Description

The ICS601-02 is a low cost, low phase noise, high performance clock synthesizer for any application that requires low phase noise and low jitter. The ICS601 is IDT’s lowest phase noise multiplier. Using IDT’s patented analog and digital Phase Locked Loop (PLL) techniques, the chip accepts a 10–27 MHz crystal or clock input, and produces output clocks up to 170 MHz at 3.3 V. A separate supply pin is provided so that the output can be 2.5 V.

This product is intended for clock generation. It has low output jitter (variation in the output period), but input to output skew and jitter are not defined nor guaranteed. For applications which require defined input to output timing, use the ICS670-01.

Features

- Packaged in 16-pin SOIC (Pb free)
- Uses fundamental 10 - 27 MHz crystal or clock
- Patented PLL with the lowest phase noise
- Output clocks up to 170 MHz at 3.3 V
- Output Enable function tri-states output
- Low phase noise: -132 dBc/Hz at 10 kHz
- Low jitter - 18 ps one sigma
- Full swing CMOS outputs with 25 mA drive capability at TTL levels
- Advanced, low power, sub-micron CMOS process
- Industrial temperature range (-40 to +85°C)
- 3.3 V or 5 V core VDD. Output clock can operate down to 2.5 V

Block Diagram
Pin Assignment

<table>
<thead>
<tr>
<th>Pin</th>
<th>Number</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK</td>
<td>1</td>
<td>GND</td>
<td>Clock output from VCO. Output frequency equals the input frequency times multiplier.</td>
</tr>
<tr>
<td>VDDP</td>
<td>2</td>
<td>GND</td>
<td>Power Supply pin for CLK output buffer. Sets output clock amplitude. Connect to 2.5V or 3.3V.</td>
</tr>
<tr>
<td>VDD</td>
<td>3</td>
<td>GND</td>
<td>Power Connect to +3.3V or +5V. Must match other VDDs.</td>
</tr>
<tr>
<td>VDD</td>
<td>4</td>
<td>GND</td>
<td>Power Connect to +3.3V or +5V. Must match other VDDs.</td>
</tr>
<tr>
<td>X2</td>
<td>6</td>
<td>S0</td>
<td>XI Crystal connection. Connect to a 10 - 27 MHz fundamental parallel mode crystal.</td>
</tr>
<tr>
<td>S1</td>
<td>7</td>
<td>S3</td>
<td>Input Multiplier select pin 1. Determines CLK output per table above. Internal pull-up.</td>
</tr>
<tr>
<td>X1/ICLK</td>
<td>8</td>
<td>S2</td>
<td>X1 Crystal connection. Connect to a 10-27 MHz fundamental parallel mode crystal, or clock.</td>
</tr>
</tbody>
</table>

Multiplier Select Table

<table>
<thead>
<tr>
<th>S3</th>
<th>S2</th>
<th>S1</th>
<th>S0</th>
<th>CLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Input x4/3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Input x4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Input x25/4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Input x3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Input x7.5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Input x5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Input x6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Input x8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Input x8/3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Input x8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Input x12.5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Input x6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Input x15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Input x10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Input x12</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Input x16</td>
</tr>
</tbody>
</table>

