
(no
pragma)

#pragma
SDS data
zero_copy
(arg)

#pragma SDS
data
zero_copy
(arg[0:SIZE])

#pragma SDS
data copy (arg)

#pragma SDS
data copy
(arg[0:SIZE])

The value of
SIZE overrides
the array size
and
determines the
number of
data values
transferred to
the accelerator.

The value of SIZE
overrides the array
size and
determines the
number of data
values transferred
to the accelerator.

The selection of which data mover to use for transferring an array is dependent on two
attributes of the array: data size and physical memory contiguity. For example, if the memory
size is 1 MB and not physically contiguous (allocated by malloc()), you should use AXIDMA_SG.
The following table shows the applicability of these data movers.

Table 2: Data Mover Selection

Data Mover Physical Memory Contiguity Data Size (bytes)
AXIDMA_SG Either > 300
AXIDMA_Simple Contiguous < 8M
AXIFIFO Non-contiguous < 300

Normally, the SDSoC™ compiler analyzes the array that is transferred to the hardware
accelerator for these two attributes, and selects the appropriate data mover accordingly.
However, there are cases where such analysis is not possible. At that time, SDSoC issues a
warning message and asks you to specify the memory attributes via SDS pragmas. An example
of the message:

WARNING: [DMAnalysis 83-4492] Unable to determine the memory attributes
passed to rgb_data_in of function img_process at
C:/simple_sobel/src/main_app.c:84

The pragma to specify the memory attributes is:

#pragma SDS data mem_attribute(arg:contiguity)

Where contiguity can be either PHYSICAL_CONTIGUOUS or NON_PHYSICAL_CONTIGUOUS. The
pragma to specify the data size is:

#pragma SDS data copy(arg[offset:size])

Where size can be a number or an arbitrary expression.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

48

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=48
www.xilinx.com

Zero Copy Data Mover

As mentioned previously, the zero copy data mover is a special one because it covers both the
accelerator interface and the data mover. The syntax of this pragma is:

#pragma SDS data zero_copy(arg[offset:size])

Where [offset:size] is optional, and only needed if data transfer size for an array cannot be
determined at compile time.

By default, SDSoC assumes copy semantics for an array argument, meaning the data is explicitly
copied from the PS to the accelerator via a data mover. When this zero_copy pragma is
specified, SDSoC generates an AXI-Master interface for the specified argument on the
accelerator, which grabs the data from the PS as specified in the accelerator code.

To use the zero_copy pragma, the memory corresponding to the array has to be physically
contiguous, that is allocated with sds_alloc.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

49

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=49
www.xilinx.com

Accelerator Interface

The accelerator interface generated in SDSoC™ depends on the data type of the argument.

Scalar
For a scalar argument, the register interface is generated to pass in and/or out of the
accelerator.

Arrays

The hardware interface on an accelerator for transferring an array can be either a RAM
interface or a streaming interface, depending on how the accelerator accesses the data in the
array.

The RAM interface allows the data to be accessed randomly within the accelerator; however,
it requires the entire array to be transferred to the accelerator before any memory accesses
can happen within the accelerator. Moreover, the use of this interface requires BRAM
resources on the accelerator side to store the array.

The streaming interface, on the other hand, does not require memory to store the whole
array, it allows the accelerator to pipeline the processing of array elements, i.e., the
accelerator can start processing a new array element while the previous ones are still being
processed. However, the streaming interface requires the accelerator to access the array in a
strict sequential order, and the amount of data transferred must be the same as the
accelerator expects.

SDSoC, by default, will generate the RAM interface for an array; however, SDSoC provides
pragmas to direct it to generate the streaming interface.

struct or class

The implementation of structs depends on how the struct is passed to the hardware—passed
by value, passed by reference, or as an arrays of structs—and the type of datamover
selected. The Struct Implementations table in Data Mover shows the various
implementations.

The following SDS pragma can be used to guide the interface generation for the accelerator.

#pragma SDS data access_pattern(arg:pattern)

Where "pattern" can be either "RANDOM" or "SEQUENTIAL", and "arg" can be an array
argument name of the accelerator function.

If an array argument's access pattern is specified as "RANDOM", a RAM interface is generated. If
it is specified as “SEQUENTIAL”, a streaming interface is generated. Several notes regarding this
pragma:

• The default access pattern for an array argument is “RANDOM”.
• The specified access pattern must be consistent with the accelerator function's behavior. For

“SEQUENTIAL” access patterns, the function must access every array element in a strict
sequential order.

• This pragma only applies to arguments without the “zero_copy” pragma. This will be
detailed later.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

50

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=50
www.xilinx.com

Increasing System Parallelism and Concurrency

Increasing the level of concurrent execution is a standard way to increase overall system
performance, and increasing the level of parallel execution is a standard way to increase
concurrency. Programmable logic is well-suited to implement architectures with application-
specific accelerators that run concurrently, especially communicating through flow-controlled
streams that synchronize between data producers and consumers.

In the SDSoC environment, you influence the macro-architecture parallelism at the function and
data mover level, and the micro-architecture parallelism within hardware accelerators. By
understanding how the sdscc system compiler infers system connectivity and data movers, you
can structure application code and apply pragmas as needed to control hardware connectivity
between accelerators and software, data mover selection, number of accelerator instances for a
given hardware function, and task level software control. You can control the micro-architecture
parallelism, concurrency, and throughput for hardware functions within Vivado HLS or within the
IPs you incorporate as C-callable/linkable libraries.

At the system level, the sdscc compiler chains together hardware functions when the data flow
between them does not require transferring arguments out of programmable logic and back to
system memory. For example, consider the code in the following figure, where mmult and madd

functions have been selected for hardware.

Figure 8: Hardware /Software Connectivity with Direct Connection

transfer
 tmp1

bool mmultadd_test(float *A, float *B, float *C, float *Ds, float *D)
{
 float tmpl[A_NROWS * A_NCOLS], tmp2[A_NROWS * A_NCOLS];
 for (int I = 0; ii < NUM_TESTS; i++) {
 mmultadd_init(A, B, C, Ds, D);

 mmult(A, B, tmp1);
 //std::cout << “tmp1[0] = “ << tmp1[0] << std::end1;
 madd(tmp1, C, D);

 mmult_golden(A, B, tmp2);
 madd_golden(tmp2, C, Ds);

 if (!mmult_result_check(D, Ds))
 return false;
 }
 return true;
}

Call
madd madd

Call
mmult mmult

transfer B

transfer A

transfer C

transfer D

X14763-070115

Because the intermediate array variable tmp1 is used only to pass data between the two
hardware functions, the sdscc system compiler chains the two functions together in hardware
with a direct connection between them.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

51

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=51
www.xilinx.com

It is instructive to consider a time line for the calls to hardware as shown in the following figure.

Figure 9: Timeline for mmult/madd Function Calls

mmult
setup

setup
DM for A

setup
DM for B

madd
setup

setup
DM for C

setup
DM for D

wait for all transfers and mmult, madd to
complete and cleanup

send
A

send
B

send
C

send D

mmult compute

madd compute

CPU

DMs

Accelerators

X14764-070115

The program preserves the original program semantics, but instead of the standard ARM
procedure calling sequence, each hardware function call is broken into multiple phases involving
setup, execution, and cleanup, both for the data movers (DM) and the accelerators. The CPU in
turn sets up each hardware function (that is, the underlying IP control interface) and the data
transfers for the function call with non-blocking APIs, and then waits for all calls and transfers to
complete. In the example shown in the diagram, the mmult and madd functions run
concurrently whenever their inputs become available. The ensemble of function calls is
orchestrated in the compiled program by control code automatically generated by sdscc

according to the program, data mover, and accelerator structure.

In general, it is impossible for the sdscc compiler to determine side-effects of function calls in
your application code (for example, sdscc may have no access to source code for functions
within linked libraries), so any intermediate access of a variable occurring lexically between
hardware function calls requires the compiler to transfer data back to memory. So for example,
an injudicious simple change to uncomment the debug print statement (in the "wrong place") as
shown in the figure below, can result in a significantly different data transfer graph and
consequently, an entirely different generated system and application performance.

Figure 10: Hardware/Software Connectivity with Broken Direct Connection

bool mmultadd_test(float *A, float *B, float *C, float *Ds, float *D)
{
 float tmpl[A_NROWS * A_NCOLS], tmp2[A_NROWS * A_NCOLS];
 for (int I = 0; ii < NUM_TESTS; i++) {
 mmultadd_init(A, B, C, Ds, D);

 mmult(A, B, tmp1);
 //std::cout << “tmp1[0] = “ << tmp1[0] << std::end1;
 madd(tmp1, C, D);

 mmult_golden(A, B, tmp2);
 madd_golden(tmp2, C, Ds);

 if (!mmult_result_check(D, Ds))
 return false;
 }
 return true;
}

Call
madd madd

Call
mmult mmult

transfer B

transfer A

transfer D

transfer tmp1

transfer C

transfer tmp1

X14765-070115

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

52

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=52
www.xilinx.com

A program can invoke a single hardware function from multiple call sites. In this case, the sdscc

compiler behaves as follows. If any of the function calls results in "direct connection" data flow,
then sdscc creates an instance of the hardware function that services every similar direct
connection, and an instance of the hardware function that services the remaining calls between
memory ("software") and programmable logic.

Structuring your application code with "direct connection" data flow between hardware
functions is one of the best ways to achieve high performance in programmable logic. You can
create deep pipelines of accelerators connected with data streams, increasing the opportunity
for concurrent execution.

There is another way in which you can increase parallelism and concurrency using the sdscc

compiler. You can direct the compiler to create multiple instances of a hardware function by
inserting the following pragma immediately preceding a call to the function.

#pragma SDS resource(<id>) // <id> a non-negative integer

This pragma creates a hardware instance that is referenced by <id>.

A simple code snippet that creates two instances of a hardware function mmult is as follows.

{
#pragma SDS resource(1)
mmult(A, B, C); // instance 1

#pragma SDS resource(2)
mmult(D, E, F); // instance 2

}

The async mechanism gives the programmer ability to handle the "hardware threads" explicitly
to achieve very high levels of parallelism and concurrency, but like any explicit multi-threaded
programming model, requires careful attention to synchronization details to avoid non-
deterministic behavior or deadlocks.

Using External I/O

Hardware accelerators generated in the SDSoC™ environment can communicate with system
inputs and outputs either directly through hardware connections, or though memory buffers
(e.g., a frame buffer). Examples of system I/O include analog-to-digital and digital-to-analog
converters, image, radar, LiDAR, and ultrasonic sensors, and HDMI™ multimedia streams. A
platform exports stream connections in hardware that are accessed in software by calling
plaform library functions as described in the following sections. Direct hardware connections are
implemented over AXI4-Stream channels, and connections to memory buffers are realized
through function calls implemented by the standard data movers supported in the SDSoC
Environment. For information and examples that show how to create SDSoC platforms, refer to
SDSoC Environment Platform Development Guide (UG1146).

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

53

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=53
www.xilinx.com

Accessing External I/O via Memory Buffers

This section uses the motion-detect ZC702 + HDMI IO FMC or ZC706 + HDMI IO FMC platform
found on the SDSoC Downloads Page. The figure below shows how the design example is
configured. The preconfigured SDSoC platform is responsible for the HDMI data transfer to
external memory. The application must call the platform interfaces to process the data from the
frame buffer in DDR memory.

Figure 11: Motion Detect Design Configuration

Programmable Logic

DDR Memory

Processing System

Platform

SDSoC
Functions

Platform
IPs

HDMI HDMI

Sobel
Filter

Sobel
Filter

Diff Median
Filter

Combiner Platform
IPs

X17232-061416

The SDSoC environment accesses the external frame buffer through an accelerator interface to
the platform. The zc702_hdmi platform provides a software interface to access the video frame
buffer through the Video4Linux2 (V4L2) API. The V4L2 framework provides an API accessing a
collection of device drivers supporting real-time video capture in Linux. For the application
developer, this API is the platform I/O entry point. In the motion_demo_processing example,
the following code snippet from m2m_sw_pipeline.c demonstrates the function call interface.

extern void motion_demo_processing(unsigned short int *prev_buffer,
unsigned short int *in_buffer,
unsigned short int *out_buffer,
int fps_enable,
int height, int width, int stride);

.

.

.
unsigned short *out_ptr = v_pipe->drm.d_buff[buf_next->index].drm_buff;
unsigned short *in_ptr1 = buf_prev->v412_buff;
unsigned short *in_ptr2 = buf_next->v412_buff;
v_pipe->events[PROCESS_IN].counter_val++;

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

54

https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#boardskits
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=54
www.xilinx.com

motion_demo_processing(in_ptr1, in_ptr2, out_ptr,
v_pipe->fps_enable,
(int)m2m_sw_stream_handle.video_in.format.height,
(int)m2m_sw_stream_handle.video_in.format.width,

(int)m2m_sw_stream_handle.video_in.format.bytesperline/2);

The application accesses this API in motion_detect.c, where motion_demo_procesing is
defined and called by the img_process function.

void motion_demo_processing(unsigned short int *prev_buffer,
unsigned short int *in_buffer,
unsigned short int *out_buffer,
int fps_enable,
int height, int width, int stride)

{
int param0=0, param1=1, param2=2;

img_process(prev_buffer, in_buffer, out_buffer, height, width,
stride);
}

Finally, img_process calls the various filters and transforms to process the data.

void img_process(unsigned short int *frame_prev,
unsigned short int *frame_curr,
unsigned short int *frame_out,
int param0, int param1, int param2)

{
...
}

By using a platform API to access the frame buffers, the application developer does not program
at the driver level to process the video frames. You can find the platform used for the code
snippets on the SDSoC Downloads Page with the name ZC702[ZC706] + HDMI IO FMC. To
access the project in the SDSoC environment, create a new project, name the project, and select
Add Custom Platform. From the Target Platform menu, select the downloaded platform
named zc702[zc706]_trd, click Next, and use the template named Motion Detect.

Accessing External I/O via Direct Hardware Connections

Whereas the previous example demonstrated how applications can access system I/O through
memory buffers, a platform can also provide direct hardware connectivity to hardware
accelerators within an application generated in the SDSoC Environment. The following figure
shows how a function s2mm_data_copy communicates to the platform via an AXI4-Stream
channel, and writes to DDR memory using the zero_copy datamover (implemented as an AXI4
master interface). This design template is called Unpacketized AXI4-Stream to DDR design
example in the samples/platforms/zc702_axis_io platform (a similar design for the Zybo
board is in samples/xc7z010/zybo_axis_io).

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

55

https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#boardskits
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=55
www.xilinx.com

Figure 12: Unpacketized AXI-MM DataMover Design

Programmable Logic

DDR Memory

Processing System

Platform

SDSoC
Functions

pf_read_stream s2mm_data_copy

Input Platform
IP

X17233-062216

In this example, the zc702_axis_io platform proxies actual I/O by providing a free-running
binary counter (labeled Platform IP in the diagram) running at 50 MHz, connected to an
AXI4-Stream Data FIFO IP block that exports an AXI4-Stream master interface to the platform
clocked at the data motion clock (which might differ from the 50 MHz input clock).

The direct I/O software interface can be found in the zc702_axis_io.h header file located in
the SDSoC install directory under samples/platforms/zc702/aarch32-linux/include.

#pragma SDS data access_pattern(rbuf:SEQUENTIAL)
void pf_read_stream(unsigned *rbuf);

In the code snippet below, the application defines a direct signal path from the platform input
to a hardware function before transferring the output to memory.

// This function's data flow defines the accelerator network
void s2mm_data_copy_wrapper(unsigned *buf)
{

unsigned rbuf0[1];
pf_read_stream(rbuf0);
s2mm_data_copy(rbuf0,buf);

}

The platform library provides the pf_read_stream function that the sds++ linker maps onto the
hardware stream port. Because the only use of the rbuf0 output is the input to the
s2mm_data_copy function, the linker creates a direct hardware connection over an AXI4-Stream
channel. Because the s2mm_data_copy function transfers buf using the zero_copy data mover,
the buffer must be allocated in physically contiguous memory using sds_alloc, and released
using sds_free.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

56

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=56
www.xilinx.com

int main()
{

unsigned *bufs[NUM_BUFFERS];

for(int i=0; i<NUM_BUFFERS; i++) {
bufs[i] = (unsigned*) sds_alloc(BUF_SIZE * sizeof(unsigned));

}
// call accelerator data path and check result
for(int i=0; i<NUM_BUFFERS; i++) {

sds_free(bufs[i]);
}
return 0;

}

A tutorial of how to use this example design is provided in SDSoC Environment Tutorial:
Introduction (UG1028).

A detailed tutorial on creating a platform using AXI4-Stream to write memory directly can be
found in SDSoC Environment Platform Development Guide (UG1146).

