Beaglebone green
User Manual

Release date: 2015/9/22

Version: 1.0

Wiki: http://www.seeedstudio.com/wiki/Beaglebone_green

Bazaar: http://www.seeedstudio.com/depot/BeagleBone-Green-p-2504.html?cPath=122_113
Document Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Sep 22, 2015</td>
<td>Loovee</td>
<td>Create file</td>
</tr>
</tbody>
</table>
Contents

Document Revision History ... 2
1. Introduction .. 2
2. Technical Details .. 3
3. Hardware Overview ... 4
 3.1 Design materials .. 4
 3.2 Headers .. 5
 3.2.1 Cape Expansion Headers .. 5
 3.2.2 65 Possible Digital I/Os .. 5
 3.2.3 PWMs and Timers .. 6
 3.2.4 Analog Inputs ... 7
 3.2.5 UART ... 7
 3.2.6 I2C .. 8
 3.2.7 SPI .. 9
4. Software ... 10
 4.1 Software Support ... 10
 4.2 Getting Started .. 10
 4.3 Cloud9 IDE ... 10
 4.4 Update image ... 11
 4.4.1 Step1: Download the latest microSD card image 11
 4.4.2 Step2: Install compression utility 12
 4.4.3 Step3: Decompress the image .. 12
 4.4.4 Step4: Install SD card programming utility 12
 4.4.5 Step5: Connect SD card to your computer 12
 4.4.6 Step6: Write the image to your SD card 12
 4.4.7 Step7: Eject the SD card .. 13
 4.4.8 Step8: Boot your board off of the SD card 13
5. Resources ... 14
Disclaimer

For physical injuries and possessions loss caused by those reasons which are not related to product quality, such as operating without following manual guide, natural disasters or force majeure, we take no responsibility for that.

Under the supervision of Seeed Technology Inc., this manual has been compiled and published which covered the latest product description and specification. The content of this manual is subject to change without notice.

Copyright

The design of this product (including software) and its accessories is under tutelage of laws. Any action to violate relevant right of our product will be penalized through law. Please consciously observe relevant local laws in the use of this product.
1. Introduction

BeagleBone Green (BBG) is based on the classical open-source hardware design of BeagleBone Black (BBB) and added two Grove connectors.

It has removed the HDMI port on the BBB and also updated the 5V barrel to Micro USB host. It is a low-cost, community-supported development platform for developers and hobbyists.

Boot Linux in under 10 seconds and get started on development in less than 5 minutes with just a single USB cable.
2. Technical Details

Processor
- AM335x 1GHz ARM® Cortex-A8
- 512MB DDR3 RAM
- 4GB eMMC on-board flash storage
- 3D graphics accelerator
- NEON floating-point

Software Compatibility
- Debian
- Android
- Ubuntu
- Cloud9 IDE on Node
- Support much more

Connectivity
- USB client for power & communications
- USB host
- Ethernet
- 2x Grove
- 2x 46 pin headers
3. Hardware Overview

Seeed.cc’s BeagleBoneGreen page documents all of the known hardware issues, as well as the latest available software, hardware documentation and design materials. Always read the System Reference Manual!

3.1 Design materials

Design materials for creating your own customized version of the hardware, or for better understanding the design are also linked from the traditional home of "http://beagleboard.org/hardware/design"

BeagleBone Green hardware details

POWER button can be used to enter and exit hibernate modes once that feature is implemented in the software.
3.2 Headers

The expansion headers provide extensive I/O capabilities.

3.2.1 Cape Expansion Headers

Each digital I/O pin has 8 different modes that can be selected, including GPIO.

3.2.2 65 Possible Digital I/Os

In GPIO mode, each digital I/O can produce interrupts.
3.2.3 PWMs and Timers

Up to 8 digital I/O pins can be configured with pulse-width modulators (PWM) to produce signals to control motors or create pseudo analog voltage levels, without taking up any extra CPU cycles.
3.2.4 Analog Inputs

Make sure you don't input more than 1.8V to the analog input pins. This is a single 12-bit analog-to-digital converter with 8 channels, 7 of which are made available on the headers.

