

Function Generator

Model 72-14120, 72-14122 and 72-14126

Functio	on Genera	ator	0
Model 7	72-14120,	72-14122 and 72-14126	0
Conten	ts		1
1.1	Safety	Terms and Symbols	3
1.2	Genera	Il Safety Overview	4
Chapte	r 2		5
Brief In	troductio	n of Tenma Series Function/Arbitrary Waveform Generator	5
2.1	Main C	Characteristics	5
2.2	Introdu	uction of Panels and Keys	6
	2.2.1	Front Panel	6
	2.2.2	Back Panel	9
	2.2.3	Function Interface	
Chapte	r 3 Quick	Start	
3.1	Output B	Basic Waveform	
	3.1.1	Set Output Frequency	
	3.1.2	Set Output Amplitude	14
	3.1.3	Set DC Offset Voltage	
	3.1.4	Set Square Wave	
	3.1.5	Set Pulse Wave	
	3.1.6	Set DC Voltage	
	3.1.7	Set Sawtooth Wave	
	3.1.8	Set Noise Wave	
3.2	SYNC OL	utput	
3.3	Frequen	cy Measurement	
3.4	Use Built	t-in Help System	
Chapte	r 4 Advan	nced Applications	
4.1	Output N	Iodulation Waveform	
	4.1.1	Amplitude Modulation (AM)	23
	4.1.2	Frequency Modulation (FM)	
	4.1.3	Phase Modulation (PM)	
	4.1.4	Amplitude Shift Keying (ASK)	
	4.1.5	Frequency Shift Keying (FSK)	51
	4.1.6	Phase Shift Keying (PSK)	57
	4.1.7	Binary Phase Shift Keying(BPSK)	
	4.1.8	Quadrature Phase Shift Keying (QPSK)	
	4.1.9	Oscillation Keying (OSK)	73
	4.1.10	Quadrature Amplitude Modulation (QAM)	
	4.1.11	Sum Modulation (SUM)	
	4.1.12	Pulse Width Modulation (PWM)	
4.2	Output F	requency Sweep Waveform	
	4.2.1	Select Frequency Sweep	
	4.2.2	Set Starting and Stop Frequency	
	4.2.3	Frequency Sweep Mode	
	4.2.4	Frequency Sweep Time	

Contents

4.2.5	Select Trigger Source	
4.2.6	Trigger Output	
4.2.7	Trigger Edge	
4.2.8	Comprehensive Example	
4.3 Output E	Burst	
4.3.1	Select Burst	
4.3.2	Type of Burst	
4.3.3	Phase of Burst	
4.3.4	Period of Burst	
4.3.5	Counting of Burst	
4.3.6	Select Trigger Source	110
4.3.7	Trigger Output	110
4.3.8	Trigger Edge	
4.3.9	Comprehensive Example	110
4.4 Output A	Arbitrary Wave	
4.4.1	Use Arbitrary Wave Function	114
4.4.2	Point-by-point Output/Play Mode	115
4.4.3	Select Arbitrary Wave	116
4.4.4	Create and Edit Arbitrary Waveform	
4.5 Output	Digital Protocol Coding	
4.5.1	Description of Interface Front Panel	
4.5.2	UART Protocol	
4.5.3	I2C Protocol	
4.5.4	SPI Protocol	
4.6 Function	n of Digital Arbitrary Wave	142
Chapter 5 Fault	Handling	
5.1 No Disp	lay on Screen (Blank Screen)	
5.2 No Wave	eform Output	
5.3 Fails to	Correctly Recognize U Disk	
Chapter 6 Service and Support		
6.1 Program	n Upgrade of Product	
Appendix A: Fac	ctory Reset State	
Appendix B: Performance Index		
Appendix C: Lis	st of Accessories	
Appendix D: Ma	intenance and Cleaning	

Chapter 1 Safety Information

1.1 Safety Terms and Symbols

Terms in the manual

The following terms may appear in the manual:

Warning: warning statement, pointing out conditions and behaviors that may endanger life safety.

Caution: cautionary statement, pointing out conditions and behaviors that may cause damage to the product and other properties.

Terms on the product

The following terms may appear on the product:

Danger: indicate that you may be immediately harmed when reading this sign.

Warning: indicate that you may not be immediately harmed when reading this sign.

Caution: indicate that the product or other properties may be damaged.

Symbols on the product

The following symbols may appear on the product:

 \sim _{AC} — Measuring ground terminal \rightarrow Frame ground terminal ON/OFF 4 Danger! High voltage Caution: please refer to the manual Protective ground terminal

