

600 V CoolMOS™ P6

SJ MOSFET for Server, Telecom, PC Power and Consumer

Steiner Alois Catly Johnald

Application Note

About this document

Scope and purpose

This Application Note describes the characteristics of CoolMOS[™] P6, the seventh technology platform of Infineon's high voltage power MOSFETs designed according to the revolutionary Superjunction (SJ) principle. CoolMOS[™] P6 will be described in reference to the existing CoolMOS[™] generations both from a technology viewpoint and application performance. Design guidelines will be given to enable CoolMOS[™] P6 optimized performance.

Intended audience

This document is intended for design engineers who want to improve their high voltage power conversion applications.

Table of Contents

1	Introduction	3
1.1	Features and Benefits	3
1.2	Target Applications	3
1.3	Superjunction (SJ) Principle	4
2	Technology parameters	6
2.1	Gate charge (Qg)	6
2.2	High Gate threshold voltage (V _{th})	6
2.3	Energy stored in output capacitance (E _{oss})	7
2.4	Integrated Gate Resistor (R _g)	8
2.5	dv/dt at turn-off in a 300 W PC Silverbox	9
2.6	E _{on} and E _{off} P6 vs. E6 vs. CP	10
3	Measurement results	12
3.1	Efficiency measurement in a 300 W PC Silverbox in CCM PFC	12
3.2	Efficiency measurement in a 200 W PC Silverbox in LLC stage	13
3.3	Ringing measurements	15

Introduction

3.4 3.5	Brownout measurements Hard commutation on conducting body diode	
4 4.1 4.2	Design Guideline for using 600 V CoolMOS™ P6 Minimum external gate resistor (R _{g,ext}) Paralleling of 600 V P6	20
5	Portfolio	21
6	References	22
7	Useful Links and Material	23

Introduction

1 Introduction

The new 600 V CoolMOS[™] P6 is the seventh technology platform of Infineon's high voltage power MOSFETs designed according to the revolutionary Superjunction (SJ) principle. After launching the 600 V C6 in 2009, 600 V E6 in 2010 the new P6 implements a combination of ultra-low R_{DS(on)}, high ruggedness, fast and well controlled switching speed, not sacrificing ease of use in combination with efficiency improvement. CoolMOS[™] P6 series is designed for particularly applications, where the focus is not only in high efficiency and power density, but also provides ease-of-use as key requirements. The experimental measured results show efficiency comparisons with C6 and E6 series. Also CoolMOS[™] P6 gives a well controlled switching characteristic, especially in peak current conditions such as load steps, start-up, and AC cycle drop-out. For providing the maximum flexibility to control CoolMOS[™] P6 switching speed from design engineers, CoolMOS[™] P6 offers the reduced integrated gate resistor value according to the device R_{DS(on)} range. In summary, the combination of 600 V CoolMOS™ C6, E6 and P6 series will fulfill a wide range of applications requirements whether it requests ease-of-use at driven side given by C6 or the efficiency focus offered by P6. CoolMOS[™] P6 electrical characteristic provides all benefits of a fast switching Superjunction (SJ) MOSFET while keeping ease-of-use and efficiency improvement. As usual CoolMOS[™] P6 MOSFETs achieves low conduction loss and switching losses. It leads the design engineers to their power converters with high efficiency, high power density, and cool thermal behavior. Furthermore CoolMOS™ P6 series MOSFETs are universal applicable, i.e., suitable for hard and soft switching topologies (e.g. PFC, LLC)

1.1 Features and Benefits

Table 1 represents the main features and the benefits of CoolMOS[™] P6, which will be discussed in detail in this Application Note.

Features	Benefits			
	Improved efficiency especially in light load condition			
Reduced gate charge (Qg)	Lower gate drive capability required			
Optimized gate threshold voltage (V _{th}) for soft switching	Better efficiency in soft switching applications			
Good body diode ruggedness	Suitability for hard- & soft-switching topologies			
Optimized integrated R _g	Good controllability			
Improved dv/dt	High robustness & better efficiency			

Table 1 Features and benefits of 600 V CoolMOS[™] P6

1.2 Target Applications

Table 2 represents the target applications and topologies for CoolMOS[™] P6 series MOSFETs.