Improving Hardware Function Parallelism

This section provides a concise introduction to writing efficient code that can be cross-compiled
into programmable logic.

The SDSoC environment employs Vivado HLS as a programmable logic cross-compiler to
transform C/C++ functions into hardware. By applying the principles described in this section,
you can dramatically increase the performance of the synthesized functions, which can lead to
significant increases in overall system performance for your application.

Top-Level Hardware Function Guidelines

This section describes coding guidelines to ensure that a Vivado HLS hardware function has a
consistent interface with object code generated by the ARM GNU toolchain.

Use Standard C99 Data Types for Top-Level Hardware Function Arguments

1. Avoid using arrays of bool. An array of bool has different memory layout between ARM GCC

and Vivado® HLS.
2. Avoid using hls::stream at the hardware function top-level interface. This data type helps

the HLS compiler synthesize efficient logic within a hardware function but does not make
sense for application software.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

57

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1028-sdsoc-intro-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=57
www.xilinx.com

Omit HLS Interface Directives for Top-Level Hardware Function Arguments

Although supported, a top-level hardware function should not in general contain HLS

interface pragmas. The sds++ compiler automatically generates appropriate HLS interface
directives. There are two SDSoC environment pragmas you can specify for a top-level hardware
function to guide the SDSoC environment to generate the desired HLS interface directives.

#pragma SDS data zero_copy() can be used to generate a shared memory interface
implemented as an AXI master interface in hardware.
#pragma SDS data access_pattern(argument:SEQUENTIAL) can be used to
generate a streaming interface implemented as a FIFO interface in hardware.

IMPORTANT: If you specify the interface using #pragma HLS interface for a top-level function argument,
the SDSoC environment does not generate a HLS interface directive for that argument, and it is your
responsibility to ensure that the generated hardware interface is consistent with all other function argument
hardware interfaces. Because a function with incompatible HLS interface types can result in cryptic sdscc

error messages, it is strongly recommended (though not absolutely mandatory) that you omit HLS
interface pragmas.

Optimization Guidelines

This section documents several fundamental HLS optimization techniques to enhance hardware
function performance. These techniques are: function inlining, loop and function pipelining, loop
unrolling, increasing local memory bandwidth and streaming data flow between loops and
functions. For more information, see SDSoC Environment Optimization Guide (UG1235).

• Function Inlining
• Loop Pipelining and Loop Unrolling
• Increasing Local Memory Bandwidth
• Data Flow Pipelining

Function Inlining

Similar to function inlining of software functions, it can be beneficial to inline hardware
functions.

Function inlining replaces a function call by substituting a copy of the function body after
resolving the actual and formal arguments. After that, the inlined function is dissolved and no
longer appears as a separate level of hierarchy. Function inlining allows operations within the
inlined function be optimized more effectively with surrounding operations, thus improving the
overall latency or the initiation interval for a loop.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

58

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=58
www.xilinx.com

To inline a function, put #pragma HLS inline at the beginning of the body of the desired
function. The following code snippet directs Vivado HLS to inline the mmult_kernel function:

void mmult_kernel(float in_A[A_NROWS][A_NCOLS],
float in_B[A_NCOLS][B_NCOLS],
float out_C[A_NROWS][B_NCOLS])

{
#pragma HLS INLINE

int index_a, index_b, index_d;
// rest of code body omitted

}

Loop Pipelining and Loop Unrolling

Both loop pipelining and loop unrolling improve the hardware function's performance by
exploiting the parallelism between loop iterations. The basic concepts of loop pipelining and
loop unrolling and example codes to apply these techniques are shown and the limiting factors
to achieve optimal performance using these techniques are discussed.

Loop Pipelining

In sequential languages such as C/C++, the operations in a loop are executed sequentially and
the next iteration of the loop can only begin when the last operation in the current loop
iteration is complete. Loop pipelining allows the operations in a loop to be implemented in a
concurrent manner as shown in the following figure.

Figure 13: Loop Pipelining

Loop:for(i=1;i<3;i++) {

 op_Read;

 op_Compute;

 op_Write;

}

Without Pipelining

RD

CMP

WR

Initiation Interval = 3 cycles

Latency = 3 cycles

Loop Latency = 6 cycles

RD CMP WR RD CMP WR

Initiation Interval = 1 cycle

Latency = 3 cycles

Loop Latency = 4 cycles

RD CMP WR

RD CMP WR

With Pipelining

X14770-070115

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

59

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=59
www.xilinx.com

As shown in the above figure, without pipelining, there are three clock cycles between the two
RD operations and it requires six clock cycles for the entire loop to finish. However, with
pipelining, there is only one clock cycle between the two RD operations and it requires four clock
cycles for the entire loop to finish, that is, the next iteration of the loop can start before the
current iteration is finished.

An important term for loop pipelining is called Initiation Interval (II), which is the number of
clock cycles between the start times of consecutive loop iterations. In the above figure, the
Initiation Interval (II) is one because there is only one clock cycle between the start times of
consecutive loop iterations.

To pipeline a loop, put #pragma HLS pipeline at the beginning of the loop body, as illustrated
in the following code snippet. Vivado HLS tries to pipeline the loop with minimum Initiation
Interval.

for (index_a = 0; index_a < A_NROWS; index_a++) {
for (index_b = 0; index_b < B_NCOLS; index_b++) {

#pragma HLS PIPELINE II=1
float result = 0;
for (index_d = 0; index_d < A_NCOLS; index_d++) {

float product_term = in_A[index_a][index_d] *
in_B[index_d][index_b];

result += product_term;
}
out_C[index_a * B_NCOLS + index_b] = result;

}
}

Loop Unrolling

Loop unrolling is another technique to exploit parallelism between loop iterations. It creates
multiple copies of the loop body and adjust the loop iteration counter accordingly. The
following code snippet shows a normal rolled loop:

int sum = 0;
for(int i = 0; i < 10; i++) {

sum += a[i];
}

After the loop is unrolled by a factor of 2, the loop becomes:

int sum = 0;
for(int i = 0; i < 10; i+=2) {

sum += a[i];
sum += a[i+1];

}

So unrolling a loop by a factor of N basically creates N copies of the loop body, the loop
variable referenced by each copy is updated accordingly (such as the a[i+1] in the above code
snippet), and the loop iteration counter is also updated accordingly (such as the i+=2 in the
above code snippet).

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

60

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=60
www.xilinx.com

Loop unrolling creates more operations in each loop iteration, so that Vivado HLS can exploit
more parallelism among these operations. More parallelism means more throughput and higher
system performance. If the factor N is less than the total number of loop iterations (10 in the
example above), it is called a "partial unroll". If the factor N is the same as the number of loop
iterations, it is called a "full unroll". Obviously, "full unroll" requires the loop bounds be known at
compile time but exposes the most parallelism.

To unroll a loop, simply put #pragma HLS unroll [factor=N] at the beginning of the desired
loop. Without the optional factor=N, the loop will be fully unrolled.

int sum = 0;
for(int i = 0; i < 10; i++) {
#pragma HLS unroll factor=2

sum += a[i];
}

Factors Limiting the Parallelism Achieved by Loop Pipelining and Loop Unrolling

Both loop pipelining and loop unrolling exploit the parallelism between loop iterations.
However, parallelism between loop iterations is limited by two main factors: one is the data
dependencies between loop iterations, the other is the number of available hardware resources.

A data dependence from an operation in one iteration to another operation in a subsequent
iteration is called a loop-carried dependence. It implies that the operation in the subsequent
iteration cannot start until the operation in the current iteration has finished computing the data
input for the operation in subsequent iteration. Loop-carried dependencies fundamentally limit
the initiation interval that can be achieved using loop pipelining and the parallelism that can be
exploited using loop unrolling.

The following example demonstrates loop-carried dependencies among operations producing
and consuming variables a and b.

while (a != b) {
if (a > b)

a –= b;
else

b –= a;
}

Obviously, operations in the next iteration of this loop can not start until the current iteration
has calculated and updated the values of a and b. Array accesses are a common source of loop-
carried dependencies, as shown in the following example:

for (i = 1; i < N; i++)
mem[i] = mem[i-1] + i;

In this case, the next iteration of the loop must wait until the current iteration updates the
content of the array. In case of loop pipelining, the minimum Initiation Interval is the total
number of clock cycles required for the memory read, the add operation, and the memory write.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

61

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=61
www.xilinx.com

Another performance limiting factor for loop pipelining and loop unrolling is the number of
available hardware resources. The following figure shows an example the issues created by
resource limitations, which in this case prevents the loop to be pipelined with an initiation
interval of 1.

Figure 14: Resource Contention

void foo(m[2]…) {

 op_Read_m[0];

 op_Read_m[1];

 op_Compute;

 op_Write;

}

(A) Pipeline with lI=1

RD

CMP

WR

RD

(B) Pipeline with lI=2

RD CMP WR

RD RD CMP WR

RD

lI=1

RD RD CMP WR

RD RD CMP WR

lI=2

X14768-070115

In this example, if the loop is pipelined with an initiation interval of one, there are two read
operations. If the memory has only a single port, then the two read operations cannot be
executed simultaneously and must be executed in two cycles. So the minimal initiation interval
can only be two, as shown in part (B) of the figure. The same can happen with other hardware
resources. For example, if the op_compute is implemented with a DSP core which cannot accept
new inputs every cycle, and there is only one such DSP core. Then op_compute cannot be issued
to the DSP core each cycle, and an initiation interval of one is not possible.

Increasing Local Memory Bandwidth

This section shows several ways provided by Vivado HLS to increase local memory bandwidth,
which can be used together with loop pipelining and loop unrolling to improve system
performance.

Arrays are intuitive and useful constructs in C/C++ programs. They allow the algorithm be easily
captured and understood. In Vivado HLS, each array is by default implemented with a single
port memory resource. However, such memory implementation may not be the most ideal
memory architecture for performance oriented programs. At the end of Loop Pipelining and
Loop Unrolling, an example of resource contention caused by limited memory ports is shown.

Array Partitioning

Arrays can be partitioned into smaller arrays. Physical implementation of memories have only a
limited number of read ports and write ports, which can limit the throughput of a load/store
intensive algorithm. The memory bandwidth can sometimes be improved by splitting up the
original array (implemented as a single memory resource) into multiple smaller arrays
(implemented as multiple memories), effectively increasing the number of load/store ports.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

62

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=62
www.xilinx.com

Vivado HLS provides three types of array partitioning, as shown in the following figure.

1. block: The original array is split into equally sized blocks of consecutive elements of the
original array.

2. cyclic: The original array is split into equally sized blocks interleaving the elements of the
original array.

3. complete: The default operation is to split the array into its individual elements. This
corresponds to implementing an array as a collection of registers rather than as a memory.

Figure 15: Array Partitioning

0 1 2 ... N-3 N-2 N-1

block
0 1 ... (N/2-1)

N/2 ... N-2 N-1

cyclic
0 2 ... N-2

1 ... N-3 N-1

complete
0

1

N-1

...

N-3

N-2

2

X14774-070115

To partition an array in Vivado HLS, insert this in the hardware function source code:

#pragma HLS array_partition variable=<variable> <block, cyclic, complete>
factor=<int> dim=<int>

For block and cyclic partitioning, the factor option can be used to specify the number of arrays
which are created. In the figure above, a factor of two is used, dividing the array into two smaller
arrays. If the number of elements in the array is not an integer multiple of the factor, the last
array will have fewer than average elements.

When partitioning multi-dimensional arrays, the dim option can be used to specify which
dimension is partitioned. The following figure shows an example of partitioning different
dimensions of a multi-dimensional array.

Figure 16: Multi-dimension Array Partitioning

my_array[10][6][4]

Dimension 1
Dimension 2
Dimension 3

Dimension 0
(All dimensions)

X14769-070115

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

63

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=63
www.xilinx.com

Array Reshaping

Arrays can also be reshaped to increase the memory bandwidth. Reshaping takes different
elements from a dimension in the original array, and combines them into a single wider
element. Array reshaping is similar to array partitioning, but instead of partitioning into multiple
arrays, it widens array elements. The following figure illustrates the concept of array reshaping.

Figure 17: Array Reshaping

0 1 2 ... N-3 N-2 N-1 block
0 1 ... (N/2-1)

N/2 ... N-2 N-1

cyclic
0 2 ... N-2

1 ... N-3 N-1

complete

N-1

array1[N]

0 1 2 ... N-3 N-2 N-1

array2[N]

0 1 2 ... N-3 N-2 N-1

array3[N]

MSB

LSB

array4[N/2]

array5[N/2]
MSB

LSB

N-2

...

1

0

array6[1]
MSB

LSB
X14773-070115

To use array reshaping in Vivado HLS, insert this in the hardware function source code:

#pragma HLS array_reshape variable=<variable> <block, cyclic, complete>
factor=<int> dim=<int>

The options have the same meaning as the array partition pragma.

Data Flow Pipelining

The previously discussed optimization techniques are all "fine grain" parallelizing optimizations
at the level of operators, such as multiplier, adder, and memory load/store operations. These
techniques optimize the parallelism between these operators. Data flow pipelining on the other
hand, exploits the "coarse grain" parallelism at the level of functions and loops. Data flow
pipelining can increase the concurrency between functions and loops.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

64

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=64
www.xilinx.com

Function Data Flow Pipelining

The default behavior for a series of function calls in Vivado HLS is to complete a function before
starting the next function. Part (A) in the following figure shows the latency without function
data flow pipelining. Assuming it takes eight cycles for the three functions to complete, the code
requires eight cycles before a new input can be processed by "func_A" and also eight cycles
before an output is written by "func_C" (assume the output is written at the end of "func_C").

Figure 18: Function Data Flow Pipelining

8 cycles

func_A

8 cycles

3 cycles

5 cycles

func_B func_C func_A func_A

func_B func_B

func_C func_C

void top (a,b,c,d) {
 …
 func_A(a,b,i1);
 func_B(c,i1,i2);
 func_C(i2,d);

 return d;
}

(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

func_A
func_B
func_C

X14772-070115

An example execution with data flow pipelining is shown in the part (B) of the figure above.
Assuming the execution of func_A takes three cycles, func_A can begin processing a new input
every three clock cycles rather than waiting for all the three functions to complete, resulting in
increased throughput, The complete execution to produce an output then requires only five
clock cycles, resulting in shorter overall latency.

Vivado HLS implements function data flow pipelining by inserting "channels" between the
functions. These channels are implemented as either ping-pong buffers or FIFOs, depending on
the access patterns of the producer and the consumer of the data.

• If a function parameter (producer or consumer) is an array, the corresponding channel is
implemented as a multi-buffer using standard memory accesses (with associated address
and control signals).

• For scalar, pointer and reference parameters as well as the function return, the channel is
implemented as a FIFO, which uses less hardware resources (no address generation) but
requires that the data is accessed sequentially.

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

65

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=65
www.xilinx.com

To use function data flow pipelining, put #pragma HLS dataflow where the data flow
optimization is desired. The following code snippet shows an example:

void top(a, b, c, d) {
#pragma HLS dataflow

func_A(a, b, i1);
func_B(c, i1, i2);
func_C(i2, d);

}

Loop Data Flow Pipelining

Data flow pipelining can also be applied to loops in similar manner as it can be applied to
functions. It enables a sequence of loops, normally executed sequentially, to execute
concurrently. Data flow pipelining should be applied to a function, loop or region which
contains either all function or all loops: do not apply on a scope which contains a mixture of
loops and functions.

The following figure shows the advantages data flow pipelining can produce when applied to
loops. Without data flow pipelining, loop N must execute and complete all iterations before
loop M can begin. The same applies to the relationship between loops M and P. In this example,
it is eight cycles before loop N can start processing the next value and eight cycles before an
output is written (assuming the output is written when loop P finishes).

Figure 19: Loop Data Flow Pipelining

8 cycles

Loop_N

8 cycles

3 cycles

5 cycles

Loop_M Loop_P Loop_N Loop_N

Loop_M Loop_M

Loop_P Loop_P

void top (...) {
 …
 N:for(i =1;i<N;i++) {
 ...
 }

M:while(j<M) {
 ...
 } ;

P:for(k=1;k<P;k- -) {
 ...
 }

}

(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

Loop_N

Loop_M

Loop_P

X14771-070115

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

66

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=66
www.xilinx.com

With data flow pipelining, these loops can operate concurrently. An example execution with data
flow pipelining is shown in part (B) of the figure above. Assuming the loop M takes three cycles
to execute, the code can accept new inputs every three cycles. Similarly, it can produce an
output value every five cycles, using the same hardware resources. Vivado HLS automatically
inserts channels between the loops to ensure data can flow asynchronously from one loop to
the next. As with data flow pipelining, the channels between the loops are implemented either
as multi-buffers or FIFOs.