1.2 General Safety Overview

- This instrument is designed and manufactured in compliance with: G84793, IEC61010-1, CAT III 600V, Pollution Degree 2 and Double Insulation standards.
- When using electrical appliances basic safety precautions should always be followed.
- Check that the voltage indicated on the rating plate corresponds with that of the local network before connecting the appliance to the mains power supply.
- Please operate according to this manual, otherwise the protection provided by the device will be impaired or fail.
- This product must be grounded.
- This product is grounded through the earth wire in the mains lead. In order to prevent electric shock, please check whether the power socket to be used for the product is grounded. Please ensure that the protective ground terminal of the product is reliably connected to the ground terminal of power line before connecting any input or output terminal.
- This appliance is not intended for use by persons (including children) with reduced physical, sensory or mental capabilities or lack of experience or knowledge. They should be given supervision and instruction in the use of the appliance by a person responsible for their safety.
- Children should be supervised to ensure that they do not play with the appliance.
- There are no user-serviceable parts in this product. Refer servicing to qualified personnel.
- In order to prevent fire or electric shock, please pay attention to all rated values and modes of the product.
 Please read user's manual before connection of the product to further understand information about rated values.
- Check the test leads, cables and case insulation before using. If you find any breakage or abnormality, or you consider the device is broken, stop using the device immediately.
- Do not use the product for any purpose other than that for which it is designed.
- Don't insert metal objects into input or output terminal of the product.
- If you suspect that the product is damaged, please ask qualified maintenance personnel to inspect.
- Never operate the product with the cover removed.
- Do not operate or store in an environment of high humidity or where moisture may enter the product.
- Do not use the meter around explosive gas or vapour.
- Disconnect from the supply when not in use.

Chapter 2

Brief Introduction of Tenma Series

Function/Arbitrary Waveform Generator

Function/arbitrary waveform generator of the series uses direct digital synthesis to generate accurate and stable waveform output with resolution as low as 1µHz as an economic, high-performance and multi-functional dual-channel function/ arbitrary waveform generator. It can generate accurate, stable, pure and low-distortion output signal, and provide high-frequency square wave with fast rising and falling edges. Convenient operation interface, excellent technical indicator and humanized graphic display can help you finish work tasks faster and improve work efficiency. It is multi-purpose equipment that meets your present and future test requirements.

2.1 Main Characteristics

- Sine wave output of 160MHz/120MHz/80MHz, full-band resolution of 1µHz.
- Pulse waveform of 50MHz (or 40MHz, adjustable time of rising, falling and duty ratio.
- Sampling rate of 500MSa/s and vertical resolution of 16bit.
- 6-bit high-precision frequency meter compatible with TTL level signal.
- Dual channel of standard configuration and other performance, and independent output mode of channel .
- Arbitrary wave storage of 8~32M points, 7GB non-volatile waveform storage.
- Rich modulation types: AM, FM, PM, ASK, FSK, PSK, PWM, QAM, BPSK, QPSK, OSK, SUM.
- 16bit digital arbitrary wave (TTL level) DARB.
- Protocol output: I2C, SPI, RS232 (TTL level).
- Powerful upper computer software.
- 8-cun high-resolution TFT colour LCD.
- Standard configuration interface: USB Host (max.32G), USB Device, LAN, 10MHz clock source input, 10MHz clock source output.
- Dual channel can respectively or simultaneously: internal/external modulation, internal/external/manual trigger.
- Support frequency sweep and pulse train output.
- Easy-to-use multi-functional control and numeric keypad.

2.2 Introduction of Panels and Keys

2.2.1 Front Panel

Function/arbitrary waveform generator provides users with simple and intuitive front panel that is easy to operate, which is shown in Figure 2-1:

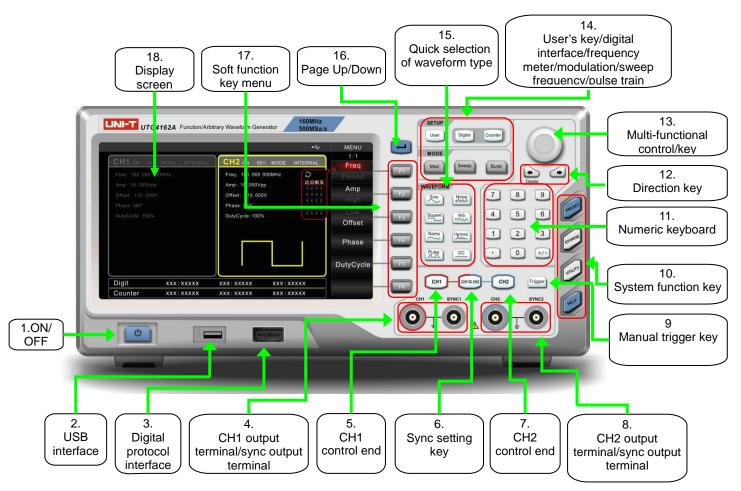


Figure 2-1 Structure of front panel

1. ON/OFF

Supply voltage of power source is AC 100V~240V. Frequency is 45Hz~440Hz. Connect the instrument to the power source with power line in accessories or other power lines up to standard. Turn on power switch below the supply hub to power on the instrument. The on/off switch backlight elights red after powering on at the rear switch on back panel. Press the on/off switch, the backlight is turns green. The display screen enters function interface after displaying the start-up interface. In order to prevent accidentally touching ON/OFF to turn off the instrument, the switch requires to be held for about 1s to turn off the instrument. The backlight of the key and screen are simultaneously off after turning off the instrument.

2. USB interface

This instrument supports U disks of FAT 16 and FAT32 with maximum capacity of 32G. USB interface can be used to read any waveform data files in U disk, store or read current files of the instrument. The system program can be upgraded through the USB interface to ensure that the current program of function/arbitrary waveform generator is the latest version released by the company.