0 = connect directly to ground
1 = connect directly to VDD

Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Pin Type</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLK</td>
<td>Output</td>
<td>Clock output from VCO. Output frequency equals the input frequency times multiplier.</td>
</tr>
<tr>
<td>2</td>
<td>VDDP</td>
<td>Power</td>
<td>Supply pin for CLK output buffer. Sets output clock amplitude. Connect to 2.5V or 3.3V.</td>
</tr>
<tr>
<td>3</td>
<td>VDD</td>
<td>Power</td>
<td>Connect to +3.3V or +5V. Must match other VDDs.</td>
</tr>
<tr>
<td>4</td>
<td>VDD</td>
<td>Power</td>
<td>Connect to +3.3V or +5V. Must match other VDDs.</td>
</tr>
<tr>
<td>5</td>
<td>VDD</td>
<td>Power</td>
<td>Connect to +3.3V or +5V. Must match other VDDs.</td>
</tr>
<tr>
<td>6</td>
<td>X2</td>
<td>XO</td>
<td>Crystal connection. Connect to a 10 - 27 MHz fundamental parallel mode crystal.</td>
</tr>
<tr>
<td>7</td>
<td>S1</td>
<td>Input</td>
<td>Multiplier select pin 1. Determines CLK output per table above. Internal pull-up.</td>
</tr>
<tr>
<td>8</td>
<td>X1/ICLK</td>
<td>XI</td>
<td>Crystal connection. Connect to a 10-27 MHz fundamental parallel mode crystal, or clock.</td>
</tr>
<tr>
<td>9</td>
<td>S2</td>
<td>Input</td>
<td>Multiplier select pin 2. Determines CLK output per table above. Internal pull-up.</td>
</tr>
<tr>
<td>10</td>
<td>S3</td>
<td>Input</td>
<td>Multiplier select pin 3. Determines CLK output per table above. Internal pull-up.</td>
</tr>
<tr>
<td>11</td>
<td>S0</td>
<td>Input</td>
<td>Multiplier select pin 0. Determines CLK output per table above. Internal pull-up.</td>
</tr>
<tr>
<td>12</td>
<td>OE</td>
<td>Input</td>
<td>Output Enable. Tri-states the output clock when low. Internal pull-up.</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>Power</td>
<td>Connect to ground.</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>Power</td>
<td>Connect to ground.</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
<td>Power</td>
<td>Connect to ground.</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>Power</td>
<td>Connect to ground.</td>
</tr>
</tbody>
</table>
Achieving Low Phase Noise

Figure 1 shows a typical phase noise measurement in a 125 MHz system. There are a few simple steps that can be taken to achieve these levels of phase noise from the ICS601-02. Variations in VDD will increase the phase noise, so it is important to have a stable, low noise supply voltage at the device. Use decoupling capacitors of 0.1 µF in parallel with 0.01 µF. It is important to have these capacitors as close as possible to the ICS601-02 supply pins. Disabling the REFOUT clock is also important for achieving low phase noise; lab tests have shown that this can reduce the phase noise by as much as 10 dBc/Hz.

![Figure 1: Phase Noise of ICS601-02 at 125 MHz out, 25 MHz crystal input, VDD=3.3 V.](image)

External Components

The ICS601-02 requires a minimum number of external components for proper operation. Decoupling capacitors of 0.01 µF and 0.1 µF should be connected between VDD and GND, as close to the part as possible. A series termination resistor of 33 Ω may be used for the clock output. The crystal must be connected as close to the chip as possible. The crystal should be fundamental mode, parallel resonant. Do not use third overtone. For exact tuning when using a crystal, capacitors should be connected from pins X1 to ground and X2 to ground. In general, the value of these capacitors is given by the following equation, where CL is the crystal load capacitance: Crystal caps (pF) = (CL - 5) * 2. So for a crystal with 16 pF load capacitance, two 22 pF caps can be used.
Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS601-02. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, VDD (referenced to ground)</td>
<td>7 V</td>
</tr>
<tr>
<td>All Inputs and Outputs (referenced to ground)</td>
<td>-0.5 V to VDD+0.5 V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 to +150°C</td>
</tr>
<tr>
<td>Soldering Temperature</td>
<td>260°C</td>
</tr>
<tr>
<td>Ambient Operating Temperature (industrial)</td>
<td>-40 to +85°C</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

Unless stated otherwise, \(VDD = VDDP = 3.3 \) V, Ambient Temperature -40 to +85°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>VDD</td>
<td></td>
<td>3.0</td>
<td>5.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Buffer Voltage</td>
<td>VDDP</td>
<td></td>
<td>2.375</td>
<td>VDD</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input High Voltage, XI/ICLK pin only, Note 1</td>
<td>(V_{IH})</td>
<td></td>
<td>((VDD/2)+1)</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input Low Voltage</td>
<td>(V_{IL})</td>
<td>XI/ICLK pin only, Note 1</td>
<td>((VDD/2)-1)</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input High Voltage</td>
<td>(V_{IH})</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input Low Voltage</td>
<td>(V_{IL})</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output High Voltage, CMOS level</td>
<td>(V_{OH})</td>
<td>(I_{OH} = -4) mA</td>
<td>VDD-0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output High Voltage</td>
<td>(V_{OH})</td>
<td>(I_{OH} = -12) mA</td>
<td>2.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>(V_{OL})</td>
<td>(I_{OL} = 12) mA</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Operating Supply Current</td>
<td>IDD</td>
<td>No load, 125 MHz</td>
<td>9</td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>(I_{OS})</td>
<td>Each output</td>
<td>±40</td>
<td>±60</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>(C_{IN})</td>
<td>OE, select pins</td>
<td>5</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