To use loop data flow pipelining, put #pragma HLS dataflow where the data flow optimization
is desired.

Using Vivado Design Suite HLS Libraries

This section describes how to use Vivado HLS libraries with the SDSoC environment.

Vivado® High-Level Synthesis (HLS) libraries are provided as source code with the Vivado HLS
installation in the SDSoC environment. Consequently, you can use these libraries as you would
any other source code that you plan to cross-compile for programmable logic using Vivado HLS.
In particular, you must ensure that the source code conforms to the rules described in Hardware
Function Argument Types, which might require you to provide a C/C++ wrapper function to
ensure the functions export a software interface to your application.

The synthesizeable FIR example template for all basic platforms in the SDSoC IDE provides an
example that uses an HLS library. You can find several additional code examples that employ
HLS libraries in the samples/hls_lib directory. For example, samples/hls_lib/hls_math
contains an example to implement and use a square root function.

The file my_sqrt.h contains:

#ifndef _MY_SQRT_H_
#define _MY_SQRT_H_

#ifdef __SDSVHLS__
#include "hls_math.h"
#else
// The hls_math.h file includes hdl_fpo.h which contains actual code and
// will cause linker error in the ARM compiler, hence we add the function
// prototypes here
static float sqrtf(float x);
#endif

void my_sqrt(float x, float *ret);

#endif // _SQRT_H_

The file my_sqrt.cpp contains:

#include "my_sqrt.h"

void my_sqrt(float x, float *ret)
{

*ret = sqrtf(x);
}

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

67

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=67
www.xilinx.com

The makefile has the commands to compile these files:

sds++ -c -hw my_sqrt –sds-pf zc702 my_sqrt.cpp
sds++ -c my_sqrt_test.cpp
sds++ my_sqrt.o my_sqrt_test.o -o my_sqrt_test.elf

Chapter 7: Improving System Performance

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

68

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=68
www.xilinx.com

Debugging an Application
The SDSoC™ environment allows projects to be created and debugged using the SDSoC IDE.
Projects can also be created outside the SDSoC IDE (user-defined makefiles) and debugged
either on the command line or using the SDSoC IDE.

See SDSoC Environment Tutorial: Introduction (UG1028) for information on using the interactive
debuggers in the SDSoC IDE.

Debugging Linux Applications in the SDSoC IDE

Within the SDSoC™ IDE, use the following procedure to debug your application:

1. Select the Debug as the active build configuration and build the project.
2. Copy the generated Debug/sd_card image to an SD card, and boot the board with it.
3. Make sure the board is connected to the network, and note its IP address, for example, by

executing ifconfig eth0 at the command prompt.
4. Select the Debug As option to create a new debug-configuration, and enter the IP address for

the board
5. You now switch to the SDSoC environment debug perspective which allows you to start, stop,

step, set breakpoints, examine variables and memory, and perform various other debug
operations.

Debugging Standalone Applications in the SDSoC IDE

Use the following procedure to debug a standalone (bare-metal) application project using the
SDSoC™ IDE.

1. Select Debug as the active build configuration and build the project.
2. Make sure the board is connected to your host computer using the JTAG Debug connector.
3. Select the Debug As option to create a new debug-configuration

You now switch to the SDSoC environment debug perspective which allows you to start, stop,
step, set breakpoints, examine variables and memory, and perform various other debug
operations.

In the SDSoC IDE toolbar, click on the Debug icon, which provides a shortcut to the procedure
described above.

Chapter 8

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

69

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1028-sdsoc-intro-tutorial.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=69
www.xilinx.com

Debugging FreeRTOS Applications

If you create a FreeRTOS application project using the SDSoC™ environment, you can debug
your application using the same steps as a standalone (bare-metal) application project.

Peeking and Poking IP Registers

Two small executables called mrd and mwr are available to peek and poke registers in memory-
mapped programmable logic. These executables are invoked with the physical address to be
accessed.

For example: mrd 0x80000000 10 reads ten 4-byte values starting at physical address
0x80000000 and prints them to standard output, while mwr 0x80000000 20writes the value 20
to the address 0x8000000.

These executables can be used to monitor and change the state of memory-mapped registers in
hardware functions and in other IP generated by the SDSoC™ environment.

CAUTION! Trying to access non-existent addresses can cause the system to hang.

Debugging Performance Tips

The SDSoC environment provides some basic performance monitoring capabilities in the form
of the sds_clock_counter() function. Use this function to determine how much time different
code sections, such as the accelerated code and the non-accelerated code, take to execute.

Estimate the actual hardware acceleration time by looking at the latency numbers in the
Vivado® Design Suite HLS report files (_sds/vhls/…/*.rpt). Latency of X accelerator clock
cycles = X * (processor_clock_freq/accelerator_clock_freq) processor clock cycles. Compare this
with the time spent on the actual function call to determine the data transfer overhead.

For best performance improvement, the time required for executing the accelerated function
must be much smaller than the time required for executing the original software function. If this
is not true, try to run the accelerator at a higher frequency by selecting a different clkid on the
sdscc/sds++ command line. If that does not work, try to determine whether the data transfer
overhead is a significant part of the accelerated function execution time, and reduce the data
transfer overhead. Note that the default clkid is 100 MHz for all platforms. More details about
the clkid values for the given platform can be obtained by running sdscc –sds-pf-info

<platform name>.

If the data transfer overhead is large, the following changes might help:

• Move more code into the accelerated function so that the computation time increases, and
the ratio of computation to data transfer time is improved.

• Reduce the amount of data to be transferred by modifying the code or using pragmas to
transfer only the required data.

Chapter 8: Debugging an Application

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

70

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=70
www.xilinx.com

Hardware/Software Event Tracing
The systems produced by the SDSoC environment are high-performance, complex, hardware/
software systems. It can be difficult to understand the execution of applications in such systems.
With portions of software running in a processor, hardware accelerators executing in the
programmable fabric, and many simultaneous data transfers occurring there is a lot happening
all at once. The SDSoC environment tracing feature provides the user, through the use of event
tracing, a detailed view of what is happening in the system during execution of an application.

This detailed view helps the user understand the performance of their application given the
workload, hardware/software partitioning, and system design choices. Such information helps
the user optimize and improve system implementation. This view enables event tracing of
software running on the processor, as well as hardware accelerators and data transfer links in
the system. Trace events are produced and gathered into a timeline view, showing the user a
detailed perspective unavailable anywhere else about how their application executes.

Tracing an application produces a log that records information about system execution.
Compared to event logging, event tracing provides correlation between events for a duration of
time (i.e., events have a duration, rather than an instantaneous event at a particular time). The
goal of tracing is to help debug execution by observing what happened when, and how long
events took. Tracing shows the performance of execution with more granularity than overall
runtime.

Tracing requires a design to have at least one function marked for hardware. There is no way for
the user to customize what is traced and what is not. All possible trace points are included
automatically, including standard HLS-produced hardware accelerators, AXI4-Stream interfaces
that serve data to or from an accelerator core, and the accelerator control code in software (stub
code). Future releases will support tracing most hardware entities in a design and other
designated events in software.

As with application debugging, for event tracing, you must connect a board to the host PC via
JTAG for standalone and Ethernet for Linux. The application must be executed by the SDSoC GUI
from the host using a debug or run configuration. It cannot be run manually by the user.

Chapter 9

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

71

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=71
www.xilinx.com

Hardware/Software System Runtime Operation

The SDSoC compilers implement hardware functions either by cross-compiling them into IP
using the Vivado® HLS tool, or by linking them as C-Callable IP as described in SDSoC
Environment Platform Development Guide (UG1146). Each hardware function callsite is rewritten
to call a stub function that manages the execution of the hardware accelerator. The figure below
shows an example of hardware function rewriting. The original user code is shown on the left.
The code section on the right shows the hardware function calls rewritten with new function
names.

Figure 20: Hardware Function Call Site Rewriting

X16743-040516

The stub function initializes the hardware accelerator, initiates any required data transfers for the
function arguments, and then synchronizes hardware and software by waiting at an appropriate
point in the program for the accelerator and all associated data transfers to complete. If, for
example, the hardware function foo() is defined in foo.cpp, you can view the generated
rewritten code in _sds/swstubs/foo.cpp for the project build configuration. As an example,
the stub code below replaces a user function marked for hardware. This function starts the
accelerator, starts data transfers to and from the accelerator, and waits for those transfers to
complete.

void _p0_mmult0(float *A, float *B, float *C) {
switch_to_next_partition(0);
int start_seq[3];
start_seq[0] = 0x00000f00;
start_seq[1] = 0x00010100;
start_seq[2] = 0x00020000;
cf_send_i(cmd_addr,start_seq,cmd_handle);
cf_wait(cmd_handle);
cf_send_i(A_addr, A, A_handle);
cf_send_i(B_addr, B, B_handle);
cf_receive_i(C_addr, C, C_handle);
cf_wait(A_handle);
cf_wait(B_handle);
cf_wait(C_handle);

Event tracing provides visibility into each phase of the hardware function execution, including
the software setup for the accelerators and data transfers, as well as the hardware execution of
the accelerators and data transfers. For example, the stub code below is instrumented for trace.
Each command that starts the accelerator, starts a transfer, or waits for a transfer to complete is
instrumented.

void_p0_mmult_0(float *A, float *B, float *C) {
switch_to_next_partition(0);

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

72

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=72
www.xilinx.com

int start_seq[3];
start_seq[0] = 0x00000f00;
start_seq[1] = 0x00010100;
start_seq[2] = 0x00020000;
sds_trace(EVENT_START);
cf_send_i(cmd_addr,start_seq,cmd_handle);
sds_trace(EVENT_STOP);
sds_trace(EVENT_START);
cf_wait(cmd_handle);
sds_trace(EVENT_STOP);
sds_trace(EVENT_START);
cf_send_i(A_addr, A, A_handle);
sds_trace(EVENT_STOP);
sds_trace(EVENT_START);
cf_send_i(B_addr, B, B_handle);
sds_trace(EVENT_STOP);
sds_trace(EVENT_START);
cf_receive_i(C_addr, C, C_handle);
sds_trace(EVENT_STOP);
sds_trace(EVENT_START);
cf_wait(A_handle);
sds_trace(EVENT_STOP);
sds_trace(EVENT_START);
cf_wait(B_handle);
sds_trace(EVENT_STOP);
sds_trace(EVENT_START);
cf_wait(C_handle);
sds_trace(EVENT_STOP);

Software Tracing

Event tracing automatically instruments the stub function to capture software control events
associated with the implementation of a hardware function call. The event types include the
following.

• Accelerator set up and initiation
• Data transfer setup
• Hardware/software synchronization barriers (“wait for event”)

Each of these events is independently traced, and results in a single AXI-Lite write into the
programmable logic, where it receives a timestamp from the same global timer as hardware
events.

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

73

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=73
www.xilinx.com

Hardware Tracing

The SDSoC environment supports hardware event tracing of accelerators cross-compiled using
Vivado HLS, and data transfers over AXI4-Stream connections. When the sdscc/++ linker is
invoked with the -trace option, it automatically inserts hardware monitor IP cores into the
generated system to log these event types:

• Accelerator start and stop, defined by ap_start and ap_done signals.
• Data transfer start and stop, defined by AXI4-Stream handshake and TLAST signals.

Each of these events is independently monitored and receives a timestamp from the same
global timer used for software events. If the hardware function explicitly declares an AXI4-Lite
control interface using the following pragma, it cannot be traced because its ap_start and
ap_done signals are not part of the IP interface:

#pragma HLS interface s_axilite port=foo

To give you an idea of the approximate resource utilization of these hardware monitor cores, the
following table shows the resource utilization of these cores for a Zynq-7000 (xc7z020-1clg400)
device:

Core Name LUTs FFs BRAMs DSPs
Accelerator 79 18 0 0
AXI4-Stream (basic) 79 14 0 0
AXI4-Stream (statistics) 132 183 0 0

The AXI4-Stream monitor core has two modes: basic and statistics. The basic mode does just the
start/stop trace event generation. The statistics mode enables an AXI4-Lite interface to two
32-bit registers. The register at offset 0x0 presents the word count of the current, on-going
transfer. The register at offset 0x4 presents the word count of the previous transfer. As soon as a
transfer is complete, the current count is moved to the previous register. By default, the
AXI4-Stream core is configured in the basic mode. Future releases will enable the user to choose
which mode to use. The core does support it today so adventurous users could potentially
configure the core manually in the Vivado tools. However, this is not supported in the current
release.

In addition to the hardware trace monitor cores, the output trace event signals are combined by
a single integration core. This core has a parameterizeable number of ports (from 1–63), and can
thus support up to 63 individual monitor cores (either accelerator or AXI4-Stream). The resource
utilization of this core depends on the number of ports enabled, and thus the number of
monitor cores inserted. The following table shows the resource utilization of this core for a
Zynq-7000 (xc7z020-1clg400) device:

Number of Ports LUTs FFs BRAMs DSPs
1 241 404 0 0
2 307 459 0 0
3 366 526 0 0
4 407 633 0 0
6 516 686 0 0

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

74

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=74
www.xilinx.com

Number of Ports LUTs FFs BRAMs DSPs
8 644 912 0 0
16 1243 1409 0 0
32 2190 2338 0 0
63 3830 3812 0 0

Depending on the number of ports (i.e., monitor cores), the integration core will use on average
110 flip-flops (FFs) and 160 look-up tables (LUTs). At the system level for example, the resource
utilization for the matrix multiplication template application on the ZC702 platform (using the
same xc7z020-1clg400 part) is shown in the table below:

System LUTs FFs BRAMs DSPs
Base (no trace) 16,433 21,426 46 160
Event trace enabled 17,612 22,829 48 160

Based on the results above, the difference in designs is approximately 1,000 LUTs, 1,200 FFs, and
two BRAMs. This design has a single accelerator with three AXI4-Stream ports (two inputs and
one output). When event trace is enabled, four monitors are inserted into the system (one
accelerator and three AXI4-Stream monitors), in addition to a single integration core and other
associated read-out logic. Given the resource estimations above, 720 LUTs and 700 FFs are from
the actual trace monitoring hardware (monitors and integration core). The remaining 280 LUTs,
500 FFs and two BRAMs are from the read-out logic which converts the AXI4-Stream output
trace data stream to JTAG. The resource utilization for this read-out logic is static and does not
vary based on the design.

Implementation Flow

During the implementation flow, when tracing is enabled, tracing instrumentation is inserted
into the software code and hardware monitors are inserted into the hardware system
automatically. The hardware system (including the monitor cores) is then synthesized and
implemented, producing the bitstream. The software tracing is compiled into the regular user
program.

Hardware and software traces are timestamped in hardware and collected into a single trace
stream that is buffered up in the programmable logic.

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

75

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=75
www.xilinx.com

Figure 21: Matrix Multiplication Example Vivado IP Integrator Design Without Tracing Hardware

X16741-040516

Figure 22: Matrix Multiplication Example Vivado IP Integrator Design With Tracing Hardware (Shown
in Orange)

X16742-040516

Runtime Trace Collection

Software traces are inserted into the same storage path as the hardware traces and receive a
timestamp using the same timer/counter as hardware traces. This single trace data stream is
buffered in the hardware system and accessed over JTAG by the host PC.

In the SDSoC environment, traces are read back constantly as the program executes attempting
to empty the hardware buffer as quickly as possible and prevent buffer overflow. However, trace
data is only displayed when the application is finished. In a future release, the real-time data will
be displayed as it is captured.

The board connection requirements are slightly different depending on the operating system
(standalone, FreeRTOS, or Linux). For standalone and FreeRTOS, the user program ELF is
downloaded to the board using the USB/JTAG interface. Trace data is read out over the same
USB/JTAG interface as well.

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

76

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=76
www.xilinx.com

For Linux, the SDSoC environment assumes the OS boots from the SD card. The ELF is then
copied and run using the TCP/TCF agent running in Linux over the Ethernet connection between
the board and host PC. The trace data is read out over the USB/JTAG interface. Both USB/JTAG
and TCP/TCF agent interfaces are needed for tracing Linux applications. The figure below shows
the connections required.

Figure 23: Connections Required When Using Trace with Different Operating Systems

Linux

Standalone/FreeRTOS

Host PC Board

Ethernet Ethernet

USB JTAG

Zynq-7000
AP SoC

Host PC Board

Ethernet Ethernet

USB JTAG

Zynq-7000
AP SoC

X16744-041316

Trace Visualization

The SDSoC environment GUI provides a graphical rendering of the hardware and software trace
stream. Each trace point in the user application is given a unique name, and its own axis/
swimlane on the timeline. In general, a trace point can create multiple trace events throughout
the execution of the application, for example, if the same block of code is executed in a loop or
if an accelerator is invoked more than once.