Table 2	Target Applications for CoolMOS [™] P6
---------	---

Application	PFC	PWM
Server	Boost-Stage	LLC
Telecom	Boost-Stage	LLC
		TTF
PC Power	Boost-Stage	LLC

Introduction

Application	PFC	PWM
Consumer	Boost-Stage	LLC

All the features and benefits of 600 V P6 MOSFETs in connection with the target applications and topologies will be analyzed in section 3.

1.3 Superjunction (SJ) Principle

"All CoolMOS[™] series are based on the Superjunction principle, which is a revolutionary technology for high voltage power MOSFETs [1,2], Infineon Technologies has been the first company worldwide to commercialize this idea into the market [4]. Where conventional power MOSFETs just command on one degree of freedom to master both on-state resistance and blocking voltage, the Superjunction principle allows two degrees of freedom for this task. Therefore conventional MOSFETs are stuck with the limit of silicon, a barrier which marks the optimum doping profile for a given voltage class. This limit line has been theoretically derived by Chen and Hu in the late 80ies [3]. No commercial product has an on-state resistance better than the limit line of silicon." [5] Figure 1 represents the area-specific on-resistance versus breakdown voltage.

Figure 1 Area-specific on-resistance versus breakdown voltage comparison of standard MOSFET and CoolMOSTM technology [6]

"In contrast to that the Superjunction principle allows to reduce the on-state resistance of a high voltage MOSFET virtually to zero, limited only by technology efforts and manufacturing capabilities." [5]

"The basic idea is simple: instead of having electrons flowing through a relatively high resistive (high voltage blocking) n-area, we allow them to flow in a very rich doped n-area, which gives naturally a very low on-state resistance. The crucial point for the SJ technology is to make the device block its full voltage, which requires a careful balancing of the additional n-charge by adjacently positioned deep p-columns, which go all the way straight through the device close to the back side n+ contact. This is where manufacturing capability comes in, as the charges within the device need to be compensated precisely under the constraints of a mass market production line." [5] Figure 2 shows the cross section of a standard MOSFET (left) comparing with a SJ MOSFET (right).

Introduction

"The SJ principle gives us the opportunity to create Best-in-Class types, which have not been possible before such as a 100 m Ω /600 V part in a TO-220 package. Furthermore it allows making parts with very low capacitances for a given R_{DS(on)} as the silicon chip is much smaller than for a conventional power MOSFET. Both input and high voltage level of the output capacitance scale directly with the chip size, whereas reverse capacitance and to some extent the low voltage level of the output capacitance is technology dependent. Characteristic of all Superjunction devices is a strong non-linearity of the output capacitance with high values at low voltage and low values at high voltage. This behavior can be easily understood if you take into account that the output capacitance is proportional to the area of the blocking pn-junction and inverse proportional to the width of the space charge layer (or the voltage sustaining area). At low voltage the p-columns are not depleted and form a very big surface, furthermore the width of the space charge layer is very narrow (the white area in" Figure 2). "At high voltage however the p-columns are fully depleted and the space charge layer has reached its full extension of roughly 45µm for a 600 V device. Important is that the non-linearity of the output capacitance allows a quasi zero-voltage-switching (ZVS) turn-off of the device, lowering turn-off losses. Superjunction devices are by nature fast in switching. Very small capacitances together with a low gate charge make rise and fall times of a few nanoseconds a reality." [5] For more information on Superjunction devices please read the article "Mastering the Art of Slowness" which is available on www.infineon.com/coolmos.

Technology parameters

2 Technology parameters

2.1 Gate charge (Q_g)

One of the most important improvements of CoolMOS[™] P6 is in device gate charge (Q_g) reduction which brings benefits especially in light load conditions due to reduced driving losses. P6 will offer a 30% Q_g reduction in comparison with E6 which mainly comes from the reduction of the plateau charge. It also allows a very fast switching for turn-on and turn-off. The driver circuit current capability for P6 will be reduced over the whole R_{DS(on)} range. Figure shows Q_g in nC of P6 against E6 over the whole R_{DS(on)},max range of P6.

