2050-ATHYRATRON

The 2050-A is a four-electrode, inertgas-filled thyratron for relay and gridcontrolled-rectifier service. Features of the tube include a control characteristic independent of ambient temperature over a wide range, low grid-anode capacitance, low grid current, and high sensitivity. The 2050-A differs from the 2050 in having a T-9 envelope and a larger base.

ELECTRICAL

Cathode—Coated Unipotential Heater Voltage, AC or DC6.3 ±10%	Volts
Heater Current	Amperes
Cathode Heating Time, minimum10	Seconds
Direct Interelectrode Capacitances, approximate*	
Grid-Number 1 to Anode0.15	
Grid-Number 1 to Cathode and	
Grid-Number 22.2	$\mu \mu \mathbf{f}$

MECHANICAL

Mounting Position—Any
Envelope—T-9, Glass
Base—B6-229, Intermediate-Shell Octal 6-Pin or
B8-142, Intermediate-Shell Octal 8-Pin

THERMAL

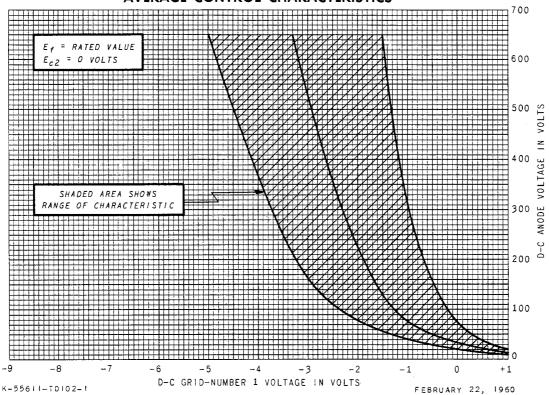
Type of Cooling-Air

MAXIMUM RATINGS, ABSOLUTE VALUES

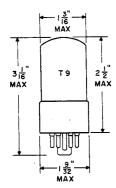
Peak Anode Voltage				Positive Control-Grid Current Average, Averaging Time		
Inverse 3		1300	Volts	One Cycle	0.01	Amperes
Forward 1	180	650	Volts	Negative Shield-Grid Voltage		
				Before Conduction 100	100	Volts
Cathode Current				During Conduction 10	10	Volts
Peak	1.0	1.0	Amperes	Positive Shield-Grid Current		
Average	0.2	0.1	Amperes	Average, Averaging Time		
Maximum Averaging Time	30	30	Seconds	One Cycle	0.01	Amperes
Fault	10	10	Amperes	Heater-Cathode Voltage		
Maximum Duration	0.1	0.1	Seconds	Heater Positive with Respect		
				to Cathode	25	Volts
Negative Control-Grid Voltage				Heater Negative with Respect		
Before Conduction 2	250	250	Volts	to Cathode 100	100	Volts
During Conduction	10	10	Volts	Ambient Temperature Limits75 to	+90	С

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey tube of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions. These values are chosen by the tube manufacturer to provide acceptable serviceability of the tube, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the tube under considerations.

The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in characteristics of all other tubes in the equipment, equipment control adjustment, load variation, signal variation, and environmental conditions.



TYPICAL OPERATION


Ionization Time, approximate	Microseconds
Deionization Time, approximate	
Eb= 125 volts, lb= 100 milliamperes, Rg= 1000 ohms	
Ecc= -250 volts	Microseconds
Ecc = -10 volts	Microseconds
Anode Voltage Drop	Volts
Critical Grid Current, maximum	
Ebb=460 volts, RMS; lb=100 milliamperes	Microamperes

^{*} Without external shield.

AVERAGE CONTROL CHARACTERISTICS

OUTLINE (EIA 9-7)

TERMINAL CONNECTIONS

Pin 1—No Connection
Pin 2—Heater
Pin 3—Anode
Pin 4—No Connection
Pin 5—Grid Number 1
(Control Grid)
Pin 6—Grid Number 2
(Screen Grid)

Pin 7—Heater Pin 8—Cathode

BASING DIAGRAM (EIA 6BS)

POWER TUBE DEPARTMENT Schenectady 5, N. Y.