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

77

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=77
www.xilinx.com

Figure 24: Example Trace Visualization Highlighting the Different Types of Events

X16913-050216

Each trace event has a few different attributes: name, type, start time, stop time, and duration.
This data is shown as a tool-tip when the curser hovers above one of the event rectangles in the
view.

Figure 25: Example Trace Visualization Highlighting the Detailed Information Available for Each Event

X16912-050216

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

78

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=78
www.xilinx.com

Figure 26: Example Trace Visualization Highlighting the Event Names and Correlation to the User
Program

X16914-050216

Performance Measurement Using the AXI
Performance Monitor

The AXI Performance Monitor (APM) module is used to monitor basic information about data
transfers between the processing system (PS) ARM cores and the hardware in the programmable
logic (PL). It captures statistics such as number of read/write transactions, throughput, and
latency for the AXI transactions on the busses in the system.

In this section we will show how to insert an APM core into the system, monitor the
instrumented system, and view the performance data produced.

Creating a Standalone Project and Implementing APM

Open the SDSoC environment and create a new SDSoC Project using any platform or operating
system selection. Choose the Matrix Multiplication and Addition Template.

In the SDx Project Settings, check the option Insert AXI Performance Monitor. Enabling this
option and building the project adds the APM IP core to your hardware system. The APM IP uses
a small amount of resources in the programmable logic. SDSoC connects the APM to the
hardware/software interface ports, which are the Accelerator Coherency Port (ACP), General
Purpose Ports (GP) and High Performance Ports (HP).

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

79

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=79
www.xilinx.com

Select the mmult and madd functions to be implemented in hardware. Clean and build the
project using the Debug configuration, which is selected by default.

Creating a Linux Project and Implementing APM

Open the SDSoC environment and create a new SDSoC Project using any platform or operating
system selection. Choose the Matrix Multiplication and Addition Template.

In the SDx Project Settings, check the option Insert AXI Performance Monitor. Enabling this
option and building the project adds the APM IP core to your hardware system. The APM IP uses
a small amount of resources in the programmable logic. SDSoC connects the APM to the
hardware/software interface ports, which are the Accelerator Coherency Port (ACP), General
Purpose Ports (GP) and High Performance Ports (HP).

Select the mmult and madd functions to be implemented in hardware. Clean and build the
project using the Debug configuration, which is selected by default.

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

80

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=80
www.xilinx.com

Monitoring the Standalone Instrumented System

After the build completes, connect the board to your computer and power up the board. Click
the Debug button to launch the application on the target. Switch to the Debug perspective.
After programming the PL and launching the ELF, the program halts in main. Click on
Window→Perspective.

Select Performance Analysis in the Open Perspective dialog and click OK.

Switch back to the SDx perspective.

Expand the Debug folder in the Project Explorer view. Right click the ELF executable and select
Debug As→Launch on Hardware (SDSoC Debugger). If you are prompted to relaunch the
application, click OK.

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

81

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=81
www.xilinx.com

Click Yes to switch to the Debug perspective. After the application launches and halts at a
breakpoint in the main function, switch back to the Performance Analysis perspective.

In the Debug view in the top left of the perspective, click on ARM Cortex-A9 MPCore #0.

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

82

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=82
www.xilinx.com

Next, click on the Start Analysis button, which opens the Performance Analysis Input dialog.

Check the box to Enable APM Counters. Click the Edit button to set up APM Hardware
Information.

Click the Load button in the APM Hardware Information dialog. Navigate to
workspace_path/project/Debug/_sds/p0/vpl and select the zc702.hdf file (zc702 is the
platform name used in this example - use your platform instead). Click Open, then click OK in
the APM Hardware Information dialog. Finally, click OK in the Performance Analysis Input
dialog.

The Analysis views open in the PL Performance tab. Click the Resume button to run the
application.

After your program completes execution, click the Stop Analysis button. If prompted by the
Confirm Perspective Switch dialog to stay in the Performance Analysis perspective, click No.

Scroll through the analysis plots in the lower portion of the perspective to view different
performance statistics. Click in any plot area to show a bigger version in the middle of the
perspective. The orange box below allows you to focus on a particular time slice of data.

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

83

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=83
www.xilinx.com

Monitoring the Linux Instrumented System

After the build completes, copy the contents of the sd_card directory onto an SD card, and
boot Linux on the board. Connect the board to your computer (both UART and JTAG cables). Set
up the Linux TCF agent target connection with the IP address of the board. Click the Debug
button to launch the application on the target. Switch to the Debug perspective. After launching
the ELF, the program halts in main.

Create a new Run Configuration by selecting Run→Run Configuration and double-clicking on
Xilinx C/C++ application (System Debugger). Ensure that the Debug Type is set to Attach to
running target, then click Run to close the Run Configurations window. Click Yes in the Conflict
dialog box that says "Existing launch configuration 'System Debugger on Local <your
project>.elf' conflicts with the newly launched configuration...".

Switch to the Performance Analysis perspective by clicking on Window→Open
Perspective→Other ...

Select Performance Analysis in the Open Perspective dialog and click OK.

Next, click on the Start Analysis button, which opens the Performance Analysis Input dialog.

Check the box to Enable APM Counters. Click the Edit button to set up APM Hardware
Information.

Click the Load button in the APM Hardware Information dialog. Navigate to
workspace_path/project/Debug/_sds/p0/vpl and select the zc702.hdf file (zc702 is the
platform name used in this example - use your platform instead). Click Open, then click OK in
the APM Hardware Information dialog. Finally, click OK in the Performance Analysis Input
dialog.

The Analysis views open in the PL Performance tab. Click the Resume button to run the
application.

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

84

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=84
www.xilinx.com

After your program completes execution, click the Stop Analysis button. If prompted by the
Confirm Perspective Switch dialog to stay in the Performance Analysis perspective, click No.

Scroll through the analysis plots in the lower portion of the perspective to view different
performance statistics. Click in any plot area to show a bigger version in the middle of the
perspective. The orange box below allows you to focus on a particular time slice of data.

Analyzing the Performance

In this system, the APM is connected to the two ports in use between the PS and the PL: the
Accelerator Coherency Port (ACP) and the general purpose AXI port (GP). The multiplier and
adder accelerator cores are both connected to the ACP for data input and output. The GP port is
used to issue control commands and get the status of the accelerator cores only, not for data
transfer. The blue Slot 0 is connected to the GP port, and the green Slot 1 is connect to the ACP.

The APM is configured in Profile mode with two monitoring slots, one for each: ACP and GP
ports. Profile mode provides event counting functionality for each slot. The type of statistics
computed by the APM for both reading and writing include:

• Transaction Count - Total number of requests that occur on the bus
• Byte Counter - Total number of bytes sent (used for write throughput calculation)
• Latency - Time from the start of the address issuance to the last element sent

The latency and byte counter statistics are used by the APM to automatically compute the
throughput (in mega-bytes per second: MB/sec). The latency and throughput values shown are
for a 50 millisecond (ms) time interval. Also, minimum, maximum, and averages are also
displayed for latency and throughput statistics.

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

85

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=85
www.xilinx.com

Troubleshooting

1. Incremental build flow - The SDSoC environment does not support any incremental build flow
using the trace feature. To ensure the correct build of your application and correct trace
collection, be sure to do a project clean first, followed by a build after making any changes to
your source code. Even if the source code you change does not relate to or impact any
function marked for hardware, you will see incorrect results.

2. Programming and bitstream - The trace functionality is a "one-shot" type of analysis. The
timer used for timestamping events is not started until the first event occurs and runs forever
afterwards. If you run your software application once after programming the bitstream, the
timer will be in an unknown state after your program is finished running. Running your
software for a second time will result in incorrect timestamps for events. Be sure to program
the bitstream first, followed by downloading your software application, each and every time
you run your application to take advantage of the trace feature. Your application will run
correctly a second time, but the trace data will not be correct. For Linux, you will need to
reboot because the bitstream is loaded during boot time by U-Boot.

3. Buffering up traces - In the SDSoC environment, traces are buffered up and read out in real-
time as the application executes (although at a slower speed than they are created on the
device), but are displayed after the application finishes in a post-processing fashion. This relies
on having enough buffer space to store traces until they can be read out by the host PC. By
default, there is enough buffer space for 1024 traces. After the buffer fills up, subsequent
traces that are produced are dropped and lost. An error condition is set when the buffer
overflows. Any traces created after the buffer overflows are not collected, and traces just prior
to the overflow might be displayed incorrectly.

4. Errors - In the SDSoC environment, traces are buffered up in hardware before being read out
over JTAG by the host PC. If traces are produced faster than they are consumed, a buffer
overflow event might occur. The trace infrastructure is cognizant of this and will set an error
flag that is detected during the collection on the host PC. After the error flag is parsed during
trace data collection, collection is halted and the trace data that was read successfully is
prepared for display. However, some data read successfully just prior to the buffer overflow
might appear incorrectly in the visualization.

After an overflow occurs, an error file is created in the <build_config>/_sds/trace directory
with the name in the following format: archive_DAY_MON_DD_HH_MM_SS_-GMT_YEAR_ERROR.
You must reprogram the device (reboot Linux, etc.) prior to running the application and
collecting trace data again. The only way to reset the trace hardware in the design is with
reprogramming.

Chapter 9: Hardware/Software Event Tracing

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

86

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=86
www.xilinx.com

SDSoC Pragma Specification
This section describes pragmas (directives) for the SDSoC system compilers sdscc/sds++ to
assist system optimization.

All pragmas specific to the SDSoC environment are prefixed with #pragma SDS and should be
inserted into C/C++ source code, either immediately prior to a function declaration or a function
call site.

There is no single dominant industry standard in wide use for compilers that target
heterogeneous embedded systems that employ hardware accelerators, but the pragmas and
pragma syntax has been defined to be consistent with standards like OpenACC. In a future
release, the SDSoC environment might adopt an industry standard pragmas should a suitable
standard become widely adopted. For more information about pragmas, refer to SDSoC
Environment Tutorial: Introduction (UG1253).

Data Transfer Size

The syntax for this pragma is:

#pragma SDS data copy|zero_copy(ArrayName[offset:length])

This pragma must be specified immediately preceding a function declaration, or immediately
preceding other #pragma SDS bound to the function declaration. This pragma applies to all the
callers of the bound function.

Chapter 10

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

87

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=87
www.xilinx.com

Some notes about the syntax:

• The copy implies that data is explicitly copied from the processor memory to the hardware
function. A suitable data mover as described in Improving System Performance performs
the data transfer. The zero_copy means that the hardware function accesses the data
directly from shared memory through an AXI4 bus interface. If no copy or zero_copy
pragma is specified to an array argument, the SDSoC compiler assumes the copy semantics.

• The [offset:length] part is optional. When this part is not specified, this pragma is only
used to select between copying the memory to/from the accelerator versus directly
accessing the memory by the accelerator. For the array size, the SDSoC compiler first
analyzes the callers to the accelerator function to determine the transfer size based on the
memory allocation APIs for the array (for example, malloc or sds_alloc etc.). If the analysis
fails, it checks the argument type to see if the argument type has a compile-time array size
and use that size as the data transfer size. If no data transfer size can be determined, the
compiler generates an error message so that the user can specify this pragma. If the data
size is different between the caller and callee, or different between multiple callers, the
compiler also generates an error message so that the user can correct the source code or
use this pragma to override the compiler analysis.

• For a multi-dimensional array, each dimension should be specified. For example, for a
2-dimensional array, use
ArrayName[offset_dim1:length_dim1][offset_dim2:length2_dim2]

• Multiple arrays can be specified in the same pragma, separated by a comma(,). For example,
use copy(ArrayName1[offset1:length1], ArrayName2[offset2:length2])

• ArrayName must be one of the formal parameters of the function definition, that is, not
from the prototype (where parameter names are optional) but from the function definition.

• offset is the number of elements from the first element in the corresponding dimension. It
must be a compile-time constant. This is currently ignored.

• length is the number of elements transferred for that dimension. It can be an arbitrary
expression as long as the expression can be resolved at runtime inside the function.

Example 1

The following code snippet shows an example of applying the "copy" pragma to the "A" and "B"
arguments of an accelerator function "foo" right before the function declaration:

#pragma SDS data copy(A[0:size*size], B[0:size*size])
void foo(int *A, int *B, int size)

The SDSoC system compiler will replace the body of the function "foo" with accelertor control,
data transfer, and data synchronization code. The following code snippet shows the data
transfer part:

void _p0_foo_0(int *A, int *B, int size)
{

...
cf_send_i(&(_p0_swinst_foo_0.A), A, (size*size) * 4, &_p0_request_0);
cf_receive_i(&(_p0_swinst_foo_0.B), B, (size*size) * 4, &_p0_request_1);
...

}

Chapter 10: SDSoC Pragma Specification

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

88

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=88
www.xilinx.com

As shown above, the pragma value "size*size" is used to tell the SDSoC runtime the number
of elements of array "A" and "B". The cf_send_i and cf_receive_i require the number of
bytes, so the compiler will multiply the "size*size" with the number of bytes for each element
(4 in this case). As shown in the example above, length need not be a compile-time constant; it
can be a C arithmetic expression involving other scalar arguments of the same function.

Example 2

The following code snippet shows an example of applying the "zero_copy" pragma instead of
the "copy" pragma above:

#pragma SDS data zero_copy(A[0:size*size], B[0:size*size])
void foo(int *A, int *B, int size)

The data transfer part of the replaced function body becomes:

cf_send_ref_i(&(_p0_swinst_foo_0.A), A, (size*size) * 4,
&_p0_request_0);

cf_receive_ref_i(&(_p0_swinst_foo_0.B), B, (size*size) * 4,
&_p0_request_1);

The cf_send_ref_i and cf_receive_ref_i mean only transfer the reference or pointer of the
array to the accelerator, and the accelerator will access the memory directly.

Example 3

The following code snippet illustrates a common mistake—using an argument name in the
function declaration that is different from the function definition:

"foo.h"
#pragma SDS data copy(in_A[0:1024])
void foo(int *in_A, int *out_B)

"foo.cpp"
#include "foo.h"
void foo(int *A, int *B)
{
...
}

This code will go through gcc without any problems. Actually, any C/C++ compiler will ignore
the argument name in the function declaration, because the C/C++ standard makes the
argument name in the function declaration optional. Only the argument name in the function
definition is used by the compiler. In case of SDSoC, it will issue a warning later:

WARNING: [DMAnalysis 83-4484] Cannot find argument in_A in accelerator
function foo(int *A, int *B)

Chapter 10: SDSoC Pragma Specification

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

89

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=89
www.xilinx.com

Memory Attributes

For an operating system like Linux that supports virtual memory, user-space allocated memory is
paged, which can affect system performance. SDSoC runtime also provides API to allocate
physically contiguous memory. The pragmas in this section can be used to tell the compiler
whether the arguments have been allocated in physically contiguous memory.

Physically Contiguous Memory

IMPORTANT: The syntax and implementation of this pragma might be revised in a future release.

The syntax for this pragma is:

#pragma SDS data mem_attribute(ArrayName:contiguity)

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration. This pragma applies to all
the callers of the function.

Some notes about the syntax:

• ArrayName must be one of the formal arguments of the function definition.
• Contiguity must be either PHYSICAL_CONTIGUOUS or NON_PHYSICAL_CONTIGUOUS.

The default value is set to be NON_PHYSICAL_CONTIGUOUS.

PHYSICAL_CONTIGUOUS means that all memory corresponding to the associated
ArrayName is allocated using sds_alloc, while NON_PHYSICAL_CONTIGUOUS means that
all memory corresponding to the associated ArrayName is allocated using malloc or as a
free variable on the stack. This helps the SDSoC compiler select the optimal data mover.

• Multiple arrays can be specified in one pragma, separated by commas.

Example 1

The following code snippet shows an example of specifying the contiguity attribute:

#pragma SDS data mem_attribute(A:PHYSICAL_CONTIGUOUS)
void foo(int A[1024], int B[1024])

In the above example, the user tells the SDSoC compiler that array A is allocated in the memory
block that is physically contiguous. The SDSoC compiler then chooses AXI_DMA_Simple instead
of AXI_DMA_SG, because the former is smaller and faster at transferring physically contiguous
memory.

Chapter 10: SDSoC Pragma Specification

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

90

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=90
www.xilinx.com

Data Access Pattern

The syntax for this pragma is:

#pragma SDS data access_pattern(ArrayName:pattern)

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration.

Some notes about the syntax:

• pattern can be either SEQUENTIAL or RANDOM, by default it is RANDOM

This pragma specifies the data access pattern in the hardware function. If a copy pragma has
been specified for an array argument, SDSoC checks the value of this pragma to determine the
hardware interface to synthesize. If the access pattern is SEQUENTIAL, a streaming interface (such
as ap_fifo) will be generated. Otherwise, with RANDOM access pattern, a RAM interface will be
generated. Refer to Data Motion Network Generation in SDSoC for the usage of this pragma in
data motion network generation in SDSoC.

