3A, 20V - 200V Surface Mount Schottky Barrier Rectifier

FEATURES
- Low power loss, high efficiency
- Ideal for automated placement
- Guard ring for over-voltage protection
- High surge current capability
- Compliant to RoHS Directive 2011/65/EU and in accordance to WEEE 2002/96/EC
- Halogen-free according to IEC 61249-2-21

APPLICATIONS
- Switching mode power supply (SMPS)
- Adapters
- Lighting application
- On-board DC/DC converter

MECHANICAL DATA
- Case: DO-214AC (SMA)
- Molding compound meets UL 94V-0 flammability rating
- Packing code with suffix “G” means green compound (halogen-free)
- Part no. with suffix “H” means AEC-Q101 qualified
- Moisture sensitivity level: level 1, per J-STD-020
- Terminal: Matte tin plated leads, solderable per J-STD-002
- Meet JESD 201 class 2 whisker test
- Polarity: As marked
- Weight: 0.07 g (approximately)

KEY PARAMETERS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{F(AV)}$</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>V_{RRM}</td>
<td>20 - 200</td>
<td>V</td>
</tr>
<tr>
<td>I_{FSM}</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>$T_{J MAX}$</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^\circ C$ unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>SK32A</th>
<th>SK33A</th>
<th>SK34A</th>
<th>SK35A</th>
<th>SK36A</th>
<th>SK39A</th>
<th>SK310A</th>
<th>SK315A</th>
<th>SK320A</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marking code on the device</td>
<td></td>
<td>SK32A</td>
<td>SK33A</td>
<td>SK34A</td>
<td>SK35A</td>
<td>SK36A</td>
<td>SK39A</td>
<td>SK310A</td>
<td>SK315A</td>
<td>SK320A</td>
<td></td>
</tr>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_{RRM}</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>90</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>V</td>
</tr>
<tr>
<td>Reverse voltage, total rms value</td>
<td>V_{RRMS}</td>
<td>14</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>42</td>
<td>63</td>
<td>70</td>
<td>105</td>
<td>140</td>
<td>V</td>
</tr>
<tr>
<td>Maximum DC blocking voltage</td>
<td>V_{DC}</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>90</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>V</td>
</tr>
<tr>
<td>Forward current</td>
<td>$I_{F(AV)}$</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Surge peak forward current, 8.3 ms single half sine-wave superimposed on rated load per diode</td>
<td>I_{FSM}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>Critical rate of rise of off-state voltage</td>
<td>dV/dt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,000</td>
<td>V/µs</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>-55 to +150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{STG}</td>
<td>-55 to +150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>
THERMAL PERFORMANCE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>LIMIT</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction-to-ambient thermal resistance</td>
<td>R_{JA}</td>
<td>66</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-lead thermal resistance</td>
<td>R_{JL}</td>
<td>25</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ELECTRICAL SPECIFICATIONS ($T_A = 25°C$ unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>SYMBOL</th>
<th>UNIT</th>
</tr>
</thead>
</table>

Forward voltage per diode

- **SK32A, SK33A, SK34A**: $I_F = 3A, T_J = 25°C$
 - V_F: 0.55 V
- **SK35A, SK36A**: $T_J = 25°C$
 - V_F: 0.72 V
- **SK39A, SK310A, SK315A**: $T_J = 25°C$
 - V_F: 0.85 V
- **SK320A**: $T_J = 25°C$
 - V_F: 0.95 V

Reverse current @ rated V_R per diode

- **SK32A, SK33A, SK34A, SK35A, SK36A**: $T_J = 25°C$
 - I_R: 0.5 mA
- **SK39A, SK310A, SK315A, SK320A**: $T_J = 25°C$
 - I_R: 0.2 mA
- **SK32A, SK33A, SK34A, SK35A, SK36A**: $T_J = 100°C$
 - I_R: 0.1 mA

Reverse current @ rated V_R per diode

- **SK32A, SK33A, SK34A, SK35A, SK36A**: $T_J = 100°C$
 - I_R: 10 mA
- **SK39A, SK310A, SK315A, SK320A**: $T_J = 125°C$
 - I_R: 0.5 mA

Notes:
1. Pulse test with $PW=0.3$ ms
2. Pulse test with $PW=30$ ms
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>PART NO. SUFFIX</th>
<th>PACKING CODE</th>
<th>PACKING CODE SUFFIX(*)</th>
<th>PACKAGE</th>
<th>PACKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK3xxA (Note 1)</td>
<td>H</td>
<td>R3</td>
<td>SMA</td>
<td>1,800 / 7” Plastic reel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R2</td>
<td>SMA</td>
<td>7,500 / 13” Paper reel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2</td>
<td>SMA</td>
<td>7,500 / 13” Plastic reel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F3</td>
<td>Folded SMA</td>
<td>1,800 / 7” Plastic reel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F2</td>
<td>Folded SMA</td>
<td>7,500 / 13” Paper reel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F4</td>
<td>Folded SMA</td>
<td>7,500 / 13” Plastic reel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3</td>
<td>Clip SMA</td>
<td>1,800 / 7” Plastic reel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E2</td>
<td>Clip SMA</td>
<td>7,500 / 13” Paper reel</td>
</tr>
</tbody>
</table>

Note:
1. "xx" defines voltage from 20V (SK32A) to 200V (SK320A)
2. *: Optional available

EXAMPLE P/N

<table>
<thead>
<tr>
<th>EXAMPLE P/N</th>
<th>PART NO. SUFFIX</th>
<th>PACKING CODE</th>
<th>PACKING CODE SUFFIX</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK36AHR3G</td>
<td>SK36A</td>
<td>H</td>
<td>R3</td>
<td>AEC-Q101 qualified Green compound</td>
</tr>
</tbody>
</table>
CHARACTERISTICS CURVES
(T_A = 25°C unless otherwise noted)

Fig.1 Forward Current Derating Curve

Fig.2 Typical Junction Capacitance

Fig.3 Typical Reverse Characteristics

Fig.4 Typical Forward Characteristics
CHARACTERISTICS CURVES

(T_A = 25°C unless otherwise noted)

Fig. 5 Maximum Non-repetitive Forward Surge Current

![Graph showing peak forward surge current vs. number of cycles at 60 Hz.]

8.3ms Single Half Sine Wave

Fig. 6 Typical Transient Thermal Characteristics

![Graph showing transient thermal impedance vs. pulse duration.]

PEAK FORWARD SURGE CURRENT (A) vs. NUMBER OF CYCLES AT 60 Hz

TRANSIENT THERMAL IMPEDANCE (°C/W) vs. T-PULSE DURATION (s)
PACKAGE OUTLINE DIMENSIONS

DO-214AC (SMA)

SUGGESTED PAD LAYOUT

MARKING DIAGRAM

<table>
<thead>
<tr>
<th>DIM.</th>
<th>Unit (mm)</th>
<th>Unit (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>1.27</td>
<td>1.58</td>
</tr>
<tr>
<td>B</td>
<td>4.06</td>
<td>4.60</td>
</tr>
<tr>
<td>C</td>
<td>2.29</td>
<td>2.83</td>
</tr>
<tr>
<td>D</td>
<td>1.99</td>
<td>2.50</td>
</tr>
<tr>
<td>E</td>
<td>0.90</td>
<td>1.41</td>
</tr>
<tr>
<td>F</td>
<td>4.95</td>
<td>5.33</td>
</tr>
<tr>
<td>G</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>H</td>
<td>0.15</td>
<td>0.31</td>
</tr>
</tbody>
</table>

P/N = Marking Code
G = Green Compound
YW = Date Code
F = Factory Code
Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC’s terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.