BFP843F

SiGe:C Ultra Low Noise RF Transistor in Dual-Band 2.4 - 2.5 GHz & 5 - 6 GHz WLAN Application

(For 802.11a / b / g / n / ac Wireless LAN Applications)
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
BFP843F
Dual-Band LNA for 2.4 GHz & 5 GHz WLAN Applications

Application Note AN315
Revision History: 2014-04-01
Previous Revision: No previous revision

<table>
<thead>
<tr>
<th>Page</th>
<th>Subjects (major changes since last revision)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIFURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupes™, FCOS™, HIFET™, HybridPACK™, PRF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithiC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRON™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.

Other Trademarks

Last Trademarks Update 2011-11-11
Table of Content

1. Introduction .. 6
 1.1 About Wi-Fi® /Wireless LAN (WLAN) ... 6

2. BFP843F Overview ... 8
 2.1 Features ... 8
 2.2 Key Applications of BFP843F ... 8

3. BFP843F as Dual-Band LNA for 2.4 - 2.5 GHz and 5.0 - 6.0 GHz Wireless LAN Applications ... 9
 3.1 Description ... 9

4. Application Circuit and Performance Overview 11
 4.1 Performance Overview ... 11
 4.2 Schematics and Bill-of-Materials .. 12

5. Measurement Graphs .. 13

6. Evaluation Board .. 24

7. Layout Information .. 25

8. Authors ... 26

9. Remark ... 26

List of Figures

- Figure 1: Dual-Band Wi-Fi® Wireless LAN at 2.4 - 2.5 GHz and 5 - 6 GHz ... 7
- Figure 2: BFP843F in TSFP-4-1 .. 8
- Figure 3: Package and pin connections of BFP843F in Topview .. 9
- Figure 4: Schematic of the BFP843F Application Circuit .. 12
- Figure 5: Wideband Insertion Power Gain of the 2.4 - 2.5 GHz & 5 - 6 GHz WLAN LNA with BFP843F 13
- Figure 6: Off-Mode Insertion Power Gain of the 2.4 - 2.5 GHz & 5 - 6 GHz WLAN LNA with BFP843F 13
- Figure 7: Input Matching of the WLAN LNA with BFP843F at 2.4 – 2.5 GHz 14
- Figure 8: Input Matching at 2.4 – 2.5 GHz (Smith Chart, Port-Deembedded) 14
- Figure 9: Insertion Power Gain of the WLAN LNA with BFP843F at 2.4 – 2.5 GHz 15
- Figure 10: Reverse Isolation of the WLAN LNA with BFP843F at 2.4 – 2.5 GHz 15
- Figure 11: Output Matching of the WLAN LNA with BFP843F at 2.4 – 2.5 GHz 16
- Figure 12: Output Matching at 2.4 – 2.5 GHz (Smith Chart, Port-Deembedded) 16
- Figure 13: Noise Figure of the WLAN LNA with BFP843F at 2.4 – 2.5 GHz 17
- Figure 14: Input 1dB Compression Point (IP1dB) of the WLAN LNA with BFP843F at 2450 MHz 17
- Figure 15: Output Third Order Intercept Point (OIP3) of the WLAN LNA with BFP843F at 2450 MHz ... 18
- Figure 16: Input Matching of the WLAN LNA with BFP843F at 5 – 6 GHz 18
- Figure 17: Input Matching at 5 – 6 GHz (Smith Chart, Port-Deembedded) 19
- Figure 18: Insertion Power Gain of the WLAN LNA with BFP843F at 5 – 6 GHz 19
- Figure 19: Reverse Isolation of the WLAN LNA with BFP843F at 5 – 6 GHz 20
- Figure 20: Output Matching of the WLAN LNA with BFP843F at 5 – 6 GHz 20
- Figure 21: Output Matching at 5 – 6 GHz (Smith Chart, Port-Deembedded) 21
- Figure 22: Noise Figure of the WLAN LNA with BFP843F at 5 – 6 GHz ... 21
- Figure 23: Input 1dB Compression Point (IP1dB) of the WLAN LNA with BFP843F at 5500 MHz 21
- Figure 24: Output Third Order Intercept Point (OIP3) of the WLAN LNA with BFP843F at 5500 MHz ... 22
- Figure 25: Stability K Factor of the 2.4 - 2.5 GHz & 5- 6 GHz WLAN LNA with BFP843F 23
- Figure 26: Stability Mu Factor of the 2.4 - 2.5 GHz & 5- 6 GHz WLAN LNA with BFP843F 23
- Figure 27: Photo Picture of Evaluation Board (overview) <M12051302> ... 24
- Figure 28: Photo Picture of Evaluation Board (detailed view) .. 24
- Figure 29: Layout Proposal for RF Grounding of the 2.4 - 2.5 GHz & 5 - 6 GHz WLAN LNA with BFP843F ... 25
- Figure 30: PCB Layer Information .. 25
List of Tables