Example 1:

The following code snippet shows an example of using this pragma for an array argument:

#pragma SDS data access_pattern(A:SEQUENTIAL)
void foo(int A[1024], int B[1024])

In the example shown above, a streaming interface will be generated for argument A, while a
RAM interface will be generated for argument B. The access pattern for argument A must be
A[0], A[1], A[2], ... , A[1023], and all elements must be accessed only once. On the other hand,
argument B can be accessed in a random fasion, and each element can be accessed zero or
more times.

Example 2:

The following code snippet shows an example of using this pragma for a pointer argument:

#pragma SDS data access_pattern(A:SEQUENTIAL)
void foo(int *A, int B[1024])

In the above example, if argument A is intended to be a streaming port, the two pragmas shown
must be applied. Without these, SDSoC synthesizes argument A as a register (IN, OUT, or INOUT
based on the usage of A in function foo).

Example 3:

The following code snippet shows the effect of zero_copy pragma (refer to Data Transfer Size)
on the access_pattern pragma:

#pragma SDS data zero_copy(A)
#pragma SDS data access_pattern(A:SEQUENTIAL)
void foo(int A[1024], int B[1024])

Chapter 10: SDSoC Pragma Specification

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

91

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=91
www.xilinx.com

In the above example, the access_pattern pragama is ignored. Once a zero_copy pragma has
been applied to an argument, the AXI4 interface will be synthesized for that argument. Please
refer to Zero Copy Data Mover for more details.

Data Mover Type

IMPORTANT: This pragma is not recommended for normal use. Only use this pragma if the compiler-
generated data mover type does not meet the design requirement.

The syntax for this pragma is:

#pragma SDS data data_mover(ArrayName:DataMover[:id])

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration. This pragma applies to all
the callers of the bound function.

Some notes about the syntax:

• Multiple arrays can be specified in one pragma, separated by a comma (,). For example:

#pragma SDS data data_mover(ArrayName:DataMover[:id],
ArrayName:DataMover[:id])

• ArrayName must be one of the formal parameters of the function.
• DataMover must be either AXIFIFO, AXIDMA_SG, or AXIDMA_SIMPLE.
• :id is optional, and id must be a positive integer.

This pragma specifies the data mover HW IP type used to transfer an array argument. By default,
the compiler chooses the type of the data automatically by analyzing the code. This pragma can
be used to override the compiler inference rules. Without the optional :id, the compiler
automatically assigns a data mover HW IP instance for transferring the corresponding array. The
:id can be used to override the compiler's choice and assign a specific data mover HW IP
instance for the associated formal parameter. If more than two formal parameters have the same
HW IP type and same id, they will share the same data mover HW IP instance.

There are some additional requirements for using AXIDMA_SIMPLE.

• The corresponding array must be allocated uisng sds_alloc().

Example 1

The following code snippet shows an example of specifying the data mover ID in the pragma:

#pragma SDS data data_mover(A:AXIDMA_SG:1, B:AXIDMA_SG:1)
void foo(int A[1024], int B[1024])

In the above example, the same AXIDMA_SG IP instance is shared to transfer data for arguments
A and B, because the same data mover ID has been specified.

Chapter 10: SDSoC Pragma Specification

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

92

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=92
www.xilinx.com

SDSoC Platform Interfaces to External Memory

IMPORTANT: The syntax and implementation of this pragma might be revised in a future release.

The syntax for this pragma is:

#pragma SDS data sys_port(ArrayName:port)

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration, and applies to all the callers
of the function.

Some notes about the syntax:

• ArrayName must be one of the formal arguments of the function definition.
• port must be ACP or AFI or MIG. The Zynq-7000 All Programmable SoC provides a cache

coherent interface between programmable logic and external memory (S_AXI_ACP) and
high-performance ports (S_AXI_HP) for non-cache coherent access (AFI). If no sys_port

pragma is specified for an array argument, the interface to external memory is determined
automatically by the SDSoC system compilers, based on array memory attributes (cacheable
or non-cacheable), array size, data mover used, etc. This pragma overrides the SDSoC
compiler choice of memory port. MIG is valid only for the zc706_mem platform.

• Multiple arrays can be specified in one pragma, separated by commas.

Example 1

The following code snippet shows an example of using this pragma:

#pragma SDS data sys_port(A:AFI)
void foo(int A[1024], int B[1024])

In the above example, if the caller passes an array allocated with malloc to A, the SDSoC
compiler uses the AFI platform interface, even though this might not be the optimal choice.

Hardware Buffer Depth

The syntax of this pragma is:

#pragma SDS data buffer_depth(ArrayName:BufferDepth)

IMPORTANT: The hardware interpretation of this pragma might be revised in a future release.

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration, and applies to all the callers
of the function.

Chapter 10: SDSoC Pragma Specification

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

93

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=93
www.xilinx.com

Some notes about the syntax:

• Multiple arrays can be specified in one pragma, separated by a comma(,). For example:

#pragma SDS data buffer_depth(ArrayName1:BufferDepth1,
ArrayName2:BufferDepth2)

• ArrayName must be one of the formal parameters of the function.
• BufferDepth must a compile-time constant value.
• This pragma applies only to arrays that map to BRAM or FIFO interfaces. For a BRAM-

mapped array, the value specifies hardware multi-buffer depth. For a FIFO-mapped array,
the value specifies the depth of the hardware FIFO allocated for the array. For this pragma,
the following must hold:

◦ BRAM: 1 ≤ BufferDepth ≤ 4, and 2 ≤ ArraySize ≤ 16384.

◦ FIFO: BufferDepth = 2n, where 4 ≤ n ≤ 20.

Asynchronous Function Execution

These two pragmas are paired to support manual control of the hardware function
synchronization.

The syntax of these pragmas is:

#pragma SDS async(ID)
#pragma SDS wait(ID)

The async pragma is specified immediately preceding a call to a hardware function, directing
the compiler not to automatically generate the wait based on data flow analysis.

The wait pragma must be inserted at an appropriate point in the program to direct the CPU to
wait until the associated async function call (same ID) has completed.

• The ID must be a compile time unsigned integer constant.
• In the presence of an async pragma, the SDSoC system compiler does not generate an
sds_wait() in the stub function for the associated call. The program must contain the
matching sds_wait(ID) or #pragma SDS wait(ID) at an appropriate point to synchronize
the controlling thread running on the CPU with the hardware function thread. An advantage
of using the #pragma SDS wait(ID) over the sds_wait(ID) function call is that the source
code can then be compiled by compilers other than sdscc (such as gcc that does not
interpret either async or wait pragmas).

Chapter 10: SDSoC Pragma Specification

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

94

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=94
www.xilinx.com

Example 1

The following code snippet shows an example of using these pragmas with the same ID to
pipeline the data transfer and accelerator execution:

for (int i = 0; i < pipeline_depth; i++) {
#pragma SDS async(1)
mmult_accel(A[i%NUM_MAT], B[i%NUM_MAT], C[i%NUM_MAT]);

}

for (int i = pipeline_depth; i < NUM_TESTS-pipeline_depth; i++) {
#pragma SDS wait(1)
#pragma SDS async(1)
mmult_accel(A[i%NUM_MAT], B[i%NUM_MAT], C[i%NUM_MAT]);

}
for (int i = 0; i < pipeline_depth; i++) {

#pragma SDS wait(1)
}

In the above example, the first loop ramps up the pipeline with a depth of pipeline_depth, the
second loop executes the pipeline, and the third loop ramps down the pipeline. The hardware
buffer depth (discussed in Hardware Buffer Depth) should be set to the same value as
pipeline_depth. The goal of this pipeline is to transfer data to the accelerator for the next
execution while the current execution is not finished. Refer to Increasing System Parallelism and
Concurrency for more information.

Example 2

The following code snippet shows an example of using these pragmas with different ID:

{
#pragma SDS async(1)
mmult(A, B, C);
#pragma SDS async(2)
mmult(D, E, F);
...
#pragma SDS wait(1)
#pragma SDS wait(2)

}

The program running on the hardware first transfers A and B to the mmult hardware and returns
immediately. Then the program transfers D and E to the mmult hardware and returns
immediately. When the program later executes to the point of #pragma SDS wait(1), it waits
for the output C to be ready. When the program later excutes to the point of #pragma SDS
wait(2), it waits for the output F to be ready.

Chapter 10: SDSoC Pragma Specification

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

95

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=95
www.xilinx.com

Specifying Resource Binding

This pragma can be used for function callsites to manually specify resource binding.

The syntax of the pragma is:

#pragma SDS resource(ID)

The resource pragma is specified immediately preceding a call to a hardware function,
directing the compiler to bind the caller to a specified accelerator instance.

The ID must be a compile time unsigned integer constant. For the same function, each unique
ID represents a unique instance of the hardware accelerator.

Example 1

The following code snippet shows an example of using this pragma with a different ID:

{
#pragma SDS resource(1)
mmult(A, B, C);
#pragma SDS resource(2)
mmult(D, E, F);
...

}

In the above example, the first call to mmult will be bound to an accelerator with an ID of 1, and
the second call to mmult will be bound to another accelerator with an ID of 2.

Specifying Partitions

The SDSoC system compilers sdscc/sds++ can automatically generate multiple bitstreams for a
single application that is loaded dynamically at run-time. Each bitstream has a corresponding
partition identifier. A platform might not support bitstream reloading, for example, due to
platform peripherals that cannot be shut down and then brought back up after reloading.

The syntax of this pragma is:

#pragma SDS partition(ID)

The partition pragma is specified immediately preceding a call to a hardware function,
directing the compiler to assign the implementation of the hardware function to the partition
ID.

• In the absence of a partition pragma, a hardware function is implemented in partition 0.
• ID must be a positive integer. Partition ID 0 is reserved.

Chapter 10: SDSoC Pragma Specification

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

96

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=96
www.xilinx.com

Example 1

The following example shows an example of using this pragma:

foo(a, b, c);
#pragma SDS partition (1)
bar(c, d);
#pragma SDS partition (2)
bar(d, e);

In this example, hardware function foo has no partition pragma, so it is implemented in partition
0. The first call to bar is implemented in partition 1, and the second bar is implemented in
partition 2.

A complete example showing the usage of this pragma can be found in
<install_path>/samples/file_io_manr_sobel_partitions.

Trace Monitoring

The syntax for this pragma is:

#pragma SDS monitor trace(var1[:SW|HW][,var2[:SW|HW]])

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration.

This pragma specifies the trace insertion for the accelerator with different granularity. The user
can set the var to be the accelerator function name or individual argument name. The kind of
trace can be either SW or HW or both. HW trace means the "start" and "stop" of the corresponding
hardware component, such as the "start" and "stop" of the hardware accelerator, or the "start of
data transfer" and "stop of data transfer" of the argument. SW trace means the stub command

for the accelerator and arguments.

Example 1

The following code snippet shows an example of using this pragma to trace the accelerator foo:

#pragma SDS monitor trace(foo)
void foo(int a, int b);

In the example shown above, both HW and SW traces are inserted for the accelerator foo.

Chapter 10: SDSoC Pragma Specification

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

97

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=97
www.xilinx.com

Example 2

The following code snippet shows an example of using this pragma to trace an argument.

#pragma SDS monitor trace(a, b:SW, c:HW)
void foo(int a, int b, int *c);

In the above example, both HW and SW traces are inserted for argument a. For argument b, only
the SW trace is inserted. For argument c, only the HW trace is inserted.

Chapter 10: SDSoC Pragma Specification

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

98

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=98
www.xilinx.com

SDSCC/SDS++ Compiler Commands and
Options

This section describes the SDSoC sdscc/sds++ compiler commands and options.

Name
sdscc – SDSoC C compiler

sds++ - SDSoC C++ compiler

Command Synopsis

sdscc | sds++ [hardware_function_options] [system_options]
[performance_estimation_options] [options_passed_through_to_cross_compiler]
[-mno-ir]
[-sds-pf platform_name] [-sds-pf-info platform_name] [-sds-pf-list]
[-sds-sys-config configuration name [-sds-proc processor_name]] [-target-os
os_name]
[-verbose] [-version] [--help] [files]

Hardware Function Options

[-sds-hw function_name file [-clkid clock_id_number] [-files file_list]
[-hls-tcl hls_tcl_directives_file] [-mno-lint] -shared-aximm –sds-end]*

Performance Estimation Options

[[-perf-funcs function_name_list -perf-root function_name] |
[-perf-est data_file][-perf-est-hw-only]]

Chapter 11

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

99

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=99
www.xilinx.com

System Options

[[-apm] [-disable-ip-cache] [-dm-sharing <0-3>] [-dmclkid clock_id_number]
[-emulation mode] [-impl-strategy <strategy>]
[-instrument-stub] [-maxthreads number] [-mno-bitstream][-mno-boot-files]
[-rebuild-hardware]
[-synth-strategy <strategy>] [-trace] [-trace-buffer depth] [-trace-no-sw]
[-maxjobs <number>] [-sdcard <data_directory>]]

The sdscc/sds++ compilers compile and link C/C++ source files into an application-specific
hardware/software system on chip implemented on a Zynq-7000 All Programmable SoC or Zynq
UltraScale+ MPSoC.

The command usage and options are identical for sdscc and sds++.

Options not recognized by sdscc are passed to the ARM cross-compiler. Compiler options
within an -sds-hw ... -sds-end clause are ignored for the -c foo.c option when foo.c is
not the file containing the specified hardware function.

When linking the application ELF, sdscc creates and implements the hardware system, and
generates an SD card image containing the ELF and boot files required to initialize the hardware
system, configure the programmable logic and run the target operating system.

When linking application ELF files for non-Linux targets, for example Standalone or FreeRTOS,
default linker scripts found in the folder <install_path>/platforms/<platform_name> are
used. If a user-defined linker script is required, it can be specified using the –Wl,-T

–Wl,<path_to_linker_script> linker option.

When building a system containing no functions marked for hardware implementation, sdscc
uses pre-built hardware when available for the target platform. To force bitstream generation,
use the -rebuild-hardware option.

Report files are found in the folder _sds/reports.

When running Linux applications that use shared libraries, the libraries must be contained in the
root file system or SD card, and the path to the libraries added to the LD_LIBRARY_PATH
environment variable.

Optional PL Configuration After Linux Boot

When sdscc/sds++ creates a bitstream .bin file in the sd_card folder, it can be used to
configure the PL after booting Linux and before running the application ELF. The
embedded Linux command used is cat bin_file > /dev/xdevcfg.

General Options

The following command line options are applicable to any sdscc invocation or display
information for the user.

Chapter 11: SDSCC/SDS++ Compiler Commands and Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

100

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=100
www.xilinx.com

-sds-pf platform_name

Specify the target platform that defines the base system hardware and software, including
operation system and boot files. The platform_name can be the name of a platform in the
SDSoC™ environment installation, or a file path to a folder containing platform files, with the last
component of the path matching the platform name. The platform defines the base hardware
and software, including operation system and boot files. Use this option when compiling
accelerator source files and when linking the ELF file. Use the –sds-pf-list option to list
available platforms.

-sds-pf-info platform_name

Display general information about a platform. Use the –sds-pf-list option to list available
platforms. The information displayed includes available system configurations that can be
specified with the -sds-sys-config system_configuration option.

-sds-pf-list

Display a list of available platforms and exit (no other options are specified). The information
displayed includes available system configurations that can be specified with the -sds-sys-

config system_configuration option.

-sds-sys-config configuration_name

Specify the system configuration that defines the software platform used, which includes the
target operating system and other settings. The -sds-pf-list and -sds-pfinfo options can
be used to list the available system configurations for a platform. When the -sds-sys-config

option is used, do not specify the -target-os option. If the -sds-sys-config option is not
specified, the default system configuration is used.

-sds-proc processor_name

Specify the processor name to use with the system configuration defined by the -sds-sys-

config option. A system configuration normally specifies a target CPU, and this option is not
required.

Chapter 11: SDSCC/SDS++ Compiler Commands and Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

101

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=101
www.xilinx.com

-target-os os_name

Specify the target operating system. The selected OS determines the compiler toolchain used,
and include file and library paths added by sdscc. os_name can be one of the following:

• linux : for the Linux OS. This is the default if the command line contains no -target-os

option
• standalone : for standalone or bare-metal applications
• freertos : for FreeRTOS

If the -sds-sys-config system_configuration option is specified, do not specify the -target-

os option, because a system configuration itself defines a target operating system. If you do not
specify the -sds-sys-config but do specify the -target-os option, SDSoC searches for a
system configuration with an OS that matches the one specified by -target-os.

-verbose

Print verbose output to STDOUT.