3. Protocol interface

Interface supporting RS232, I2C and SPI protocols and any 16bit digital arbitrary wave is capable of corresponding communication protocol output, and used with DIGITAL menu.

4. CH1 output terminal/ sync output terminal

Waveform signal and synchronous signal output of channel 1. Switching of output signal is controlled by CH1 or submenu under UTILITY.

5. CH1 control terminal

Fast switch the current channel on the screen (illumination of CH1 indicator shows it is the current channel) and the parameter list shows information about channel 1 set waveform parameters. Press CH1 to turn the output of channel 1 on/off. Backlight of CH1 is lit and the current function mode will be displayed on the right of CH1 indicator ("BASE" or "MOD" or "SWEEP" or "BURST"), while "ON" is highlighted and CH1 terminal outputs the signal. Backlight of CH1 is lit and "OFF" is highlighted on the right of CH1 information tag the CH1 output terminal is turned off.

6. Sync setting key

Quickly set the relationship between CH1 and CH2 configuration. Press this key to make the output signal of CH1 the same as that of CH2, or the output signal of CH2 the same as that of CH1, or exchange the output signal of the two channels. The selection of specific mode is controlled by submenu CH Copy under UTILITY. In the submenu of CH Copy menu, 0:1->2 is to copy CH1 settings to CH2, 1:2->1 is to copy CH2 settings to CH1, and 2:1<->2 is to exchange settings of CH1 and CH2.

7. CH2 control terminal

Fast switch the current channel on the screen (illumination of CH2 indicator shows it is the current channel) and the parameter list shows information about channel 1 set waveform parameters. Press CH2 to turn the output of channel 2 on/off. Backlight of CH2 is lit and the current function mode will be displayed on the right of CH2 indicator ("BASE" or "MOD" or "SWEEP" or "BURST"), while "ON" is highlighted and CH2 terminal outputs the signal. Backlight of CH2 is lit and "OFF" is highlighted on the right of CH2 information tag the CH2 output terminal is turned off.

8. CH2 output terminal/ sync output terminal

Waveform signal and synchronous signal of output channel 2. Switching the output signal on/off is controlled by CH2 or submenu under UTILITY.

9. Manual trigger key

Set trigger and execute manual trigger when flashing.

10. System function key

Used for system setting, including function menus PRESET, STORAGE, UTILITY and HELP corresponding to factory default settings, waveform storage, general function and help menu respectively.

11. Numeric keyboard

Numeric keys 0-9 used for inputting required parameters, decimal point ".", symbolic key "+/-". Decimal point "." can be used to quickly switch units. Left direction key backspaces to clear the last digit input.

12. Direction key

Switch numerical digits or move (left or right) cursor when setting parameters with multi-functional control and direction key. The left key can be used to clear the last digit input when inputting using the data keys.

13. Multi-functional control/key

Rotate the multi-functional control to change the number (increase the number by clockwise rotation) or select menu key. Press the multi-functional control to select function and confirm the parameters set.

14. Menu key functions

Control corresponding functions using keys: USER – user settings, DIGITAL - digital interface, COUNTER - frequency meter, MOD - modulation mode, SWEEP - sweep frequency and BURST - pulse train output.

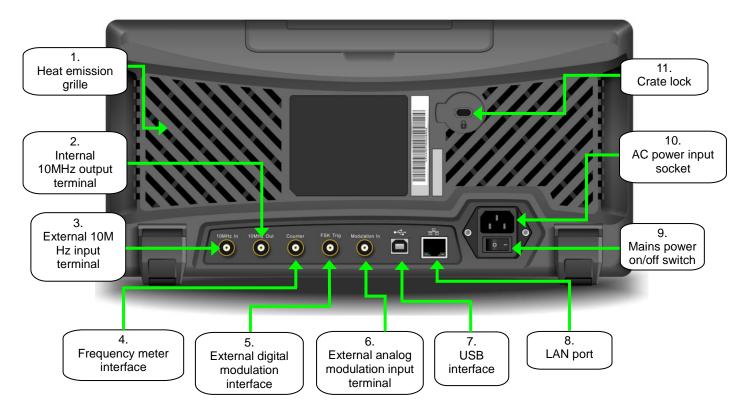
15. Quick selection of waveform type

Quickly select waveform type required by keys to quickly generate common waveforms you need.

16. Page Up/Down

There are F1-F6 'soft key' function menus on the right of the screen. When soft keys of some functions are too numerous to be displayed on one page, they will be arranged on more than one page. Press this key to switch between multiple pages.

17. Soft function key menu


Accordingly select or check tags (on the right of function interface) through identification of soft keys, and set parameters with numeric keyboard, multi-functional control or direction key.

18. Display screen

8 inch high-resolution TFT colour LCD clearly displays the output state, function menu and other important information of channel 1 and 2 through different colours. CH1 and all corresponding function borders display in red and all CH2 and corresponding functions display in blue. When a border is illuminated the settings within can be adjusted using direct numeric keys, multi-function rotary control and the direction keys. When a parameter is input as required pressing the multi-function control locks the setting and allows selection of further parameter selection, either by direct function keys or by rotating the multi-function control.