Figure 3 Q_g comparison 600 V P6 vs. E6

2.2 High Gate threshold voltage (V_{th})

In resonant topologies like LLC and ZVS it is possible to eliminate the turn-on loss but the turn-off loss is still one of big portion in the total losses consideration. A high gate threshold voltage (V_{th}) enables to give early turn-off of the MOSFET which results in better efficiency. Figure shows the transconductance characteristic comparison between P6, E6, and CP under same R_{DS(on),max} 190 mΩ.

Technology parameters

Figure 4 V_{th} comparison 600 V P6 vs. E6 vs. CP

Our CP and E6 technologies are defined with the typical V_{th} at 3 V. On this characteristic you can see that the P6-technology will show an increased V_{th} to typical 4 V. Regarding the switching speed, it could observe that the slope of P6 is much faster than that of E6 and pretty close to CP, which provides low switching losses and gives high power conversion efficiency.

2.3 Energy stored in output capacitance (E_{oss})

Figure 5 shows E_{oss} loss which is indirect proportion to the output capacitance as a function of drain to source voltage of the MOSFET. E6 and P6 will have the same C_{oss} value, so there is no difference visible in E_{oss} and Q_{oss} .

Figure 5 represents E_{oss} comparison between 600 V P6, E6, and CP in the $R_{DS(on),max}$ range of 380 m Ω .

Technology parameters

Figure 5 Eoss comparison 600 V P6 vs. E6 vs. CP

2.4 Integrated Gate Resistor (Rg)

CoolMOS[™] P6 comes with an integrated gate resistor (Rg) in order to achieve self-limiting di/dt and dv/dt characteristics. This integrated small Rg allows fast turn-on and turn-off at normal operating current conditions but limits di/dt and dv/dt in case of abnormal conditions. The values of integrated Rg scales inversely with the gate charge respectively device capacitances. Figure 6 shows the value of Rg are used in P6 to maximizing efficiency while not sacrificing ease of use and good controllability.

Technology parameters

Figure 6 Internal gate resistor for CoolMOS™ C6, E6 and P6 series

2.5 dv/dt at turn-off in a 300 W PC Silverbox

In Figure 7 is the measured dv/dt comparison between E6, P6, and CP in the $R_{DS(on),max}$ range of 190 m Ω . CP has a maximum dv/dt of 50 V/ns and a high slope. Compared to CP P6 technology offers a smooth dv/dt and an improved level of control. Even under a minimum of $R_{g,ext}$, dv/dt of P6 is still lower than 50 V/ns. P6 technology is a very robust technology to withstand over 50 V/ns without changes in the characteristics. Due to the improvement of dv/dt, it is allowed that to reduce the external R_g results to gain the efficiency.

Technology parameters

Figure 7 dv/dt at turn-off for CoolMOS[™] 600 V P6, E6 and CP series

2.6 E_{on} and E_{off} P6 vs. E6 vs. CP

Figure 8 shows the result of E_{on} and E_{off} characterization measurements for E6, P6 and CP at 5 A and 15 A drain current load under V_{GS} =12 V and V_{DS} =400 V in the range of gate resistor (R_g) from 3.4 Ω to 31.2 Ω . E_{on} and E_{off} losses of P6 are much lower and significantly improved than that of E6 and on the similar level with CP. This improvement of P6 is based on reducing C_{rss} and the total Q_g working together with high V_{th} for low turn-off losses. With 10 Ω external R_g at 5 A, P6 has 15% lower switching losses than that of E6. For 10 Ω external R_g at 15 A case, P6 has 30% lower switching losses than that of E6.

Due to the improved turn-off losses P6 fits well in discontinuous conduction mode PFC and soft switching topologies like LLC where the turn-off losses are dominant.