-version

Print the sdscc version information to STDOUT.

--help

Print command line help information. Note that two consecutive hyphen or dash characters -

are used.

The following command line options are applicable only to sdscc invocations used to compile a
source file.

-mno-ir

Suppress the generation of an intermediate representation (IR) for a source file that does not
contain hardware accelerators or their callers. This option is not used unless needed to override
an error condition during compilation of a specific source file (do not apply this option to every
source file), for example IR generation does not handle source files containing Zynq NEON
intrinsics. By default, an IR is created for each source file when it is compiled and used in the
analysis of the application program.

Chapter 11: SDSCC/SDS++ Compiler Commands and Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

102

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=102
www.xilinx.com

Hardware Function Options

Hardware function options provide a means to consolidate sdscc options within a Makefile to
simplify command line calls and make minimal modifications to a pre-existing Makefile. The
Makefile fragment below illustrates the use of –sds-hw blocks to collect all options in the
SDSFLAGS Makefile variable and to replace an original definition of CC with sdscc

${SDSFLAGS} or sds++ ${SDSFLAGS}. Thus the original Makefile for an application can be
converted to an sdscc/sds++ compiler Makefile with minimal changes.

APPSOURCES = add.cpp main.cpp
EXECUTABLE = add.elf

CROSS_COMPILE = arm-xilinx-linux-gnueabi-
AR = ${CROSS_COMPILE}ar
LD = ${CROSS_COMPILE}ld
#CC = ${CROSS_COMPILE}g++
PLATFORM = zc702
SDSFLAGS = -sds-pf ${PLATFORM} \

-sds-hw add add.cpp -clkid 1 -sds-end \
-dmclkid 2

CC = sds++ ${SDSFLAGS}

INCDIRS = -I..
LDDIRS =
LDLIBS =
CFLAGS = -Wall -g -c ${INCDIRS}
LDFLAGS = -g ${LDDIRS} ${LDLIBS}

SOURCES := $(patsubst %,../%,$(APPSOURCES))
OBJECTS := $(APPSOURCES:.cpp=.o)

.PHONY: all

all: ${EXECUTABLE}

${EXECUTABLE}: ${OBJECTS}
${CC} ${OBJECTS} -o $@ ${LDFLAGS}

%.o: ../%.cpp
${CC} ${CFLAGS} $<

-sds-hw function_name file [[-files file_list] [-hls-tcl
hls_tcl_directives_file] [-clkid <n>] [-mno-lint]] –sds-end

An sdscc command line may include zero or more –sds-hw blocks, and each block is associated
with a top-level hardware function specified as the first argument and its containing source file
specified as the second argument. If the file name associated with an -sds-hw block matches
the source file to be compiled, the options are applied. Options outside of –sds-hw blocks are
applied where applicable.

Chapter 11: SDSCC/SDS++ Compiler Commands and Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

103

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=103
www.xilinx.com

When using the AuvizCV library, the function_name is the template function instantiation
enclosed in double quotes, for example "auCanny<1080,1920,0,0,3,2,1,1,1>", and the file is the
source file containing the template function instantiation, for example au_canny_tb.cpp.

-clkid <n>

Set the accelerator clock ID to <n>, where <n> has one of the values listed in the table below.
(You can use the command sdscc –sds-pf-info platform_name to display the information
about a platform.) If the clkid option is not specified, the default value for the platform is used.
Use the command sdscc –sds-pf-list to list available platforms and settings.

Platform Value of <n>
0 – 166 MHz
1 – 142 MHz
2 – 100 MHz

zc702

3 – 200 MHz
0 – 166 MHz
1 – 142 MHz
2 – 100 MHz

zc706

3 – 200 MHz
0 – 166 MHz
1 – 142 MHz
2 – 100 MHz

zed and microzed

3 – 200 MHz
0 – 25 MHz
1 – 100 MHz
2 – 125 MHz

zybo

3 – 50 MHz
0 – 100 MHz
1 – 150 MHz
2 – 200 MHz

zcu102

3 – 300 MHz

-files file_list

Specify a comma-separated list (without white space) of one or more files required to compile
the current top-level function into hardware using Vivado® HLS. If any of these files contain
source code that is not used by HLS but is required to produce the application executable, they
must be compiled separately to create object files (.o), and linked with other object files during
the link phase.

When using the AuvizCV library, the -files option specifies the path to the source file
containing the function template definition, for example au_canny.hpp.

Chapter 11: SDSCC/SDS++ Compiler Commands and Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

104

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=104
www.xilinx.com

-hls-tcl hls_tcl_directives_file

When using the Vivado® HLS tool to synthesize the hardware accelerator, source the specified
Tcl file containing HLS directives. During HLS synthesis, sdscc creates a run.tcl file used to
drive the Vivado HLS tool and in this Tcl file, the following commands are inserted:

synthesis directives
create_clock -period <clock_period>
set_clock_uncertainty 27.0%
config_rtl -reset_level low
source <sdsoc_generated_tcl_directives_file>
end synthesis directives

If the -hls-tcl option is used, the user-defined Tcl file is sourced after the synthesis directives
generated by the SDSoC environment.

-mno-lint

Suppress the static analysis of hardware accelerator source files. This linting process checks for
potential errors or issues in the source file. This option should only be used if the analysis
prevents generation of the hardware accelerator and you are certain that you can continue.

-shared-aximm

Share AXIMM ports instead of enabling multiple ports.

Compiler Macros

Predefined macros allow you to guard code with #ifdef and #ifndef preprocessor statements;
the macro names begin and end with two underscore characters ‘_’. The __SDSCC__ macro is
defined whenever sdscc or sds++ is used to compile source files; it can be used to guard code
depending on whether it is compiled by sdscc/sds++ or another compiler, for example GCC.

When sdscc or sds++ compiles source files targeted for hardware acceleration using Vivado
HLS, the __SDSVHLS__ macro is defined to be used to guard code depending on whether high-
level synthesis is run or not.

Chapter 11: SDSCC/SDS++ Compiler Commands and Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

105

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=105
www.xilinx.com

The code fragment below illustrates the use of the __SDSCC__ macro to use the sds_alloc()

and sds_free() functions when compiling source code with sdscc/sds++, and malloc() and
free() when using other compilers.

#ifdef __SDSCC__
#include <stdlib.h>
#include "sds_lib.h"
#define malloc(x) (sds_alloc(x))
#define free(x) (sds_free(x))
#endif

In the example below, the __SDSVHLS__ macro is used to guard code in a function definition
that differs depending on whether it is used by Vivado HLS to generate hardware or used in a
software implementation.

#ifdef __SDSVHLS__
void mmult(ap_axiu<32,1,1,1> A[A_NROWS*A_NCOLS],

ap_axiu<32,1,1,1> B[A_NCOLS*B_NCOLS],
ap_axiu<32,1,1,1> C[A_NROWS*B_NCOLS])

#else
void mmult(float A[A_NROWS*A_NCOLS],

float B[A_NCOLS*B_NCOLS],
float C[A_NROWS*B_NCOLS])

#endif

System Options

-apm

Insert an AXI Performance Monitor (APM) IP block to monitor all generated hardware/software
interfaces. Within the SDSoC IDE, in the Debug Perspective, you can activate the APM prior to
running your application by clicking the Start button within the Performance Counters View. For
more information on the SDSoC IDE, see SDSoC Environment Tutorial: Introduction (UG1028).

-disable-ip-cache

Do not use a cache of pre-synthesized IP cores. The use of IP caching for synthesis reduces the
overall build time by eliminating the synthesis step for static IP cores. If the resources required
to implement the hardware system exceeds available resources by a small amount, the -

disable-ip-cache option forces SDSoC to synthesize all IP cores in the context of the design
and may reduce resource usage enough to enable implementation.

Chapter 11: SDSCC/SDS++ Compiler Commands and Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

106

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1028-sdsoc-intro-tutorial.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=106
www.xilinx.com

-dm-sharing <n>

The –dm-sharing <n> option enables exploration of data mover sharing capabilities if the initial
schedule can be relaxed. The level of sharing defaults to 0 (low) if not specified. Other values are
1 (medium), 2 (high) and 3 (maximum – schedule can be relaxed infinitely). For example, to
enable maximum data mover sharing, add the sdscc -dm-sharing 3 option.

-dmclkid <n>

Set the data motion network clock ID to <n>, where <n> has one of the values listed in the table
below. (You can use the command sdscc –sds-pf-info platform_name to display the
information about the platform.) If the dmclkid option is not specified, the default value for the
platform is used. Use the command sdscc –sds-pf-list to list available platforms and
settings.

Platform Value of <n>
0 – 166 MHz
1 – 142 MHz
2 – 100 MHz

zc702

3 – 200 MHz
0 – 166 MHz
1 – 142 MHz
2 – 100 MHz

zc706

3 – 200 MHz
0 – 166 MHz
1 – 142 MHz
2 – 100 MHz

zed and microzed

3 – 200 MHz
0 – 25 MHz
1 – 100 MHz
2 – 125 MHz

zybo

3 – 50 MHz
0 – 100 MHz
1 – 150 MHz
2 – 200 MHz

zcu102

3 – 300 MHz

Chapter 11: SDSCC/SDS++ Compiler Commands and Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

107

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=107
www.xilinx.com

-emulation <mode>

Generate files required to run emulation of the system using QEMU for the processing
subsystem and the Vivado Logic Simulator for the programmable logic. The <mode> specifies
the type of simulation models created for the PL, debug or optimized. In the same directory
that you ran sds++, type the command sdsoc_emulator to run the emulation in the current
shell.

-impl-strategy <strategy_name>

Specify the Vivado implementation strategy name to use instead of the default strategy, for
example Performance_Explore. The strategy name can be found in the Vivado Implementation
Settings dialog in the Strategy menu, and the strategies are described in Vivado Design Suite
User Guide: Implementation (UG904). When creating the Tcl file for synthesis and
implementation, this command is added: set_property strategy <strategy_name>
[get_runs impl_1].

-instrument-stub

The –instrument-stub option instruments the generated hardware function stubs with calls to
the counter function sds_clock_counter(). When a hardware function stub is instrumented,
the time required to call send and receive functions, as well as the time spent for waits, is
displayed for each call to the function.

-maxjobs <n>

The -maxjobs <n> option specifies the maximum number of jobs used for Vivado synthesis. The
default is the number of cores divided by 2.

-maxthreads <n>

The –maxthreads <n> option specifies the number of threads used in multithreading to speed
up certain tasks, including Vivado placement and routing. The number of threads can be an
integer from 1 to 8. The default value is 4, but the tools will not use more threads than the
number of cores on the machine. Also, a general limit based on the OS applies to all tasks.

Chapter 11: SDSCC/SDS++ Compiler Commands and Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

108

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug904-vivado-implementation.pdf;a=xImplementationCategoriesStrategyDescriptionsAndDirectiveMapping
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=108
www.xilinx.com

-mno-bitstream

Do not generate the bitstream for the design used to configure the programmable logic (PL).
Normally a bitstream is generated by running the Vivado implementation feature, which can be
time-consuming with runtimes ranging from minutes to hours depending on the size and
complexity of the design. This option can be used to disable this step when iterating over flows
that do not impact the hardware generation. The application ELF is compiled before bitstream
generation.

-mno-boot-files

Do not generate the SD card image in the folder sd_card. This folder includes your application
ELF and files required to boot the device and bring up the specified OS. This option disables the
creation of the sd_card folder in case you would like to preserve an earlier version of this folder.

-rebuild-hardware

When building a software-only design with no functions mapped to hardware, sdscc uses a pre-
built bitstream if available within the platform, but use this option to force a full system build.

-sdcard <data_directory>

Specify an optional directory containing additional files to include in the SD card image.

-synth-strategy <strategy_name>

Specify the Vivado synthesis strategy name to use instead of the default strategy, for example
Flow_RuntimeOptimized. The strategy name can be found in the Vivado Synthesis Settings
dialog in the Strategy menu, and the strategies are described in Vivado Design Suite User Guide:
Synthesis (UG901). When creating the Tcl file for synthesis and implementation, this command is
added: set_property strategy <strategy_name> [get_runs synth_1].

-trace

The –trace option inserts hardware and software infrastructure into the design to enable
tracing functionality.

Chapter 11: SDSCC/SDS++ Compiler Commands and Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

109

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug901-vivado-synthesis.pdf;a=xVivadoPreconfiguredStrategies
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=109
www.xilinx.com

-trace-buffer depth

The -trace-buffer option specifies the trace buffer depth, which must be at least 16 and a
power of 2. If this option is not specified, the default value of 1024 is used.

-trace-no-sw

The –trace-no-sw option inserts hardware trace monitors into the design without
instrumenting the software when enabling tracing functionality.

Compiler Toolchain Support

The SDSoC environment uses the same GNU ARM cross-compiler toolchains included with the
Xilinx Software Development Kit (SDK). The Linaro-based GCC compiler toolchains support the
Zynq®-7000 and Zynq UltraScale+™ family devices, and this section includes additional
information on toolchain usage that might be useful.

When compiling and linking applications, use only object files and libraries built using the same
compiler toolchain and options as those used by the SDSoC environment. All SDSoC provided
software libraries and software components (Linux kernel, root filesystem, BSP libraries, and
other pre-built libraries) are built with the included toolchains. If you use sdscc or sds++ to
compile object files, the tools automatically insert a small number of options, and if you invoke
the underlying toolchains, you must use the same options. For example, if you use a different
Zynq-7000 floating-point application binary interface (ABI), your binary objects are incompatible
and cannot be linked with SDSoC Zynq-7000 binary objects and libraries.

The table below summarizes sdscc and sds++ usage of Zynq-7000 toolchains and options.
Where options are listed, you only need to specify them if you use the toolchain gcc and g++
commands directly instead of invoking sdscc and sds++.

Usage Description
Zynq-7000 ARM bare-metal compiler
and linker options

-mcpu=cortex-a9 -mfpu=vfpv3 -mfloat-abi=hard

Zynq-7000 ARM bare-metal linker
options

-Wl,--build-id=none -specs=<specfile>

where the <specfile> contains

*startfile:

crti%O%s crtbegin%O%s

Zynq-7000 ARM bare-metal compiler ${SDSOC_install}/SDK/gnu/aarch32/<host>/gcc-
arm-none-eabi/bin

Toolchain prefix: arm-none-eabi

gcc executable: arm-none-eabi-gcc

Chapter 11: SDSCC/SDS++ Compiler Commands and Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

110

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=110
www.xilinx.com

Usage Description
g++ executable: arm-none-eabi-g++

Zynq-7000 SDSoC bare-metal software
(lib, include)

${SDSOC_install}/aarch32-none

Zynq-7000 ARM Linux compiler ${SDSOC_install}/SDK/gnu/aarch32/<host>/gcc-
arm-linux-gnueabi/bin

Toolchain prefix: arm-linux-gnueabihf-

gcc executable: arm-linux-gnueabihf-gcc

g++ executable: arm-linux-gnueabihf-g++
Zynq-7000 SDSoC Linux software (lib,
include)

${SDSOC_install}/aarch32-linux

The table below summarizes sdscc and sds++ usage of Zynq UltraScale+ Cortex-A53 toolchains
and options. Where options are listed, you only need to specify them if you use the toolchain
gcc and g++ commands directly instead of invoking sdscc and sds++.

Usage Description
Zynq UltraScale+ ARM bare-metal compiler
and linker options

Use default options

Zynq UltraScale+ ARM bare-metal linker
options

-Wl,--build-id=none

Zynq UltraScale+ ARM bare-metal compiler ${SDSOC_install}/SDK/gnu/
aarch64/<host>/aarch64-none/bin

Toolchain prefix: aarch64-none-elf

gcc executable: aarch64-none-elf-gcc

g++ executable: aarch64-none-elf-g++
Zynq UltraScale+ SDSoC bare-metal software
(lib, include)

${SDSOC_install}/aarch64-none

Zynq UltraScale+ ARM Linux compiler ${SDSOC_install}/SDK/gnu/
aarch64/<host>/aarch64-linux/bin

Toolchain prefix: aarch64-linux-gnu-

gcc executable: aarch64-linux-gnu-gcc

g++ executable: aarch64-linux-gnu-g++
Zynq UltraScale+ SDSoC Linux software (lib,
include)

${SDSOC_install}/aarch64-linux

The table below summarizes sdscc and sds++ usage of Zynq UltraScale+ Cortex-R5 toolchains
and options. Where options are listed, you only need to specify them if you use the toolchain
gcc and g++ commands directly instead of invoking sdscc and sds++.