2.2.2 Back Panel

Back panel is shown in Figure 2-2:

Figure 2-2 Structure of back panel

1. Heat dissipation grille

In order to ensure good heat dissipation of the instrument, please don't block this grille.

2. Internal 10MHz output terminal

Establish synchronous or external clock signal with reference frequency of 10 MHz for multiple function/arbitrary waveform generators. When clock source of the instrument is internal, the output terminal outputs an internal 10MHz clock signal.

3. External 10MHz input terminal

Establish synchronization of multiple function/arbitrary waveform generators or synchronization with an external 10MHz clock signal. When clock source of the instrument is external, the input terminal receives an external 10MHz clock signal.

4. Frequency meter interface

Input signal through this interface when using frequency meter (compatible with TTL level).

5. External digital modulation interface

If modulation of ASK, FSK, PSK or OSK signal source is external, input modulation signal is received through the external digital modulation interface (TTL level). The corresponding output amplitude, frequency and phase are determined by signal level of external digital modulation interface. If the trigger source of frequency sweep or pulse train is external, the digital modulation interface will receive a TTL pulse with designated polarity. This pulse can start scanning or output pulse train with designated recurring number. Input gated signal through the external digital modulation interface if pulse train is gated; and output trigger signal for frequency sweep or pulse train (if trigger source is external, trigger output will be hidden in the parameter list as external digital modulation interface cannot be simultaneously used for input and output).

6. External analog modulation input terminal

In modulation of AM, FM, PM, SUM or PWM signal is external, input modulation signal is received through external analog modulation input terminal. The corresponding modulation depth, frequency deviation, phase deviation or duty ratio deviation is controlled by ±5V signal level of the external analog modulation input terminal.

7. USB interface

Connect to the external computer software through this USB interface to initialise control of the instrument by computer.

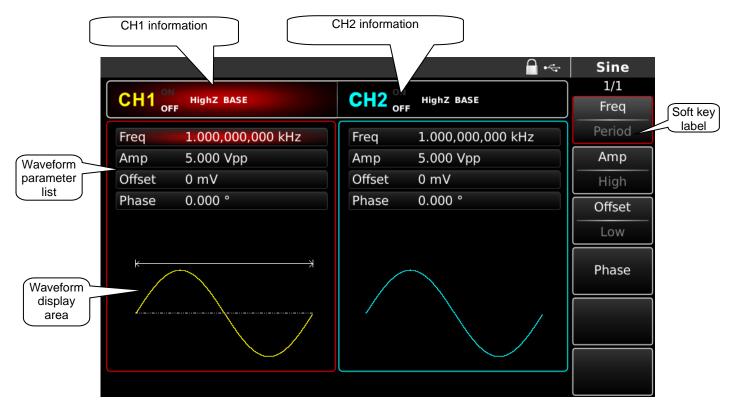
8. LAN port

LAN port can be used to connect the instrument to a network.

9. Main power switch

Main power switch to energize the instrument. If turned OFF the front on/off button is inoperable.

10. AC power input socket


AC power specification supported by this function/arbitrary waveform generator is: 100~240V, 45~440Hz.

11. Crate lock

Open the crate lock to arrange anti-theft measures for the instrument.

2.2.3 Function Interface

Function interface is shown in Figure 2-3:

Figure 2-3 Function interface

Detailed description:

- CH1 information: highlighted display (red illumination) means that this part of display screen displays information about channel 1. Parameters of this channel can be set. Parameters of this channel cannot be set if not highlighted. Press CH1 to enable. Output (highlighted "ON" means that channel output is turned on, and highlighted "OFF" means that channel output is turned off), output impedance ("HighZ" means high-impedance output, "50Ω" means 50Ω output) and effective waveform ("BASE" is basic waveform, "MOD" is modulation mode, "SWEEP" is frequency sweep mode, and "BURST" is pulse train) will be displayed on the right of the tag.
- CH2 information: highlighted display (blue illumination) means that this part of display screen displays information about channel 2. Parameters of this channel can be set. Parameters of this channel cannot be set if not highlighted. Press CH2 to enable. Output (highlighted "ON" means that channel output is turned on, and highlighted "OFF" means that channel output is turned off), output impedance ("HighZ" means high-impedance output, "50Ω" means 50Ω output) and effective waveform ("BASE" is basic waveform, "MOD" is modulation mode, "SWEEP" is frequency sweep mode, and "BURST" is pulse train) will be displayed on the right of the tag.
- Soft key display: identify functions of soft keys menu and operation soft keys. Highlighted display: highlighted display means that colour of the channel is displayed in the middle of the display, and typeface is pure white. Tag on the right of screen: the uppermost character is name of submenu, and number under the name is number of pages of submenu and the current page. For example, "1/2" means page 1 of 2 of submenu. Use Page Up/Down at the top right corner of the display area for page turning.
- Waveform parameter list: display parameters of the waveform in the form of a list. If items in the list are highlighted, parameters can be set through menu operation soft keys, numeric keyboard, direction key and multi-functional control. If background of the character is dark blue, the character is being edited. Parameters can be set with direction key, numeric keyboard or multi-functional control.
- Waveform display area: display the current waveform of the channel.
- Note: there is no waveform display area in system setting. This area is expanded into parameter list.