Technology parameters

Figure 8 E_{on} and E_{off} comparison IPP60R190P6 vs. IPP60R190E6 and IPP60R199CP at I_D=5 A and I_D=15 A and test ambient temperature (TC) of 25°C

Measurement results

3 Measurement results

In this section real application measurements will be showed to demonstrate the benefits CoolMOS[™] P6 in hard- and soft-switching applications.

3.1 Efficiency measurement in a 300 W PC Silverbox in CCM PFC

In this measurement the 600 V P6 is compared to E6 and CP in the 190 m Ω $R_{\text{DS(on)}}$ range. Setup parameters:

- V_{in} = 90 V_{AC}
- V_{out} = 400 V_{DC}
- P_{out} = 0 W to 300 W
- Frequency = 65 kHz
- $R_{g,ext} = 10 \Omega$, in a plug and play scenario between 600 V P6, E6 and CP

Figure 9 600 V P6 vs. E6 vs. CP comparison in absolute efficiency

Measurement results

Figure 10 600 V P6 vs. E6 vs. CP comparison in delta efficiency

This plug and play measurement shows the benefit of CoolMOS P6 in comparison to CoolMOS[™] E6 and CoolMOS[™] CP. In this 300 W continuous conduction mode (CCM) PC Silverbox, CCM operates after output power until 70 W or higher otherwise it works in DCM. Even in this light load condition, which is not an apple to apple comparison, P6 has a slightly efficiency improvement. When the output power over 70 W, CCM is operated, the efficiency improvement of P6 is visible in the range of 0,2% till 0,3% in full-load, comparing with that of E6. This efficiency benefit results due to Qg reduction and relatively high V_{th}.

3.2 Efficiency measurement in a 200 W PC Silverbox in LLC stage

In this measurement the 600 V P6 is compared to E6 and CP in the 280 m Ω $R_{\text{DS(on)}}$ range.

Setup parameters:

- PC Silverbox LLC stage 200 W
- V_{in} = 90 V_{AC}
- V_{out} = 400 V_{DC}
- P_{out} = 0 W to 200 W
- Frequency = 65 kHz
- $R_{g,ext_turn-on} = 27 \Omega$
- $R_{g,ext_turn-off} = 10 \Omega$
- Plug and play scenario between 600 V P6, E6, and CP

Measurement results

Figure 11 600 V P6 vs. E6 vs. CP comparison in absolute efficiency (upper) and delta efficiency (lower)

In this LLC measurement, P6 shows an efficiency benefit against E6 over 0.8% in light load. This improvement is also base on Q_g reduction of 30% comparing with E6. At the full load, P6 and E6 give similar efficiency measured results due to the same $R_{DS(on)}$ level which is the important parameter at full load.

Measurement results

Figure 12 600 V E6 vs. P6 comparison in turn-off

Figure 12 show V_{GS}, V_{DS}, and I_D switching waveforms of P6 and E6. The miller plateau of P6 is much shorter than that of E6 to provide fast turn off. This reduction in based on Q_g reduction of 30%. Due to the high V_{th}, a earlier turn-off and reduced turn-off time, lower losses are observed and it help to improve the power conversion efficiency.

3.3 Ringing measurements

In Figure 13, gate ringing oscillations of P6 in comparison with E6 and CP are illustrated. V_{gs} peak is measured in this case using a typical PFC stage exhibiting 7.2 pF capacitive coupling between gate and drain emulating the parasitic capacitance of the PCB. This layout parasitic capacitance can be a source of noise on the gate switching waveforms especially with increasing load current.

In the measurement, P6 shows very good gate switching waveform even with reduced Q_g and internal R_g. P6 slight increase in magnitude of oscillations over E6 is expected due to its faster switching characteristic than that of E6. Nevertheless it is still acceptable and provides enough margin before hurting the ±30 V gate ringing specification limit.