Table 1 Summary of Measurement Results (at room temperature) .. 11
Table 2 Bill-of-Materials.. 12
1 Introduction

1.1 About Wi-Fi®/Wireless LAN (WLAN)

The Wi-Fi® function is one of the most important connectivity functions in notebooks, smart phones and tablet PCs. Wi-Fi is a registered trademark made of the Wi-Fi Alliance created to certify devices for wireless LAN (WLAN) applications based on the IEEE 802.11 standard. The WLAN standard has evolved over the years from its legacy systems known as 802.11-1997, through 802.11a, b, g, and n, to the newest 802.11ac. Today the trend is rapidly changing where Wi-Fi is not only used for high data rate access to internet but also for content consumption such as streaming music and High Definition video on TVs, smart phones, tablets, game consoles etc.

With the requirements on wireless data quality becoming more stringent than ever, the new Wireless LAN standards are being developed by using higher order modulation schemes, wider channels and multiple data streams.

Wi-Fi according to IEEE802.11b/g/n at 2.4 GHz widely implemented over years suffers from interference from other devices such as cordless phones, microwave ovens, Bluetooth devices etc. in the 2.4 GHz space. 802.11a/n operating at 5 GHz has less interference and can transmit data at greater speeds (54 Mbps) but at the cost of reduced range. 802.11n provides enhanced performance and range over prior 802.11 technologies by operating in both the 2.4 GHz and 5 GHz. It adds two significant technologies: MIMO (Multiple input-Multiple output) and 40 MHz channels. With this, data rates up to 600Mbps (for 4 streams) can be achieved in the 5 GHz band. To cater to these high throughput requirements, major performance criteria have to be fulfilled: sensitivity, strong signal capability and interference immunity.

The Figure 1 shows one example of general block diagram of a dual band WLAN system.
A Wi-Fi router has to receive relatively weak signals from Wi-Fi enabled devices such as mobile phones. Therefore, it should have high sensitivity to detect a weak signal in the presence of strong interfering signals. We can improve the sensitivity of the receiver by using a low noise amplifier (LNA) as a first block of the receiver front end to improve the signal-to-noise ratio (SNR) of the overall system. As an example, an increase in the sensitivity by 5 dB corresponds to nearly double link distance.

WLAN systems are subject to co-channel interference and also interference from strong co-existing cellular signals. High linearity characteristics such as 3rd-order intercept point (IP3) and 1dB compression point (P1dB) are required to improve an application's ability to distinguish between desired signals and spurious signals received close together. This avoids saturation, degradation of the gain and increased noise figure.

This application note is focusing on the LNA block, but Infineon does also support with RF-switches, TVS-diodes for ESD protection and RF Schottky diodes for power detection for WLAN.