Chapter 3 Quick Start

3.1 Output Basic Waveform

3.1.1 Set Output Frequency

The default configuration of waveform is a sine wave with frequency of 1kHz and peak-to-peak amplitude of 100mV (terminating at 50Ω) when powering on.

For example the specific steps for changing frequency into 2.5MHz are as follows:

1. Press function key F1 and the required soft key border outline illuminates to match the colour of the corresponding channel, and "Freq" character is highlighted and editable, "Period" tag is greyed out. Pressing function key F1 again changes to the set waveform period, when "Freq" character is greyed out and "Period" character is highlighted and now the waveform period can be edited.

			₽ •	Sine
	HighZ BASE	CH2 OFF	HighZ BASE	1/1
OFF		OFF		Freq
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	Period
Amp	100 mVpp	Amp	100 mVpp	Amp
Offset	0 mV	Offset	0 mV	High
Phase	0.000 °	Phase	0.000 °	Offset
				Low
K	*			Phase

Figure 3-1 Setting of selected frequency

2. Input the required number 2.5 with numeric keyboard. The left direction key can be used to backspace when inputting.

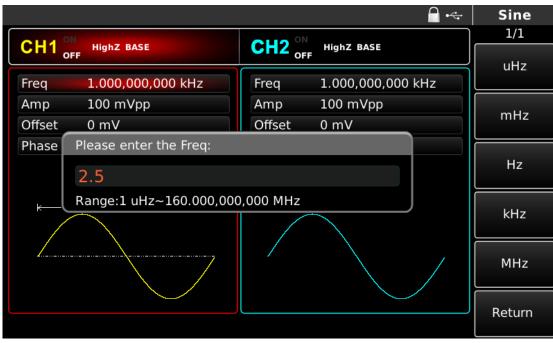


Figure 3-2 Set frequency

3. Select required unit.

Press soft key of corresponding unit. The waveform generator outputs waveform with the displayed frequency when you select unit and output is switched on. In this example, press soft key corresponding to MHz.

4. Use multi-functional control and direction key for parameter setting.

In default state, use the multi-functional control to switch between options of the function menu. When option is chosen, press the multi-functional control to select the parameter which is highlighted in red or blue depending on the channel. Rotate the multi-functional control to adjust the setting. Press left or right direction key to select different characters. Press the multi-functional control again after setting to exit.

3.1.2 Set Output Amplitude

The default configuration of waveform is a sine wave with peak-to-peak amplitude of 100mV (terminating at 50Ω) when powering on. *The specific steps for changing amplitude into 300mV pp are as follows:*

1. Press function key $\boxed{F2}$ until the required soft key border outline illuminates to match the colour of the corresponding channel and character "Amp" is highlighted white and editable and "High" is greyed out. Pressing function key $\boxed{F2}$ again switches between the unit options (Vpp, Vrms and dBm).

2. Input required amplitude value 300 with numeric keyboard.

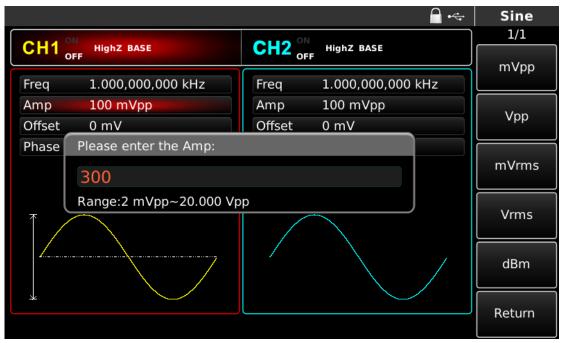


Figure 3- 3 Set amplitude

3. Select required unit.

Press soft key of corresponding unit. The waveform generator outputs waveform with the displayed amplitude when you select unit and switch output on. Press mVpp used in this example.

3.1.3 Set DC Offset Voltage

The default configuration of waveform is a sine wave with DC offset voltage of 0V (terminating at 50Ω) when powering on. The specific steps for changing DC offset voltage into -150mV are as follows:

1. Press function key $\boxed{F3}$ until the required soft key border outline illuminates to match the colour of the corresponding channel. When pressing function key $\boxed{F3}$ again, you will find that the waveform of parameter described with amplitude and DC offset has been described with high level (maximum value) and low level (minimum value). Such method for setting signal limit is very convenient for digital application.

2. Input required DC offset value -150mV with numeric keyboard.

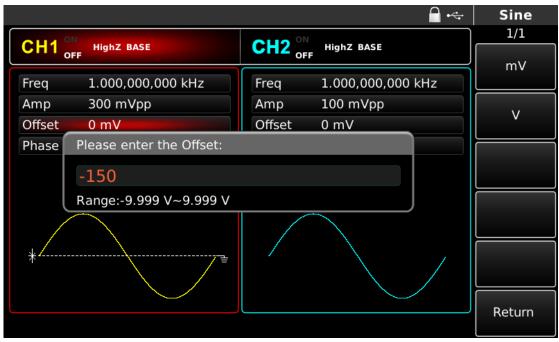


Figure 3- 4 Set offset voltage

3. Select required unit

Press soft key of corresponding unit. The waveform generator outputs waveform with the displayed DC offset when you select unit and switch output on. Press mV in this example.