Measurement results

Figure 13 600 V P6 vs. E6 vs. CP comparison in ringing tendency

Measurement results

v_ds		Ш										5 A			11 S.S.
1 - 1 - 1 - 1 /_GS_TL		hh.	ηŗ		μη.		J.	i JA							
						+ /									
D_1AW rgleringing_10_2009 C1 20.0V/div	_Mess_FPS	1м <u>Ω</u> ^в w:500M		с з <u>с з</u> с с с с с 				A Aux J	2.7V) 5.0µs/ c	div 10	0.0GS/s	IT 25.0p	s/pt
0_fW igleringing_10_2009 C1 20.0V/dit C2 20.0V/dit C2 200V/div	Mess_FPS	1MΩ ^B W:500M 1MΩ BW:500M 1MΩ BW:500M						A (Aux) J	2.7V	4] (k) (k) (k)) 5.0µs/c Run 269 ac Cons	div 10 :qs 24 Jul	0.0GS/s Sampl Ii, 2012	IT 25.0pr ie RL:2.0M 12:	s/pt 1 29:17
0_fW igleringing_10_2009 C1 20.0V/dit C2 200V/dit C2 200V/div	Value	1MΩ ^B _W :500M 1MΩ ^B _W :500M 1MΩ ^B _W :500M 1MΩ ^B _W :500M		Max	St Dev	Count	Info	A Aux J	2.7V) S.0µs/c Run 269 ac Cons	div 10 :qs 24 Jul	0.0GS/s Sampl Ii, 2012	IT 25.0p: ie RL:2.0M 12:	s/pt 1 29:11
0.1W sgleringing_10_2009 C1 20.0V/div C2 200V/div C1 Max* C1 Max*	Value 75.58V 19.4V	1MΩ ^B _W :500M 1MΩ ^B _W :500M 1MΩ ^B _W :500M 1MΩ ^B _W :500M 28.253723 19.931606	Min 4.841	Max 100.9 23.33	St Dev 21.87 1.315	Count 269.0 269.0	Info	A Aux J	2.7V) S.0µs/o Run 269 ac Cons	div 10 qs 24 Jul	0.0GS/s Sampl Ii, 2012	IT 25.0p: le RL:2.0M 12:	s/pt 1 29:17
0.1W sgleringing_10_2009 (1) 20.0V/div (2) 20.0V/div (2) 200V/div (3) Max* (3) Min	Value 75.58V 19.4V -11.27V	1MΩ ^B W:500M 1MΩ ^B W:500M 1MΩ ^B W:500M 1MΩ ^B W:500M 28.253723 19.931606 19.9834851	Min 4.841 16.19 -20.89	Max 100.9 23.33 -1.809	St Dev 21.87 1.315 5.617	Count 269.0 269.0	Info	AuxJ	2.7V	41 92 43 92	S.0µs/c Run 269 ac Cons	div 10 qs 24 Jul	0.0GS/s Sampl li, 2012	IT 25.0p: le RL:2.0N 12:	s/pt 1 29:17

Figure 14 600 V P6 vs. E6 vs. CP comparison in ringing tendency

Figure 14 shows typical switching waveform of IPP60R190P6 in a PFC. This test circuit configured with an additional external gate to drain capacitance exhibiting 7.2 pF for capacitive coupling between gate and drain emulating PCB parasitic capacitance. Designers should put extra care in the layout to minimize this parasitic capacitance to enable the highest performance of the MOSFET. In this measurement, 5 Ω external R_g for 190m Ω device is used.

Switching waveforms are measured with V_{DS} =400 V (shown in green) and V_{GS} =13 V (shown in crimson). The current waveform shown in yellow is increasing every pulse up to saturation which is represented with an offset in V_{DS} at the peak current level of 75 A. P6 with optimized R_g , shows a good switching waveform without hurting the V_{GS} specification limit.

3.4 Brownout measurements

In SMPS, there are some applications which are designed shut down under a specified minimum input voltage. This requirement is normally implemented by using the protection function of the controller, so the MOSFET will be protected against input undervoltage (brownout) at low-line. One of the challenging during operation at brownout range is managing the temperature stability of the MOSFET while the power supply is delivering the output power. The combination of high conduction and switching losses due to high operating current gives high power dissipation in the MOSFET resulting to a high temperature rise in the device.