Chapter 11: SDSCC/SDS++ Compiler Commands and Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

111

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=111
www.xilinx.com

Usage Description
Zynq UltraScale+ ARM bare-metal compiler
and linker options

Use default options

Zynq UltraScale+ ARM bare-metal linker
options

-Wl,--build-id=none

Zynq UltraScale+ ARM bare-metal compiler ${SDSOC_install)/SDK/gnu/armr5/<host>/gcc-
arm-none-eabi/bin

Toolchain prefix: armr5-none-eabi

gcc executable: armr5-none-eabi-gcc

g++ executable: armr5-none-eabi-g++
Zynq UltraScale+ SDSoC bare-metal
software (lib, include)

${SDSOC_install}/armr5-none

When using sdscc and sds++ to compile Zynq-7000 source files, be aware that SDSoC tools that
process and analyze source files issue errors if they contain NEON instrinsics. If hardware
accelerator (or caller) source files contain NEON intrinsics, guard them using the __SDSCC__ and
__SDSVHLS__ macros. For source files that don't contain hardware accelerators or callers but do
use NEON intrinsics, you can either compile them directly using the GNU toolchain and link the
objects with sds++, or you can add the sdscc/sds++ command line option -mno-ir for these
source files. The option prevents clang-based tools from being invoked to create an
intermediate representation (IR) used in analysis, because we know they are not required (i.e., no
accelerators or callers). For the latter solution, if you are using the SDSoC environment, you can
apply the option on a per-file basis by right-clicking the source file, select Properties and go to
the Settings dialog under C/C++ Build Settings→Settings.

Chapter 11: SDSCC/SDS++ Compiler Commands and Options

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

112

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=112
www.xilinx.com

Exporting a Library for GCC
This chapter demonstrates how to use the sdscc/sds++ compiler to build a library with entry
points into hardware functions implemented in programmable logic. This library can later be
linked into applications using the standard GCC linker for Zynq®-7000 All Programmable SoCs.
In addition to the library, sdscc generates a complete boot image that includes an FPGA
bitstream containing the hardware functions and data motion network. You can then develop
software applications that call into the hardware functions (and fixed hardware) using the
standard GCC toolchains. Such code will compile quickly and will not change the hardware. You
are still targeting the same hardware system and using the sdscc-generated boot environment,
but you are then free to develop your software using the GNU toolchain in the software
development environment of your choice.

NOTE: In the current SDSoC release, libraries are not thread-safe, so they must be called into from a single
thread within an application, which could consist of many threads and processes.

NOTE: In the current SDSoC release, shared libraries can be created only for Linux target applications.

Building a Shared Library

To build a shared library, sdscc requires at least one accelerator. This example provides three
entry points into two hardware accelerators: a matrix multiplier and a matrix adder. You can find
these files in the samples/libmatrix/build directory.

• mmult_accel.cpp – Accelerator code for the matrix multiplier
• mmult_accel.h – Header file for the matrix multiplier
• madd_accel.cpp – Accelerator code for the matrix adder
• madd_accel.h – Header file for the matrix adder
• matrix.cpp – Code that calls the accelerators and determines the data motion network
• matrix.h – Header file for the library

The matrix.cpp file contains functions that define the accelerator interfaces as well as how the
hardware functions communicate with the platform (i.e., the data motion networks between
platform and accelerators). The function madd calls a single matrix adder accelerator, and the
function mmult calls a single matrix multiplier accelerator. Another function mmultadd is
implemented using two hardware functions, with the output of the matrix multiplier connected
directly to the input of the matrix adder.

/* matrix.cpp */
#include "madd_accel.h"

Chapter 12

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

113

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=113
www.xilinx.com

#include "mmult_accel.h"

void madd(float in_A[MSIZE*MSIZE], float in_B[MSIZE*MSIZE], float
out_C[MSIZE*MSIZE])
{

madd_accel(in_A, in_B, out_C);
}

void mmult(float in_A[MSIZE*MSIZE], float in_B[MSIZE*MSIZE], float
out_C[MSIZE*MSIZE])
{

mmult_accel(in_A, in_B, out_C);
}

void mmultadd(float in_A[MSIZE*MSIZE], float in_B[MSIZE*MSIZE], float
in_C[MSIZE*MSIZE],
float out_D[MSIZE*MSIZE])
{

float tmp[MSIZE * MSIZE];

mmult_accel(in_A, in_B, tmp);
madd_accel(tmp, in_C, out_D);

}

The matrix.h file defines the function interfaces to the shared library, and will be included in
the application source code.

/* matrix.h */
#ifndef MATRIX_H_
#define MATRIX_H_

#define MSIZE 16

void madd(float in_A[MSIZE*MSIZE], float in_B[MSIZE*MSIZE], float
out_C[MSIZE*MSIZE]);

void mmult(float in_A[MSIZE*MSIZE], float in_B[MSIZE*MSIZE], float
out_C[MSIZE*MSIZE]);

void mmultadd(float in_A[MSIZE*MSIZE], float in_B[MSIZE*MSIZE], float
in_C[MSIZE*MSIZE],
float out_D[MSIZE*MSIZE]);

#endif /* MATRIX_H_ */

The Makefile shows how the project is built by specifying that the functions mmult_accel,
madd, and mmult_add must be implemented in programmable logic.

SDSFLAGS = \
-sds-pf ${PLATFORM} \
-sds-hw mmult_accel mmult_accel.cpp -sds-end \
-sds-hw madd_accel madd_accel.cpp -sds-end

As is the case for normal shared libraries, object files are generated with position independent
code (-fpic option).

Chapter 12: Exporting a Library for GCC

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

114

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=114
www.xilinx.com

sds++ ${SDSFLAGS} -c -fpic –o mmult_accel.o mmult_accel.cpp
sds++ ${SDSFLAGS} -c -fpic –o madd_accel.o madd_accel.cpp
sds++ ${SDSFLAGS} -c -fpic –o matrix.o matrix.cpp

To link the objects files we also follow the standard method and use the –shared switch.

sds++ ${SDSFLAGS} -shared -o libmatrix.so mmult_accel.o madd_accel.o
matrix.o

After building the project, these files will be generated

• libmatrix.so – Shared library suitable for linking using GCC and for runtime use
• sd_card – Directory containing an SD card image for booting the board

Delivering a Library

The following structure allows compiling and linking into applications using GCC in standard
ways.

<path_to_library>/include/matrix.h
<path_to_library>/lib/libmatrix.so
<path_to_library>/sd_card

NOTE: The sd_card folder is to be copied into an SD card and used to boot the board. This image includes a
copy of the libmatrix.so file that is used at runtime.

Compiling and Linking Against a Library

The following is an example of using the library with a GCC compiler. The library is used by
including the header file matrix.h and then calling the necessary library functions.

/* main.cpp (pseudocode) */
#include "matrix.h"

int main(int argc, char* argv[])
{

float *A, *B, *C, *D;
float *J, *K, *L;
float *X, *Y, *Z;
...
mmultadd(A, B, C, D);
...
mmult(J, K, L);
...
madd(X, Y, Z);
...

}

Chapter 12: Exporting a Library for GCC

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

115

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=115
www.xilinx.com

To compile against a library, the compiler needs the header file. The path to the header file is
specified using the -I switch. You can find example files in the samples/libmatrix/use

directory.

NOTE: For explanation purposes, the code above is only pseudocode and not the same as the main.cpp file
in the directory. The file has more code that allows full compilation and execution.

gcc –I <path_to_library>/include –o main.o main.c

To link against the library, the linker needs the library. The path to the library is specified using
the -L switch. Also, ask the linker to link against the library using the -l switch.

gcc –I <path_to_library>/lib –o main.elf main.o -lmatrix

For detailed information on using the GCC compiler and linker switches refer to the GCC
documentation.

Use a library at runtime

At runtime, the loader will look for the shared library when loading the executable. After booting
the board into a Linux prompt and before executing the ELF file, add the path to the library to
the LD_LIBRARY_PATH environment variable. The sd_card created when building the library
already has the library, so the path to the mount point for the sd_card must be specified.

For example, if the sd_card is mounted at /mnt, use this command:

export LD_LIBRARY_PATH=/mnt

Exporting a Shared Library

The following steps demonstrate how to export an SDSoC environment shared library with the
corresponding SD card boot image using the SDSoC environment GUI.

1. Select File→New→SDSoC Project to bring up the New Project dialog box.
2. Create a new SDSoC project.

a. Type libmatrix in the Project name field.

b. Select Platform to be zc702.

c. Put a checkmark on the Shared Library checkbox.

d. Click Next.

3. Choose the application template.

a. Select Matrix Shared Library from the Available Templates.

b. Click Finish.

Chapter 12: Exporting a Library for GCC

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

116

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=116
www.xilinx.com

A new SDSoc shared library application project called libmatrix is created in the Project
Explorer view. The project includes two hardware functions mmult_accel and madd_accel

that are visible in the SDSoC Project Overview.

4. Build the library.

a. In the Project Explorer view, select the libmatrix project.

b. Select Project→Build Project.

After the build completes, there will be a boot SD card image under the Debug (or current
configuration) folder.

Chapter 12: Exporting a Library for GCC

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

117

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=117
www.xilinx.com

Compiling Your OpenCL Kernel Using the
Xilinx OpenCL Compiler (xocc)

The Xilinx® OpenCL™ Compiler (xocc) is a standalone command line utility for compiling an
OpenCL kernel supporting all flows in the SDSoC™ environment. It provides a mechanism for
command line users to compile their kernels, which is ideal for compiling host applications and
kernels using a makefile.

Following are details of xocc command line format and options.

Syntax:

xocc [options] <input_file>

Table 3: XOCC Options

Option Valid Values Description

--platform <arg> Supported acceleration platforms
by Xilinx and third-party board
partners

Required

Set target Xilinx device. See
SDx Environments Release
Notes, Installation, and
Licensing Guide (UG1238) for
all supported devices.

--list_xdevices N/A Lists the supported devices.

--target <arg> [sw_emu | hw_emu | hw] Specify a compile target.

• sw_emu: CPU emulation
• hw_emu: Hardware

emulation
• hw: Hardware

Default: hw

NOTE: Without the -c or -l
option, xocc is run in build
mode, an .xclbin file is
generated.

--compile N/A Optional

Chapter 13

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

118

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=118
www.xilinx.com

Option Valid Values Description

Run xocc in compile mode,
generate .xo file.

--link N/A Optional

Run xocc in link mode, link
.xo input files, generate
.xclbin file.

--kernel <arg> Kernel to be compiled from the
input .cl or .c/.cpp kernel
source code

Required for C/C++ kernels

Optional for OpenCL kernels

Compile/build only the
specified kernel from the
input file. Only one -k
option is allowed per
command.

NOTE: When an OpenCL kernel
is compiled without the -k
option, all the kernels in the
input file are compiled.

--output <arg> File name with .xo or .xclbin
extension depending on mode

Optional

Set output file name.

Default:

a.xo for compile mode

a.xclbin for link and build
mode

--version N/A Prints the version and build
information.

--help N/A Print help.

--define <arg> Valid macro name and definition
pair

<name>=<definition>

Predefine name as a macro
with definition. This option is
passed to the openCL
preprocessor.

--include <arg> Directory name that includes
required header files

Add the directory to the list
of directories to be searched
for header files. This option
is passed to the SDSoC
compiler preprocessor.

--kernel_frequency Frequency (MHz) of the kernel. Sets a user defined clock
frequency in MHz for a the

Chapter 13: Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

119

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=119
www.xilinx.com

Option Valid Values Description
kernel overriding a default
value from the DSA.

--nk <arg> <kernel_name>:
<compute_units>

(for example, foo:2)

N/A in compile mode

Optional in link mode

Instantiate the specified
number of compute units for
the given kernel in the
.xclbin file.

Default: One compute unit
per kernel.

--pk <arg> [kernel_name|all] :
[none|stream|pipe|memory]

Optional

Set a stall profile type for the
given kernel(s)

Default: none

--max_memory_ports
<arg>

[all | <kernel_name>] Optional

Set the maximum memory
port property for all kernels
or a given kernel.

--
memory_port_data_width
<arg>

[all | <kernel_name>]:<width> Set the specified memory
port data width for all
kernels or a given kernel.
Valid width values are 32, 64,
128, 256, and 512.

--optimize<arg> Valid optimization levels: 0, 1, 2,
3, s, quick

example: --optimize2

These options control the
default optimizations
performed by the Vivado®
hardware synthesis engine.

NOTE: Familiarity with the
Vivado tool suite is
recommended in order to make
the most use of these settings.

• 0: Default optimization.
Reduce compilation
time and make
debugging produce the
expected results.

Chapter 13: Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

120

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=120
www.xilinx.com

Option Valid Values Description

• 1: Optimize to reduce
power consumption.
This takes more time to
compile the design.

• 2: Optimize to increase
kernel speed. This
option increases both
compilation time and
the performance of the
generated code.

• 3: This is the highest
level of optimization.
This option provides the
highest level
performance in the
generated code, but
compilation time may
increase considerably.

• s: Optimize for size. This
reduces the logic
resources for the kernel

• quick: Quick
compilation for fast run
time. This may result in
reduced performance
and a greater use of
resources in the
hardware
implementation.

--xp Refer to the following table, XP
Parameters.

Specify detailed parameter
and property settings in the
Vivado tool suite used to
implement the FPGA
hardware.

NOTE: Familiarity with the
Vivado tool suite is
recommended in order to make
the most use of these
parameters.

--debug N/A Generate code for
debugging.

--log N/A Creates a log for in the
current working directory.

--message-rules <arg> Message rule file name Optional -

Chapter 13: Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

121

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=121
www.xilinx.com

Option Valid Values Description

Specify a message rule file
with message controlling
rules. See Using the Message
Rule File chapter for more
details.

--report <arg> Generate [estimate | system]
reports

Generate a report type
specified by <arg>.

estimate: Generate estimate
report in
report_estimate.xtxt

system: Generate the
estimate report and detailed
hardware reports in report
directory

--save-temps N/A Save intermediate files/
directories created during
the compilation and build
process.

--report_dir <arg> Directory Specify a report directory. If
the --report option is
specified, the default is to
generate all reports in the
current working directory
(cwd).

--log_dir <arg> Directory Specify a log directory. If the
--log option is specified, the
default is to generate the
log file in the current
working directory (cwd).

--temp_dir <arg> Directory Specify a log directory. If the
--save-temps option is
specified, the default is to
create the temporary
compilation and build files in
the current working
directory (cwd).

--export_script N/A This option allows detailed
control of the Vivado tool
suite used to implement the
FPGA hardware.

Chapter 13: Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

122

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=122
www.xilinx.com

Option Valid Values Description

NOTE: Familiarity with the
Vivado tool suite is
recommended in order to make
the most use of the Tcl file
generated by this option.

Generates the Tcl script used
to execute Vivado HLS
<kernel_name>.tcl but
halts before Vivado HLS
starts. The expectation is for
the script to be modified
and used with the --

custom_script option.

Not supported for –t
sw_emu with OpenCL kernels.

--custom_script <kernel_name>:<path to
kernel Tcl file>

Intended for use with the
<kernel_name>.tcl file
generated with option
–export_script.

This option allows you to
customize the Tcl file used
to create the kernel and
execute using the customize
version of the script.

--jobs <arg> Number of parallel jobs Optional

This option allows detailed
control of the Vivado tool
suite used to implement the
FPGA hardware.

NOTE: Familiarity with the
Vivado tool suite is
recommended in order to make
the most use of the Tcl file
generated by this option.

Chapter 13: Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

123

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=123
www.xilinx.com

Option Valid Values Description

Specify the number of
parallel jobs to be passed to
the Vivado tool suite for
implementation. Increasing
the number of jobs allows
the hardware
implementation step to
spawn more parallel
processes and complete
faster.

--lsf <arg> bsub command line to pass to
LSF cluster

NOTE: This argument is required.

Optional

Use IBM Platform Load
Sharing Facility (LSF) for
Vivado implementation.

input file OpenCL or C/C++ kernel source
file

Compile kernels into a .xo

or .xclbin file depending
on the xocc mode.

--sp <kernel_compute_unit_name>.

<kernel_port>:<system_port>

(for example,
k1.M_AXI_GMEM:bank0)

Supported for unified
platform. System port
mapping. This will replace
map_connect for unified
platform.

--clkid index number Supported for unified
platform. Passes the index
number to sdx_link. Each
index available from selected
platform has a different
default clock frequency.

--remote_ip_cache directory Supported for unified
platform. Specify a location
for a remote IP cache.
Passed to vpl.

--no_ip_cache X Display verbose/debug
information (including
output from Vivado runs).

IMPORTANT: All examples in the SDSoC installation use Makefile to compile OpenCL applications with gcc
and xocc commands, which can be used as references for compiling user applications using xocc.

Chapter 13: Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

124

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=124
www.xilinx.com

XP Parameters

Use the --xp switch to specify parameter values in SDSoC™. These parameters allow fine grain
control over the hardware generated by SDSoC and the hardware emulation process.