3.1.4 Set Square Wave

The duty ratio of square wave represents time quantum of square wave at high level in each cycle (suppose waveform is not reversed). The default duty ratio of square wave is 50% when powering on. The duty ratio is restricted by minimum pulse width specification 10ns. *The specific steps for setting square wave with frequency of 1kHz, amplitude of 1.5Vpp, DC offset of 0V and duty ratio of 70% are as follows:*

Press Square, Freq, Amp and Duty to set corresponding functions. Press the corresponding soft key to edit parameters, then input the required value, and finally select the unit. Select corresponding value to set the duty ratio.

			□ •<+	Square
CH1	ON HighZ BASE	CH2 OFF	HighZ BASE	1/1
Спі	OFF	OFF OFF		%
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	
Amp	5.000 Vpp	Amp	5.000 Vpp	
Offset	0 mV	Offset	0 mV	25%
Phase	Please enter the Duty:			
Duty	70			50%
k	Range:0.01 %~99.99 %		J	
				75%
				95%
				Return

Figure 3-5 Set duty ratio

3.1.5 Set Pulse Wave

The duty ratio of pulse wave represents time quantum from the 50% threshold value of rising edge of the pulse to 50% threshold value of the next falling edge in each cycle (if waveform is not reversed). You can input parameter configuration for the function/arbitrary waveform generator to output pulse waveform with variable pulse width and edge time. The default duty ratio of pulse wave is 50% when powering on. Rising/falling edge time of 72-14126 is 5ns (72-14122 is 6ns/ 72-14120 is 7ns).

The specific steps for setting pulse wave with period of 2ms, amplitude of 1.5Vpp, DC offset of 0V, duty ratio (restricted by minimum pulse width specification 10ns) of 25%, rising edge time of 200µs and falling edge time of 200µs are as follows:

Press Pulse, Freq, Amp, Duty, Rise and Fall (if tag is not highlighted, press corresponding soft function key to select), and press soft key Freq twice to switch between frequency and period. Input the required value, and then select the unit. When inputting value of duty ratio, input 25 and press % to finish input. To set falling edge time, please press soft key Page Up/Down or rotate multi-functional control clockwise when sub-tag is selected to display the next screen of sub-tags (The sub-tag is editable when the border colour matches the border colour of the channel selected, and the digits are white on blue), press soft key Fall to input the required value and select the unit.

		🔒 🚓 🛛 Pulse
	CH2 ^{ON} HighZ BASE	2/2
OFF HIGHZ BASE	CH2 OFF HighZ BASE	ns
Period 2.000,000,0 ms	Freq 1.000,000,000 kH	
Amp 1.500 Vpp	Amp 5.000 Vpp	
Offset 0 mV	Offset 0 mV	us
Phase Please enter the Fall:		
Duty 200		ms
Fall		
Range:5.0 ns~1.199,997,	J ms	s
		/ ks
		KS I
		Return

Figure 3- 6 Set falling edge time

3.1.6 Set DC Voltage

Output of DC voltage is setting of the above-mentioned DC offset. The default DC voltage is initially 0V when powering on. *The specific steps for changing DC offset voltage into 3V are as follows:*

- 1. Press DC followed by Offset to enter the setting.
- 2. Input the required number 3 with numeric keyboard.

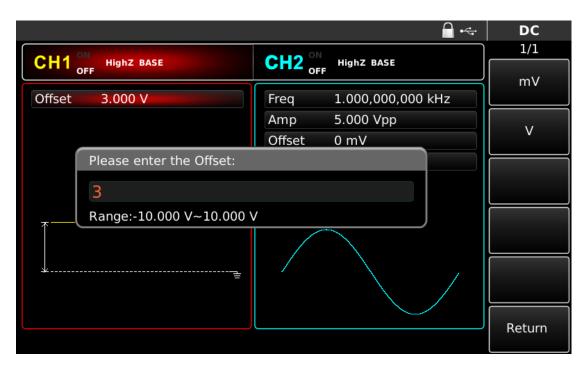
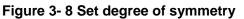


Figure 3-7 Set DC voltage

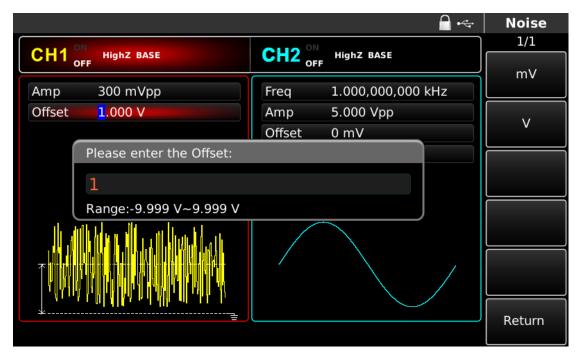

3. Select required unit.

Press soft key of corresponding unit. The waveform generator outputs waveform with the displayed DC offset when you select the unit and switch output on. Press V (Volts) in this example.