Measurement results

CoolMOSTM P6 offers reduced Q_g and low integrated R_g which enable fast switching. This provides low turn-on and turn-off losses. The switching losses contribution in the total power loss of the MOSFET is reduced in the case of P6 compared to C3 and E6 for the same $R_{DS(on)}$. Temperature rise due to high switching losses of C3 and E6 increases the device $R_{DS(on)}$ value that results to a high conduction loss as well. High total power dissipation results to a high temperature of the device. In the 300 W CCM PFC application test below, CoolMOSTM P6 case temperature shows 10°C lower than that of C3 and E6 at low line input voltage. CP with the lowest Q_g and the fastest switching shows the lowest temperature rise.

Figure 15 600 V C3 vs. P6 vs. E6 vs. CP comparison during brownout test

3.5 Hard commutation on conducting body diode

Hard commutation on conducting body diode is required for soft switching applications and a tradeoff is required between high commutation ruggedness of body diode and fast switching. All properties of a fast switching device (high di/dt, low Q_g , low R_g) results into high voltage peak during hard commutation on a conducting body diode. Figure 16 shows the voltage peaks under hard commutation followed after 10 μ s body diode conduction time (in normal operation conditions you will not find longer body diode conduction times than 400 ns).

Measurement results

Figure 16 Hard commutation on conduction body diode comparison 600 V P6 vs. E6 vs. CP

Figure 15 shows the $V_{DS(max)}$ overshoot due to high di_{rr}/dt in a commutation. The device under test is same as the switch, both with an $R_{g,ext}$ of 10 Ω . $V_{DS(max)}$ overshoot will be influenced by the parasitic components of the layout, the external Rg and the switching speed of the switch. P6 has an improved commutation behavior against CP.

Design Guideline for using 600 V CoolMOS[™] P6

4 Design Guideline for using 600 V CoolMOS[™] P6

In the following sections we will give some guidelines how to use the CoolMOS[™] P6 in the best way to enable an optimized performance .

4.1 Minimum external gate resistor (R_{g,ext})

In well designed power supply we recommend to use a very low ohmic external resistor in the range of minimum 5 Ω for turn-on and zero ohm for turn-off. This efficiency driven R_g selection could be taken due to an implementation of an R_{g,int} and the very robust design of CoolMOS[™] P6. However, the selection on external R_g is always a function on the PCB parasitic components which generates an unexpected voltage- or current peak on the MOSFET due to voltage signal from L stray *di/dt and current signal from C parasitics *du/dt. To prevent such peaks a reduction of the parasitic components or an increased R_{g,ext} for the MOSFET is recommended.

4.2 Paralleling of 600 V P6

For paralleling 600 V P6 we generally recommend the use of ferrite beads on the gate or separated totem poles driving circuit.

Portfolio

5 Portfolio

CoolMOS[™] P6 series follows the same naming guidelines as already established with the C6 series e.g. IPP60R190C6, where "I" stands for Infineon Technologies, "P" for power MOSFETs, "P" for the package TO-220, "60" for the voltage class (divided by 10), "R190" for the on-state resistance in Ohms and P6 for the name of the series. Table 3 shows the portfolio of CoolMOS[™] P6.

	DPAK	D ² PAK	TO-220	TO-220 FullPAK	TO-247	TO-247 4pin	ThinPAK 8x8	ThinPAK 5x6
R _{DS(on)} [mΩ]		g latinan Crist						
600/650	IPD60R600P6	IPB60R600P6	IPP60R600P6	IPA60R600P6				IPL60R650P6S
380	IPD60R380P6	IPB60R380P6	IPP60R380P6	IPA60R380P6				
330/360		IPB60R330P6	IPP60R330P6	IPA60R330P6	IPW60R330P6			IPL60R360P6S
280		IPB60R280P6	IPP60R280P6	IPA60R280P6	IPW60R280P6			
230/255		IPB60R230P6	IPP60R230P6	IPA60R230P6	IPW60R230P6		IPL60R255P6	
190/210		IPP60R190P6	IPP60R190P6	IPA60R190P6	IPW60R190P6		IPL60R210P6	
160/180		IPB60R160P6	IPP60R160P6	IPA60R160P6	IPW60R160P6		IPL60R180P6	
125			IPP60R125P6	IPA60R125P6	IPW60R125P6	IPZ60R125P6		
99			IPP60R099P6	IPA60R099P6	IPW60R099P6	IPZ60R099P6		
70					IPW60R070P6	IPZ60R070P6		
41					IPW60R041P6	IPZ60R041P6		