IMPORTANT: Familiarity with the Vivado™ tool suite is recommended in order to make the most use of
these parameters.

Parameters are specified as parm:<parameter>=<value>. For example:

xocc –xp param:compiler.enableDSAIntegrityCheck=true
–xp param:prop:kernel.foo.kernel_flags="-std=c++0x"

The –xp command option may be specified multiple times in a single xocc invocation, or the
value(s) may be specified in a xocc.ini file with each option specified on a separate line
(without --xp switch).

param:prop:solution.device_repo_paths=../dsa
param:compiler.preserveHlsOutput=1

Upon invocation, xocc first looks for an xocc.ini file in the $HOME/.Xilinx/sdx directory. If
the file does not exist there, xocc will then look for it in the current working directory. If the
same --xp parameter value is specified in both the command line and xocc.ini file, the
command line value will be used.

The following table lists the –xp parameters and their values.

Table 4: XP Parameters

Parameter Name Type Default
Value

Description

param:compiler.
enableDSAIntegrityCheck

Boolean False Enables the DSA Integrity Check.

If this value is set to True, and SDSoC
detects a DSA which has been modified
outside the of the Vivado® tool suite
SDSoC halts operation.

param:compiler.
errorOnHoldViolation

Boolean True Error out if there is hold violation.

param:compiler.
maxComputeUnits

Int -1 The maximum compute units allowed in
the system. Any positive value will
overwrite the numComputeUnits
setting in the DSA.

param:hw_em.debugLevel String OFF The debug level of the simulator.
Option OFF is used for optimized run
times, BATCH is for batch runs and GUI
for use in GUI-mode

param:hw_em.
enableProtocolChecker

Boolean False Enables the AXI protocol checker during
HW emulation. This is used to confirm

Chapter 13: Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

125

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=125
www.xilinx.com

Parameter Name Type Default
Value

Description

the accuracy of any AXI interfaces in the
design.

param:compiler.
interfaceLatency

Int -1 This option specifies the expected
latency on the kernel AXI bus, the
number of clock cycles from when bus
access is requested until it is granted.

param:compiler.
xclDataflowFifoDepth

Int -1 Specifies the depth of FIFOs used in
kernel dataflow region.

param:compiler.
interfaceWrOutstanding

Int
Range

0 Specifies how many outstanding writes
to buffer are on the kernel AXI
interface. Values are 1 through 256.

param:compiler.
interfaceRdOutstanding

Int
Range

0 Specifies how many outstanding reads
to buffer are on the kernel AXI
interface. Values are 1 through 256.

param:compiler.
interfaceWrBurstLen

Int
Range

0 Specifies the expected length of AXI
write bursts on the kernel AXI interface.
This is used with option
compiler.interfaceWrOutstanding to
determine the hardware buffer sizes.
Values are 1 through 256.

param:compiler.
interfaceRdBurstLen

Int
Range

0 Specifies the expected length of AXI
read bursts on the kernel AXI interface.
This is used with option
compiler.interfaceRdOutstanding to
determine the hardware buffer sizes.
Values are 1 through 256.

misc:map_connect=<type>.
kernel.<kernael_name>.
<kernel_AXI_interface>.core.
OCL_REGION_0.<dest_port>

String <empty> Used to map AXI interfaces from a
kernel to DDR memory banks.

• <type> is add or remove.

• <kernel_name> is the name of the
kernel.

• <dest_port> is DDR memory bank
M00_AXI, M01_AXI, M02_AXI or
M03_AXI.

prop:kernel.<kernel_name>.
kernel_flags

String <empty> Sets specific compile flags on kernel
<kernelk_name>. e.g.

prop:solution.
device_repo_path

String <empty> Specifies the path to the DSA
repository.

Chapter 13: Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

126

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=126
www.xilinx.com

Parameter Name Type Default
Value

Description

prop:solution.hls_pre_tcl String <empty> Specifies the path to a Vivado HLS Tcl
file, which is executed before the C
code is synthesized. This allows Vivado
HLS configuration settings to be
applied prior to synthesis.

prop:solution.hls_post_tcl String <empty> Specifies the path to a Vivado HLS Tcl
file, which is executed after the C code
is synthesized.

prop:solution.
kernel_compiler_margin

Float 12.5%
of the
kernel
clock
period.

The clock margin in ns for the kernel.
This value is substracted from the
kernel clock period prior to synthesis to
provide some margin for P&R delays.

vivado_prop:<object_type>.
<object_name>.<prop_name>

Various Various This allows you to specify any property
used in the Vivado hardware
compilation flow.

Object_type is run|fileset|file|project

The object_name and prop_name

values are described in Vivado Design
Suite Properties Reference Guide,
(UG912)

Examples:

vivado_prop:run.impl_1.
{STEPS.PLACE_DESIGN.ARGS.MORE
OPTIONS}={-fanout_opt}

vivado_prop:fileset.
current.top=foo

NOTE: For object_type file, current is not
supported

NOTE: For object type run the special value
of __KERNEL__ can be used to specify run
optimization settings for ALL kernels, instead
of having to specify them one by one

Chapter 13: Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

127

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug912-vivado-properties.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=127
www.xilinx.com

Running Software and Hardware Emulation in XOCC
Flow

In the XOCC/Makefile flow, users manage compilation and execution of host code and kernels
outside the Xilinx® SDSoC™ development environment. Follow the steps below to run software
and hardware emulation:

1. Create the emulation configuration file.

For software or hardware emulation, the runtime library needs to know what devices and
how many to emulate. This information is provided to the runtime library by an emulation
configuration file. SDSoC provides a utility, emconfigutil to automate creation of the
emulation configuration file. The following are details of the emconfigutil command line
format and options:

Option Valid Values Description
--xdevice Target device Required: Set target device. Check Appendix B for all

supported devices

--nd Any positive
integer

Optional: Number of devices. Default is 1.

--od Valid directory Optional: Output directory, emconfig.json file
must be in the same directory as the host
executable.

--xp Valid Xilinx
parameters and
properties

Optional: Specify additional parameters and
properties. For example:

--xp

prop:solution.device_repo_paths=my_dsa_path

Sets the search path for the device specified in --
xdevice option.

-h NA Print help messages

The emconfigutil command creates the configuration file emconfig.json in the output
directory.

The emconfig.json file must be in the same directory as the host executable.

The following example creates a configuration file targeting two xilinx:adm-

pcie-7v3:1ddr:3.0 devices.

$emconfigutil --xdevice xilinx:adm-pcie-7v3:1ddr:3.0 --nd 2

2. Set XILINX_SDX environment variable

Chapter 13: Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

128

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=128
www.xilinx.com

The XILINX_SDX environment needs to be set and pointed to the SDSoC installation path for
the emulation to work. Below are examples assuming SDSoC is installed in /opt/Xilinx/

SDx/2017.2

C Shell:

setenv XILINX_SDX /opt/Xilinx/SDx/2017.2

Bash:

export XILINX_SDX=/opt/Xilinx/SDx/2017.2

3. Set emulation mode

Setting XCL_EMULATION_MODE environment variable to sw_emu or hw_emu changes the
application execution to emulation mode (sw_emu for software emulation and hw_emu for
hardware emulation) so that the runtime looks for the file emconfig.json in the same
directory as the host executable and reads in the target configuration for the emulation runs.

C Shell:

setenv XCL_EMULATION_MODE sw_emu

Bash:

export XCL_EMULATION_MODE=sw_emu

Unsetting the XCL_EMULATION_MODE environment variable will turn off the emulation mode.

4. Run CPU and hardware emulation

With the configuration file emconfig.json and XCL_EMULATION_MODE set to true, execute
the host application with proper arguments to run CPU and hardware emulation:

$./host.exe kernel.xclbin

Chapter 13: Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

129

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=129
www.xilinx.com

SDSoC Environment API
This chapter describes functions in sds_lib available for applications developed in the SDSoC
environment.

NOTE: To use the library, #include "sds_lib.h" in source files. You must include stdlib.h before
including sds_lib.h to provide the size_t type declaration.
The SDSoC™ environment API provides functions to map memory spaces, and to wait for
asynchronous accelerator calls to complete.

void sds_wait(unsigned int id)

Wait for the first accelerator in the queue identified by id, to complete. The recommended
alternative is the use #pragma SDS wait(id), as described in Asynchronous Function
Execution.

void *sds_alloc(size_t size)

Allocate a physically contiguous array of size bytes.

void *sds_alloc_non_cacheable(size_t size)

Allocate a physically contiguous array of size bytes that is marked as non-cacheable.
Memory allocated by this function is not cached in the processing system. Pointers to this
memory should be passed to a hardware function in conjunction with

#pragma SDS data mem_attribute (p:NON_CACHEABLE)

void sds_free(void *memptr)

Free an array allocated through sds_alloc()

void *sds_mmap(void *physical_addr, size_t size, void *virtual_addr)

Create a virtual address mapping to access a memory of size bytes located at physical
address physical_addr.

• physical_addr: physical address to be mapped.
• size: size of physical address to be mapped.
• virtual_addr:

◦ If not null, it is considered to be the virtual-address already mapped to the
physical_addr, and sds_mmap keeps track of the mapping.

◦ If null, sds_mmap invokes mmap() to generate the virtual address, and
virtual_addr is assigned this value.

void *sds_munmap(void *virtual_addr)

Unmaps a virtual address associated with a physical address created using sds_mmap().

Chapter 14

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

130

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=130
www.xilinx.com

unsigned long long sds_clock_counter(void)

Returns the value associated with a free-running counter used for fine grain time interval
measurements.

unsigned long long sds_clock_frequency(void)

Returns the frequency (in ticks/second) associated with the free-running counter that is read
by calls to sds_clock_counter. This is used to translate counter ticks to seconds.

Chapter 14: SDSoC Environment API

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

131

https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=131
www.xilinx.com

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips

References

These documents provide supplemental material useful with this guide:

1. SDx Environments Release Notes, Installation, and Licensing Guide (UG1238)
2. SDSoC Environment User Guide (UG1027)
3. SDSoC Environment Optimization Guide (UG1235)
4. SDSoC Environment Tutorial: Introduction (UG1028)
5. SDSoC Environment Platform Development Guide (UG1146)
6. SDSoC Development Environment web page
7. UltraFast Embedded Design Methodology Guide (UG1046)
8. ZC702 Evaluation Board for the Zynq-7000 XC7Z020 All Programmable SoC User Guide

(UG850)
9. Vivado Design Suite User Guide: High-Level Synthesis (UG902)
10. PetaLinux Tools Documentation: Workflow Tutorial (UG1156)
11. Vivado® Design Suite Documentation
12. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

Appendix A

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

132

https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1028-sdsoc-intro-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1146-sdsoc-platform-development.pdf
https://xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1156-petalinux-tools-workflow-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=132
www.xilinx.com

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or
under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials),
including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors
contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe
or for use in any application requiring fail-safe performance; you assume sole risk and liability
for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which
can be viewed at www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED
FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT
CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A SAFETY CONCEPT OR
REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD
(“SAFETY DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS
THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES.
USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE
RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING
LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2017 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado,
Zynq, and other designated brands included herein are trademarks of Xilinx in the United States
and other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by
permission by Khronos. PCI, PCIe and PCI Express are trademarks of PCI-SIG and used under
license. All other trademarks are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

Send FeedbackSDSoC Environment User Guide
UG1027 (v2017.2) August 16, 2017 www.xilinx.com

133

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2017.2&docPage=133
www.xilinx.com

	SDSoC Environment User Guide
	Table of Contents
	The SDSoC Environment
	Getting Started
	Feature Overview

	User Design Flows
	Creating a Project for a Target Platform
	Data Motion Network Clock

	Compiling and Running Applications on an ARM Processor
	Compiling and Running Applications on a MicroBlaze Processor
	Profiling and Instrumenting Code to Measure Performance
	Moving Functions into Programmable Logic
	System Emulation
	SDSoC Environment Troubleshooting
	Troubleshooting Compile and Link Time Errors
	Troubleshooting System Hangs and Runtime Errors
	Troubleshooting Performance Issues
	Debugging an Application

	Coding Guidelines
	Guidelines for Invoking SDSCC/SDS++
	Makefile Guidelines
	General C/C++ Guidelines
	Hardware Function Argument Types
	Hardware Function Call Guidelines

	Getting Started with Examples
	Installed Examples
	GitHub Examples
	Synthesizeable FIR Filter
	Matrix Multiplication
	Using a C-Callable RTL Library
	C++ Design Libraries

	Using C-Callable IP Libraries
	C-Callable Libraries
	Header File
	Static Library
	Function Definition
	IP Core
	IP Configuration Parameters
	Function Argument Map

	Creating a Library
	Usage
	Arguments (mandatory)

	Testing a Library
	C-Callable Library Example: Vivado FIR Compiler IP
	C-Callable Library Example: HDL IP

	SDSCC/SDS++ Performance Estimation Flow Options
	Improving System Performance
	Data Motion Network Generation in SDSoC
	System Port
	Data Mover
	Zero Copy Data Mover

	Accelerator Interface

	Increasing System Parallelism and Concurrency
	Using External I/O
	Accessing External I/O via Memory Buffers
	Accessing External I/O via Direct Hardware Connections

	Improving Hardware Function Parallelism
	Top-Level Hardware Function Guidelines
	Use Standard C99 Data Types for Top-Level Hardware Function Arguments
	Omit HLS Interface Directives for Top-Level Hardware Function Arguments

	Optimization Guidelines
	Function Inlining
	Loop Pipelining and Loop Unrolling
	Loop Pipelining
	Loop Unrolling
	Factors Limiting the Parallelism Achieved by Loop Pipelining and Loop Unrolling

	Increasing Local Memory Bandwidth
	Array Partitioning
	Array Reshaping

	Data Flow Pipelining
	Function Data Flow Pipelining
	Loop Data Flow Pipelining

	Using Vivado Design Suite HLS Libraries

	Debugging an Application
	Debugging Linux Applications in the SDSoC IDE
	Debugging Standalone Applications in the SDSoC IDE
	Debugging FreeRTOS Applications
	Peeking and Poking IP Registers
	Debugging Performance Tips

	Hardware/Software Event Tracing
	Hardware/Software System Runtime Operation
	Software Tracing
	Hardware Tracing
	Implementation Flow
	Runtime Trace Collection
	Trace Visualization
	Performance Measurement Using the AXI Performance Monitor
	Creating a Standalone Project and Implementing APM
	Creating a Linux Project and Implementing APM
	Monitoring the Standalone Instrumented System
	Monitoring the Linux Instrumented System
	Analyzing the Performance

	Troubleshooting

	SDSoC Pragma Specification
	Data Transfer Size
	Example 1
	Example 2
	Example 3

	Memory Attributes
	Physically Contiguous Memory
	Example 1

	Data Access Pattern
	Data Mover Type
	Example 1

	SDSoC Platform Interfaces to External Memory
	Example 1

	Hardware Buffer Depth
	Asynchronous Function Execution
	Example 1
	Example 2

	Specifying Resource Binding
	Example 1

	Specifying Partitions
	Example 1

	Trace Monitoring
	Example 1
	Example 2

	SDSCC/SDS++ Compiler Commands and Options
	Name
	Command Synopsis
	Hardware Function Options
	Performance Estimation Options
	System Options

	General Options
	-sds-pf platform_name
	-sds-pf-info platform_name
	-sds-pf-list
	-sds-sys-config configuration_name
	-sds-proc processor_name
	-target-os os_name
	-verbose
	-version
	--help
	-mno-ir

	Hardware Function Options
	-sds-hw function_name file [[-files file_list] [-hls-tcl hls_tcl_directives_file] [-clkid <n>] [-mno-lint]] –sds-end
	-clkid <n>
	-files file_list
	-hls-tcl hls_tcl_directives_file
	-mno-lint
	-shared-aximm

	Compiler Macros
	System Options
	-apm
	-disable-ip-cache
	-dm-sharing <n>
	-dmclkid <n>
	-emulation <mode>
	-impl-strategy <strategy_name>
	-instrument-stub
	-maxjobs <n>
	-maxthreads <n>
	-mno-bitstream
	-mno-boot-files
	-rebuild-hardware
	-sdcard <data_directory>
	-synth-strategy <strategy_name>
	-trace
	-trace-buffer depth
	-trace-no-sw

	Compiler Toolchain Support

	Exporting a Library for GCC
	Building a Shared Library
	Delivering a Library

	Compiling and Linking Against a Library
	Use a library at runtime

	Exporting a Shared Library

	Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)
	XP Parameters
	Running Software and Hardware Emulation in XOCC Flow

	SDSoC Environment API
	Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	References
	Please Read: Important Legal Notices
	AUTOMOTIVE APPLICATIONS DISCLAIMER