3.1.7 Set Sawtooth Wave

Degree of symmetry is time quantum when slope of sawtooth wave is positive in each cycle (if waveform is not reversed). The default degree of symmetry of sawtooth wave is 0.10% when powering on. *The specific steps for setting triangular wave with frequency of 10kHz, amplitude of 2V, DC offset of 0V and degree of symmetry of 50% are as follows:* Press Ramp, Freq, Amp, Offset and Symmetry in sequence. Press the corresponding soft key to set the parameter, input the required value and then select the unit. There will be tag 50% on the right of the screen when inputting the degree of symmetry. Press the corresponding soft key to input the value. Enter 50 using the numeric keypad and then press % to finish selection.

			□ • ~	Ramp
CH1	ON HighZ BASE		HighZ BASE	$]$ $\frac{1/1}{}$
СП	OFF	CH2 OFF	HIGHZ BASE	%
Freq	10.000,000,000 kHz	Freq	1.000,000,000 kHz	
Amp	2.000 Vpp	Amp	5.000 Vpp	25%
Offset	0 mV	Offset	0 mV	25%
Phase	Please enter the Symmetry	y:		
Symm	50			50%
k	Range:0.01 %~99.99 %		J	
K				75%
				95%
				Return



3.1.8 Set Noise Wave

Quasi-Gaussian noise with amplitude of 100mVpp and DC offset of 0mV is default in the function/arbitrary waveform generator. If the amplitude and DC offset function of other waveforms are changed, the default value of noise wave will also be changed. Only the amplitude and DC offset of the noise wave can be changed.

The specific steps for setting quasi-Gaussain noise with amplitude of 300mVpp and DC offset of 1V are as follows:

Press Noise, Amp and Offset in sequence to input settings. Press the corresponding soft key to set required parameter, input the setting value and then select the unit required.

3.2 SYNC Output

The two SYNC connectors on the front panel provide SYNC output. All standard waveform outputs (except DC and noise) are equipped with associated Sync output. Sync output of each corresponding channel can be turned off in UTILITY option. Both channels are equipped with completely independent Sync signal output.

- By default, Sync signal output is on.
- Sync output is at low logic level when turned off.
- State of Sync is divided into off, on and opposition.
- Sync will not reverse with the waveform.
- Sync uses fundamental waveform as reference in fundamental wave output, and is square wave with duty ratio of 50%.
- Sync uses modulation waveform as reference in internal modulation, and is square wave with duty ratio of 50%.
- Sync uses carrier waveform as reference in external analog modulation, and is square wave with duty ratio of 50%.
- Sync uses external input waveform as reference in external FSK input modulation, and is square wave with duty ratio of 50%.
- When internal trigger of frequency sweep starts, Sync signal is at "low" level and at "high" level at midpoint of frequency sweep. Sync signal synchronizes with frequency sweep. In case of external trigger of frequency sweep, Sync is synchronous with external trigger signal. In the event of manual trigger of frequency sweep, Sync is at "high" level when frequency sweep starts and at "low" level when frequency sweep is over.
- For trigger of pulse train, Sync signal is at TTL "high" level when pulse train starts and at "low" level at midpoint of designated burst period.
- For external gated pulse train, Sync signal is consistent with external gated signal.

3.3 Frequency Measurement

This function/arbitrary waveform generator can measure frequency and duty ratio of compatible TTL level signal. The range of frequency measurement is 100mHz~200MHz. When frequency meter is used, signal of compatible TTL level is input through external frequency meter interface (Counter connector). Press <u>COUNTER</u> to read "frequency", "period", "duty ratio", "positive pulse width" and "negative pulse width" in parameter list. When no signal is input, the parameter list of the frequency meter displays the value measured previously. The frequency meter only refreshes the display after a signal of compatible TTL level is input into frequency meter interface (Counter connector).

			-	Counter
				1/1
CH1 OFF	HighZ BASE		HighZ BASE	Coupling
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	AC
Amp	5.000 Vpp	Amp	5.000 Vpp	Test
Offset	0 mV	Offset	0 mV	TrgLevel
Phase	0.000 °	Phase	0.000 °	
				TRG Precision
				HF Reject
				Off
Counter	AC 0 mV	100 %	Off	
Frequen	cy 999.999,113,4 kHz	2		
Frequency	999.999,113,4 kHz	+Width	501.440 ns	
Period	1.000,00 us	Width	498.560 ns	
Duty	50.144 %			

Figure 3-10 Frequency measurement

3.4 Use Built-in Help System

Built-in help system provides context-sensitive help for any key or soft key or menu on the front panel. You can also use list of help topics to get guidance about front panel operation.

1. Check list of help topics.

Press HELP on arbitrary interface to check list of help topics available, press arbitrary operation key again to view corresponding help information, and press HELP again to exit.

2. Check help information that displays message.

In case of exceeding the limit or any invalid configuration, function/arbitrary waveform generator will display an error message. The built-in help system provides additional information about these messages. Press <u>HELP</u> to check a list of help topics available, select "check the last message displayed" and press <u>HELP</u> again to exit.

Note: Local language help: built-in help system provides simplified Chinese, traditional Chinese and English versions. All messages, context-sensitive help and help topics are displayed in the selected language. To select local language, press Utility, System and Language successively, and press soft key corresponding to direction tag to select the language you need (or select with multi-functional control).