Table 3600 V CoolMOS™ P6 Series

References

6 References

- [1] T. Fujihira: "Theory of Semiconductor Superjunction Devices", Jpn. J. Appl. Phys., Vol.36, pp. 6254-6262, 1997
- [2] A.W. Ludikhuize: "A review of the RESURF technology", Proc. ISPSD 2000, pp. 11-18
- [3] X. B. Chen and C. Hu, "Optimum doping profile of power MOSFET's epitaxial Layer.", IEEE Trans. Electron Devices, vol. ED-29, pp. 985-987, 1982
- [4] G. Deboy, F. Dahlquist, T. Reiman and M. Scherf: "Latest generation of Superjunction power MOSFETs permits the use of hard-switching topologies for high power applications", Proceedings of PCIM Nürnberg, 2005, pp. 38-40
- [5] G. Deboy, L. Lin, R. Wu: "CoolMOSTM C6 Mastering the Art of Slowness", Application Note revision 1.0 2009-12-21, pp. 5-6
- [6] IFX: "CoolMOSTM 900V New 900V class for Superjunction devices A new horizon for SMPS and renewable energy applications", Application Note revision 1.0 2008-02, pp. 6, Figure 1
- [7] Dr. H. Kapels: "Superjunction MOS devices From device development towards system optimization", paper EPE 2009 Barcelona, ISBN 9789075815009, pp. 3

Revision History

Major changes since the last revision

Page or Reference	Description of change
Revision 1.0	First Release
Revision 1.1	Table 3: Update of Portfolio

Useful Links and Material

7 Useful Links and Material

- Webpage 600 V CoolMOS[™] P6 http://www.infineon.com/P6
- Product Brief 600 V CoolMOS[™] P6 English http://www.infineon.com/dgdl/Infineon-Product_Brief_600V_CoolMOS_P6-PB-v02_00-EN.pdf?fileId=db3a30433acf32c9013adf1967d312ad
- Product Brief 600 V CoolMOS[™] P6 Japanese http://www.infineon.com/dgdl/Infineon-ProductBrief_PowerMOSFETs_CoolMOSP6_Japanese-PBv01_00-JA.pdf?fileId=5546d4624bcaebcf014c0e4045e9467a
- Brochure Latest Power Management Selection Guide http://www.infineon.com/powermanagement-selectionguide
- Evaluationboard: 300W CCM PFC http://www.infineon.com/300w-pfc-evaluationboard
- Evaluationboard: 600W LLC 12V Analog http://www.infineon.com/600w-llc-evaluationboard-a
- Evaluationboard: 600W LLC 12V Digital http://www.infineon.com/600w-llc-evaluationboard-d
- Application Note Introduction to Infineons Simulation Models for Power MOSFETs http://www.infineon.com/dgdl/Infineon+-+Application+Note+-+Introduction+to+Infineons+Simulation+Models+for+Power+MOSFETs.pdf?fileId=db3a304344921d3001 4496fae9027a02
- Application Note CoolMOS[™] Electrical Safety and Isolation in High Voltage Applications English http://www.infineon.com/dgdl/Infineon+-+Application+Note+-+PowerMOSFETs+-+CoolMOS%E2%84%A2+-+Electrical+Safety+and+Isolation+in+high+voltage+Applications.pdf?fileId=db3a30433d1d0bbe013d20e 0cbf017fe
- Application Note PFC CCM Boost Converter Design Guide http://www.infineon.com/dgdl/Infineon-ApplicationNote_PFCCCMBoostConverterDesignGuide-ANv02_00-EN.pdf?fileId=5546d4624a56eed8014a62c75a923b05
- Application Note CoolMOS[™] Primary Side MOSFET Selection for LLC Topology http://www.infineon.com/dgdl/Infineon+-+Application+Note+-+Power+MOSFETs+-+CoolMOS+-+Primary+Side+MOSFET+Selection+for+LLC+Topology.pdf?fileId=5546d46147a9c2e40147d3430e927e5d
- Application Note OptiMOS[™] CoolMOS[™] Optimal Solutions Suitable for DCDC Converter http://www.infineon.com/dgdl/Infineon-ApplicationNote_OptiMOS_CoolMOS_OptimalSolutionsSuitableforDCDCConverter-AN-v01_00-EN.pdf?fileId=5546d4624b0b249c014b3a76f2282d2b