Figure 1 Dual-Band Wi-Fi® Wireless LAN at 2.4 - 2.5 GHz and 5 - 6 GHz
2 BFP843F Overview

2.1 Features

• Low noise broadband NPN RF transistor based on Infineon’s reliable, high volume SiGe:C bipolar technology
• High maximum RF input power and ESD robustness
• Unique combination of high RF performance, robustness and ease of use
• Low noise figure: \(NF_{\text{min}} = 0.95 \, \text{dB} \) at 2.4 GHz and 1.1 dB at 5.5 GHz, 1.8 V, 8 mA
• High gain \(|S21|^2 = 21.5 \, \text{dB} \) at 2.4 GHz and 16.5 dB at 5.5 GHz, 1.8 V, 15 mA
• \(OIP3 = 22 \, \text{dBm} \) at 2.4 GHz and 20 dBm at 5.5 GHz, 1.8 V, 15 mA
• Ideal for low voltage applications e.g. \(V_{\text{CC}} = 1.2 \, \text{V} \) and 1.8 V (2.85 V, 3.3 V, 3.6 V requires corresponding collector resistor)
• Low power consumption, ideal for mobile applications
• Thin small flat Pb-free (RoHS compliant) and halogen-free package
• Qualification report according to AEC-Q101 available

2.2 Key Applications of BFP843F

As Low Noise Amplifier (LNA) in:

• Wireless Communications: 2.4 GHz Wireless LAN IEEE802.11b/g/n, 5 - 6 GHz Wireless LAN IEEE802.11a/n/ac, WiMAX
• Satellite navigation systems (e.g. GPS, GLONASS, COMPASS...) and satellite C-band LNB (1st and 2nd stage LNA)
• Broadband amplifiers: Dualband WLAN, multiband mobile phone, UWB up to 10 GHz
• ISM bands up to 10 GHz

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Pin Configuration</th>
<th>Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFP843F</td>
<td>TSFP-4-1</td>
<td>1 = B 2 = E 3 = C 4 = E</td>
<td>T2s</td>
</tr>
</tbody>
</table>
3 BFP843F as Dual-Band LNA for 2.4 - 2.5 GHz and 5.0 - 6.0 GHz Wireless LAN Applications

3.1 Description

BFP843F is a discrete SiGe:C hetero-junction bipolar transistor (HBT) specifically designed for high performance dual band 2 GHz - 6 GHz band low noise amplifier (LNA) solutions for Wi-Fi connectivity applications. This has been developed using Infineon's latest B9HFM technology. The key features of this technology are very high transition frequency \(f_T = 80 \) GHz and low parasitics, which enable to achieve higher gain and lower noise figure compared to the previous generation RF transistor BFP740FED. BFP843F features an integrated on-chip R-C feedback network. The negative feedback reduces the effects of performance variations of the amplifier. The design is therefore less sensitive to variations in PCB layout resulting in an amplifier with broader bandwidth, easier impedance matching and improved stability margin. However the price paid for using negative feedback is slight degradation of noise figure and decrease in gain.

The BFP843F is housed in flatlead TSFP-4-1 package. Other variants of this family are also available in other packages, e.g. BFP843 in the SOT343 package and BFR843EL3 in the leadless TSLP-3-9 package. Figure 3 shows the pin assignment of package of BFP843F in the top view:

![Figure 3 Package and pin connections of BFP843F in Topview](image)

The BFP843F has an integrated 1.5 kV HBM ESD protection which makes the device robust against electrostatic discharge and extreme RF input power. The device offers its high
performance at low current and voltage and is especially well-suited for portable battery powered applications in which energy efficiency is a key requirement.

In the 2.4 GHz to 2.5 GHz frequency band, this circuit achieves noise figure of 1.1 dB. The gain ranges from 19.9 dB to 19.7 dB. The input return loss and output return loss is above 10 dB. At 2450MHz, the Input 1dB compression point (IP1dB) reaches -13.4 dBm. The input 3rd-order intercept point (IIP3) reaches -3.5 dBm.