Note 1: Switching occurs nominally at VDD/2.
AC Electrical Characteristics

Unless stated otherwise, VDD = VDDP = 3.3 V, Ambient Temperature -40 to +85°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Frequency</td>
<td>f<sub>IN</sub></td>
<td>10</td>
<td>10</td>
<td>27</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Output Frequency</td>
<td>f<sub>OUT</sub></td>
<td>At 3.3 V or 5 V</td>
<td></td>
<td>170</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Output Clock Rise Time</td>
<td></td>
<td>0.8 to 2.0 V, no load</td>
<td></td>
<td>1.5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Output Clock Fall Time</td>
<td></td>
<td>0.8 to 2.0 V, no load</td>
<td></td>
<td>1.5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Output Clock Duty Cycle</td>
<td></td>
<td>At VDD/2</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>%</td>
</tr>
<tr>
<td>Maximum Absolute Jitter, short</td>
<td></td>
<td>No load</td>
<td></td>
<td>±50</td>
<td>±75</td>
<td>ps</td>
</tr>
<tr>
<td>term, 125 MHz</td>
<td></td>
<td>125 MHz (x5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Jitter, one sigma, 125</td>
<td></td>
<td>No load</td>
<td></td>
<td>18</td>
<td>25</td>
<td>ps</td>
</tr>
<tr>
<td>MHz (x5)</td>
<td></td>
<td>125 MHz (x5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Noise, relative to carrier,</td>
<td></td>
<td>100 Hz offset</td>
<td></td>
<td>-108</td>
<td></td>
<td>dBc/Hz</td>
</tr>
<tr>
<td>125 MHz (x5)</td>
<td></td>
<td>1 kHz offset</td>
<td></td>
<td>-123</td>
<td></td>
<td>dBc/Hz</td>
</tr>
<tr>
<td>Phase Noise, relative to carrier,</td>
<td></td>
<td>10 kHz offset</td>
<td></td>
<td>-132</td>
<td></td>
<td>dBc/Hz</td>
</tr>
<tr>
<td>125 MHz (x5)</td>
<td></td>
<td>100 kHz offset</td>
<td></td>
<td>-125</td>
<td></td>
<td>dBc/Hz</td>
</tr>
</tbody>
</table>
Package Outline and Package Dimensions (16 pin SOIC, 150 Mil. Narrow Body)

Package dimensions are kept current with JEDEC Publication No. 95

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.35</td>
<td>1.75</td>
</tr>
<tr>
<td>A1</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>B</td>
<td>0.33</td>
<td>0.51</td>
</tr>
<tr>
<td>C</td>
<td>0.19</td>
<td>0.25</td>
</tr>
<tr>
<td>D</td>
<td>9.80</td>
<td>10.00</td>
</tr>
<tr>
<td>E</td>
<td>3.80</td>
<td>4.00</td>
</tr>
<tr>
<td>e</td>
<td>1.27</td>
<td>BASIC</td>
</tr>
<tr>
<td>H</td>
<td>5.80</td>
<td>6.20</td>
</tr>
<tr>
<td>L</td>
<td>0.40</td>
<td>1.27</td>
</tr>
<tr>
<td>α</td>
<td>0°</td>
<td>8°</td>
</tr>
</tbody>
</table>

Ordering Information

<table>
<thead>
<tr>
<th>Part / Order Number</th>
<th>Marking</th>
<th>Shipping Packaging</th>
<th>Package</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS601M-02ILF</td>
<td>601M-02ILF</td>
<td>Tubes</td>
<td>16-pin SOIC</td>
<td>-40 to +85° C</td>
</tr>
<tr>
<td>ICS601M-02ILFT</td>
<td>601M-02ILF</td>
<td>Tape and Reel</td>
<td>16-pin SOIC</td>
<td>-40 to +85° C</td>
</tr>
</tbody>
</table>

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Originator</th>
<th>Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td>02/10/09</td>
<td>Converted to IDT document template.</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>10/27/09</td>
<td>Added EOL note for non-green parts.</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>05/13/10</td>
<td>Removed EOL note and non-green parts</td>
</tr>
</tbody>
</table>
Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales
800-345-7015
408-284-8200
Fax: 408-284-2775

For Tech Support
www.idt.com/go/clockhelp

Corporate Headquarters
Integrated Device Technology, Inc.
www.idt.com