Trademarks of Infineon Technologies AG

AURIX[™], C166[™], CanPAK[™], CIPOS[™], CIPURSE[™], CoolMOS[™], CoolSET[™], CORECONTROL[™], CROSSAVE[™], DAVE[™], DI-POL[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPIM[™], EconoPACK[™], EiceDRIVER[™], eupec[™], FCOS[™], HITFET[™], HybridPACK[™], I²RF[™], ISOFACE[™], IsoPACK[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OptiMOS[™], ORIGA[™], POWERCODE[™], PRIMARION[™], PrimePACK[™], PrimeSTACK[™], PRO-SIL[™], PROFET[™], RASIC[™], ReverSave[™], SatRIC[™], SIEGET[™], SINDRION[™], SIPMOS[™], SmartLEWIS[™], SOLID FLASH[™], TEMPFET[™], thinQ![™], TRENCHSTOP[™], TriCore[™].

Other Trademarks

Advance Design System[™] (ADS) of Agilent Technologies, AMBA[™], ARM[™], MULTI-ICE[™], KEIL[™], PRIMECELL[™], REALVIEW[™], THUMB[™], µVision[™] of ARM Limited, UK. AUTOSAR[™] is licensed by AUTOSAR development partnership. Bluetooth[™] of Bluetooth SIG Inc. CAT-iq[™] of DECT Forum. COLOSSUS[™], FirstGPS[™] of Trimble Navigation Ltd. EMV[™] of EMVCo, LLC (Visa Holdings Inc.). EPCOS[™] of Epcos AG. FLEXGO[™] of Microsoft Corporation. FlexRay[™] is licensed by FlexRay Consortium. HYPERTERMINAL[™] of Hilgraeve Incorporated. IEC[™] of Commission Electrotechnique Internationale. IrDA[™] of Infrared Data Association Corporation. ISO[™] of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB[™] of MathWorks, Inc. MAXIM[™] of Maxim Integrated Products, Inc. MICROTEC[™], NUCLEUS[™] of Mentor Graphics Corporation. MIPI[™] of MIPI Alliance, Inc. MIPS[™] of MIPS Technologies, Inc., USA. muRata[™] of MURATA MANUFACTURING CO., MICROWAVE OFFICE[™] (MWO) of Applied Wave Research Inc., OmniVision[™] of OmniVision Technologies, Inc. Openwave[™] Openwave Systems Inc. RED HAT[™] Red Hat, Inc. RFMD[™] RF Micro Devices, Inc. SIRIUS[™] of Taiyo Yuden Co. TEAKLITE[™] of CEVA, Inc. TEKTRONIX[™] of Tektronix Inc. TOKO[™] of TOKO KABUSHIKI KAISHA TA. UNIX[™] of X/Open Company Limited. VERILOG[™], PALLADIUM[™] of Cadence Design Systems, Inc. VLYNQ[™] of Texts Instruments Incorporated. VXWORKS[™], WIND RIVER[™] of WIND RIVER SYSTEMS, INC. ZETEX[™] of Diodes Zetex Limited. Last Trademarks Update 2011-11-11

www.infineon.com

Edition 2015-06-29 Published by Infineon Technologies AG 81726 Munich, Germany

© 2015 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference AN_201506_PL52_010

Legal Disclaimer

THE INFORMATION GIVEN IN THIS APPLICATION NOTE (INCLUDING BUT NOT LIMITED TO CONTENTS OF REFERENCED WEBSITES) IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.