As to the 5.0 GHz to 6.0 GHz frequency band, this circuit achieves noise figure of 1.3 dB. The gain ranges from 16.4 dB to 15.5 dB. The input return loss and output return loss is above 10 dB. At 5500MHz, the input 1dB compression point (IP1dB) reaches -10.2 dBm. The input 3rd-order intercept point (IIP3) reaches -0.6 dBm.
4 Application Circuit and Performance Overview

Device: BFP843F
Application: Dual-Band LNA for 2.4 GHz & 5 GHz WLAN Applications
PCB Marking: M12051302 BFP840FESD

4.1 Performance Overview

Table 1 Summary of Measurement Results (at room temperature)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Note/Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Voltage</td>
<td>VCC</td>
<td>3.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC Current</td>
<td>ICC</td>
<td>13.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Frequency Range</td>
<td>Freq</td>
<td>2400</td>
<td>2500</td>
<td>5100 5500 5900 MHz</td>
</tr>
<tr>
<td>Gain (On Mode)</td>
<td>GON</td>
<td>19.9</td>
<td>19.7</td>
<td>16.4 16.0 15.5 dB</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>NF</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3 1.3 dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>RLin</td>
<td>14.3</td>
<td>14.5</td>
<td>23.3 21.1 16.0 dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>ROut</td>
<td>10.9</td>
<td>10.5</td>
<td>13.0 16.3 21.4 dB</td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>IRrev</td>
<td>27.4</td>
<td>27.5</td>
<td>27.7 27.5 27.3 dB</td>
</tr>
<tr>
<td>Input P1dB (On Mode)</td>
<td>IP1dBON</td>
<td>-13.4</td>
<td>-</td>
<td>-10.2 -10.2 dBm</td>
</tr>
<tr>
<td>Output P1dB (On Mode)</td>
<td>OP1dBON</td>
<td>+5.3</td>
<td>-</td>
<td>+4.8 +4.8 dBm</td>
</tr>
<tr>
<td>Input IP3</td>
<td>IIP3</td>
<td>-3.5</td>
<td>-</td>
<td>-0.6 -0.6 dBm</td>
</tr>
<tr>
<td>Output IP3</td>
<td>OIP3</td>
<td>+16.2</td>
<td>+15.5</td>
<td>+15.5 +15.5 dBm</td>
</tr>
<tr>
<td>Stability</td>
<td>k</td>
<td>> 1</td>
<td></td>
<td>Stability measured from 10 MHz to 15 GHz</td>
</tr>
</tbody>
</table>

SMA and PCB losses (0.04 dB @ 2.4 GHz, 0.14 dB @ 5 GHz) are subtracted.

Power @ Input: -25 dBm each tone
2) f1=2450MHz, f2=2451MHz
3) f1=5500MHz, f2=5501MHz
4.2 Schematics and Bill-of-Materials

All passives are “0402” case size
Inductors: LQG Series
Capacitors: various

PCB = M12051302 BFP840FESD
PCB Board Material = FR4
Layer spacing (top RF to internal ground plane): 0.2 mm

External Part Count = 6
Inductors = 1
Resistors = 2
Capacitors = 3

Figure 4 Schematic of the BFP843F Application Circuit

Table 2 Bill-of-Materials

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Size</th>
<th>Manufacturer</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>6.8</td>
<td>pF</td>
<td>0402</td>
<td>Various</td>
<td>Input matching / DC blocking</td>
</tr>
<tr>
<td>C2</td>
<td>1.5</td>
<td>pF</td>
<td>0402</td>
<td>Various</td>
<td>Output matching / DC blocking</td>
</tr>
<tr>
<td>C3</td>
<td>33</td>
<td>pF</td>
<td>0402</td>
<td>Various</td>
<td>RF decoupling / blocking cap</td>
</tr>
<tr>
<td>L1</td>
<td>3.0</td>
<td>nH</td>
<td>0402</td>
<td>LQG Series</td>
<td>RF decoupling / output matching</td>
</tr>
<tr>
<td>R1</td>
<td>18</td>
<td>kΩ</td>
<td>0402</td>
<td>Various</td>
<td>DC biasing for base current</td>
</tr>
<tr>
<td>R2</td>
<td>100</td>
<td>Ω</td>
<td>0402</td>
<td>Various</td>
<td>DC biasing, to stabilize the DC current against hfe variation</td>
</tr>
<tr>
<td>R0</td>
<td>0</td>
<td>Ω</td>
<td>0402</td>
<td>Various</td>
<td>Jumper</td>
</tr>
<tr>
<td>Q1</td>
<td>TSFP-4-1</td>
<td></td>
<td></td>
<td>Infineon Technologies</td>
<td>BFP843F SiGe:C Heterojunction Bipolar RF Transistor</td>
</tr>
</tbody>
</table>