<table>
<thead>
<tr>
<th></th>
<th>P9</th>
<th></th>
<th></th>
<th>P8</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DGND</td>
<td>1</td>
<td>2</td>
<td>DGND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD_3V3</td>
<td>3</td>
<td>4</td>
<td>VDD_3V3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD_5V</td>
<td>5</td>
<td>6</td>
<td>VDD_5V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYS_5V</td>
<td>7</td>
<td>8</td>
<td>SYS_5V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWR_BUT</td>
<td>9</td>
<td>10</td>
<td>SYS_RESET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO_30</td>
<td>11</td>
<td>12</td>
<td>GPIO_60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO_31</td>
<td>13</td>
<td>14</td>
<td>GPIO_50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO_48</td>
<td>15</td>
<td>16</td>
<td>GPIO_51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO_5</td>
<td>17</td>
<td>18</td>
<td>GPIO_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO_3</td>
<td>19</td>
<td>20</td>
<td>GPIO_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO_49</td>
<td>21</td>
<td>22</td>
<td>GPIO_15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO_117</td>
<td>23</td>
<td>24</td>
<td>GPIO_14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO_115</td>
<td>25</td>
<td>26</td>
<td>GPIO_123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO_121</td>
<td>27</td>
<td>28</td>
<td>GPIO_122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO_120</td>
<td>29</td>
<td>30</td>
<td>GPIO_12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1N4</td>
<td>31</td>
<td>32</td>
<td>VDD_ADC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1N6</td>
<td>33</td>
<td>34</td>
<td>GND_ADC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1N2</td>
<td>35</td>
<td>36</td>
<td>AIN5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1N0</td>
<td>37</td>
<td>38</td>
<td>AIN3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO_20</td>
<td>39</td>
<td>40</td>
<td>AIN1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO_36</td>
<td>41</td>
<td>42</td>
<td>GPIO_7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGND</td>
<td>43</td>
<td>44</td>
<td>DGND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGND</td>
<td>45</td>
<td>46</td>
<td>DGND</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.5 UART

There is a dedicated header for getting to the UART0 pins and connecting a debug cable. Five additional serial ports are brought to the expansion headers, but one of them only has a single direction brought to the headers.
3.2.6 I2C

The first I2C bus is utilized for reading EEPROMS on cape add-on boards and can't be used for other digital I/O operations without interfering with that function, but you can still use it to add other I2C devices at available addresses. The second I2C bus is available for you to configure and use.
For shifting out data fast, you might consider using one of the SPI ports.
4. Software

4.1 Software Support

4.2 Getting Started

Beaglebone Green is a tiny computer with all the capability of today’s desktop machines, without the bulk, expense, or noise. Read the step-by-step getting started tutorial by click http://beagleboard.org/getting-started to begin developing with your BeagleBone in minutes.

4.3 Cloud9 IDE

To begin editing programs that live on your board, you can use the Cloud9 IDE. As a simple exercise to become familiar with Cloud9 IDE, creating a simple application to blink one of the 4 user programmable LEDs on the BeagleBone is a good start.

- **Step1**: Close any open file tabs.
- **Step2**: Click the "+" in the top-right to create a new file.
Step 3: Copy and paste the following code into the new tab

```python
import Adafruit_BBIO.GPIO as GPIO
import time
GPIO.setup("P9_14", GPIO.OUT)
while True:
    GPIO.output("P9_14", GPIO.HIGH)
    time.sleep(0.5)
    GPIO.output("P9_14", GPIO.LOW)
    time.sleep(0.5)
```

Step 4: Save the file by clicking the disk icon and giving the file a name with the .py extension.

Step 5: Run the code

Select the arrow to the right of "run" (or "debug") in the toolbar to pull down the list of files to run and select your new file.

Step 6: Observe the BeagleBone P9_14 led blinking steadily about once a second.

Step 7: Stop the code by clicking "stop" in the toolbar.

4.4 Update image

There are multiple ways to run initial software on your board, but it is likely that the simplest way to get an update is to create an exact replica of a bootable microSD card and boot off of it.

The BeagleBone Green that can be initialized by a program booted off of a microSD card. If you want to update to the latest software image for your board, this is a way to do that.

4.4.1 Step 1: Download the latest microSD card image

Download the image from
The file you download will have an .img.xz extension. This is a compressed sector-by-sector image of the SD card.

4.4.2 Step 2: Install compression utility

Download and install 7-zip by click http://www.7-zip.org/download.html.

4.4.3 Step 3: Decompress the image

Use 7-zip to decompress the SD card .img file.

4.4.4 Step 4: Install SD card programming utility

Be sure to download the binary distribution.

4.4.5 Step 5: Connect SD card to your computer

Use the provided microSD card to SD adapter or a USB adapter to connect the SD card to your computer.

4.4.6 Step 6: Write the image to your SD card

Use either the Ubuntu Image Writer or instructions on its page to write the decompressed image to your SD card.
4.4.7 Step 7: Eject the SD card

Eject the newly programmed SD card.

4.4.8 Step 8: Boot your board off of the SD card

Insert SD card into your (powered-down) board, hold down the USER/BOOT button (if using Black) and apply power, either by the USB cable or 5V adapter.

If using an original white BeagleBone, you are done.

If using BeagleBone Green and the image is meant to program your on-board eMMC, you'll need to wait while the programming occurs.

When the flashing is complete, all 4 USRx LEDs will be lit solid.

Note: This can take up to 45 minutes. Power-down your board, remove the SD card and apply power again to be complete.
5. Resources

- BEAGLEBONE_GREEN SRM(pdf)
- BEAGLEBONE_GREEN Schematic(pdf)
- BEAGLEBONE_GREEN Schematic(OrCAD)
- BEAGLEBONE_GREEN BOM(xls)