Application Note AN315, Rev. 1.0 12 / 27 2014-04-01
5 Measurement Graphs

Figure 5 Wideband Insertion Power Gain of the 2.4 - 2.5 GHz & 5 - 6 GHz WLAN LNA with BFP843F

Figure 6 Off-Mode Insertion Power Gain of the 2.4 - 2.5 GHz & 5 - 6 GHz WLAN LNA with BFP843F
Figure 7 Input Matching of the WLAN LNA with BFP843F at 2.4 – 2.5 GHz

Figure 8 Input Matching at 2.4 – 2.5 GHz (Smith Chart, Port-Deembedded)
Figure 9 Insertion Power Gain of the WLAN LNA with BFP843F at 2.4 – 2.5 GHz

Figure 10 Reverse Isolation of the WLAN LNA with BFP843F at 2.4 – 2.5 GHz
Figure 11 Output Matching of the WLAN LNA with BFP843F at 2.4 – 2.5 GHz

Figure 12 Output Matching at 2.4 – 2.5 GHz (Smith Chart, Port-Deembedded)
Figure 13 Noise Figure of the WLAN LNA with BFP843F at 2.4 – 2.5 GHz

Figure 14 Input 1dB Compression Point (IP1dB) of the WLAN LNA with BFP843F at 2450 MHz
Figure 15 Output Third Order Intercept Point (OIP3) of the WLAN LNA with BFP843F at 2450 MHz

Figure 16 Input Matching of the WLAN LNA with BFP843F at 5 – 6 GHz
Figure 17 Input Matching at 5 – 6 GHz (Smith Chart, Port-Deembedded)

Figure 18 Insertion Power Gain of the WLAN LNA with BFP843F at 5 – 6 GHz
Figure 19 Reverse Isolation of the WLAN LNA with BFP843F at 5 – 6 GHz

Figure 20 Output Matching of the WLAN LNA with BFP843F at 5 – 6 GHz
Figure 21 Output Matching at 5 – 6 GHz (Smith Chart, Port-Deembedded)

Figure 22 Noise Figure of the WLAN LNA with BFP843F at 5 – 6 GHz
Figure 23 Input 1dB Compression Point (IP1dB) of the WLAN LNA with BFP843F at 5500 MHz

Figure 24 Output Third Order Intercept Point (OIP3) of the WLAN LNA with BFP843F at 5500 MHz
Figure 25 Stability K Factor of the 2.4 - 2.5 GHz & 5- 6 GHz WLAN LNA with BFP843F

Figure 26 Stability Mu Factor of the 2.4 - 2.5 GHz & 5- 6 GHz WLAN LNA with BFP843F
6 Evaluation Board

In this application note, the following PCB is used:

PCB Marking: **M12051302** BFP840FESD
PCB material: <FR4>
\(\varepsilon_r \) of PCB material: <4.3>

![Photo Picture of Evaluation Board (overview) <M12051302>](image1)

![Photo Picture of Evaluation Board (detailed view)](image2)
7 Layout Information

Figure 29 Layout Proposal for RF Grounding of the 2.4 - 2.5 GHz & 5 - 6 GHz WLAN LNA with BFP843F

Figure 30 PCB Layer Information
8 Authors

Xiang Li, Application Engineer of Business Unit “RF and Protection Devices”
Ahmed Shamsuddin, Application Engineer of Business Unit “RF and Protection Devices”

9 Remark

The graphs are generated with the simulation program AWR Microwave Office®.