Chapter 4 Advanced Applications

4.1 Output Modulation Waveform

4.1.1 Amplitude Modulation (AM)

In amplitude modulation, the modulated waveform generally is composed of carrier wave and modulation wave. The amplitude of carrier wave will vary with that of modulation wave. The modulation mode of the two channels is mutually independent. You can configure identical or different modulation mode for channels 1 and 2.

Select AM

Press MOD, Type and AM to use AM function (if Type is not highlighted, press soft key Type to select). After AM function is used, the function/arbitrary waveform generator will output modulated waveform with the current modulation waveform and carrier wave when output is turned on.

			·	Mod
				1/1
	HighZ MOD		HighZ BASE	Туре
Туре	AM	Freq	1.000,000,000 kHz	≰ AM
Source	Internal	Amp	5.000 Vpp	Source
Wave	Sine	Offset	0 mV	Internal
Freq	10.000,000 kHz	Phase	0.000 °	Wave
Depth	100.000 %			« Sine
Λ	$\wedge \wedge$			Freq
\sim V				Depth
	V			

Figure 4-1 Select AM function

Select carrier waveform

AM carrier waveform can be sine wave, square wave, sawtooth wave or arbitrary wave (except DC), and is sine wave by default. After AM is selected, press the key of basic waveform setting to set corresponding carrier waveform.

			· ~	Sine
CH1 or	High7 MOD		HighZ BASE	1/1
OF	F	OFF OFF	ngnz base	Freq
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	Period
Amp	5.000 Vpp	Amp	5.000 Vpp	Amp
Offset	0 mV	Offset	0 mV	High
Phase	0.000 °	Phase	0.000 °	Offset
				Low
K	*			Phase

Figure 4- 2 Select carrier waveform

Set carrier frequency

Carrier frequency range varies with carrier waveform. The default frequency of all carrier waves is 1kHz. See the table below for frequency range of carrier wave:

Carrier	Frequency				
waveform	72-14120	72-14122	72-14126		
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz		
Square wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz		
Sawtooth wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz		
Pulse wave	1µHz ~ 2MHz	1µHz ~ 3MHz	1µHz ~ 4MHz		
Arbitrary wave	1µHz ~ 30MHz	1µHz ~ 30MHz	1µHz ~ 30MHz		

Table 4-1

To set carrier frequency, please use multi-functional control and direction key or press corresponding keys, input the required value and select the unit.

Select modulation source

The function/arbitrary waveform generator can select internal or external modulation source. After you use AM function, you can see that modulation source is internal by default. You can change it with multi-functional control on AM interface or by pressing function menu Source.

			· ~	Mod
CH1 ON	HighZ MOD	CH2 OFF	HighZ BASE	1/1
		OFF OFF	nignz base	Туре
Туре	AM	Freq	1.000,000,000 kHz	≰ AM
Source	Internal	Amp	5.000 Vpp	Source
Wave	Sine	Offset	0 mV	Internal
Freq	10.000,000 kHz	Phase	0.000 °	Wave
Depth	100.000 %			« Sine
Λ	$\Lambda \wedge$			Freq
\wedge V				Depth
	V			

Figure 4-3 Select modulation source

1) Internal source

In case of internal modulation source, modulation wave can be sine wave, square wave, sawtooth wave and arbitrary wave, and is sine wave by default. After you use AM function, modulation wave is sine wave by default. You can change it with multi-functional control on AM interface or by pressing Wave.

- Square wave: duty ratio is 50%
- Sawtooth wave: degree of symmetry is 0.10%
- Arbitrary wave: when selecting arbitrary wave as modulation waveform, function/arbitrary waveform generator limits length of arbitrary wave to 32Mpts by automatic test count.

Set modulation wave frequency

The frequency of modulation wave can be set for internal modulation source. After you use AM function, you can see that frequency of modulation wave is 100Hz by default. You can change it with the multi-functional control and direction key on AM interface or by pressing Freq. Modulation frequency range is 2mHz~200kHz.

2) External source

In case of external modulation source, modulation wave and frequency will be hidden in parameter list, when an external waveform is used to modulate carrier waveform. AM depth is controlled by built-in modulation depth and ±5V signal level on external analog modulation input terminal (Modulation In connector) on back panel. For example, if modulation depth in parameter list is set to be 100%, AM output amplitude is the maximum when external modulation signal is +5V and the minimum when external modulation signal is -5V. The frequency range of modulation signal of the external input is 2mHz~20kHz.

Set modulation depth

Modulation depth is the degree of amplitude change, expressed in percentage. The range of AM depth is 0%-120%, 100% by default. When modulation depth is 0%, a constant amplitude is output (half of carrier amplitude). When modulation depth is 100%, the output amplitude varies with the modulation waveform. When modulation depth is more than 100%, the instrument will not output a peak-to-peak voltage (terminating at 50 Ω) more than ±5V. You can change it with multi-functional control and direction key on AM interface or by pressing Depth. In case of external modulation source, the output amplitude of instrument is also controlled by ±5V signal level on external analog modulation input terminal (Modulation In connector) on the back panel. For example, if modulation depth in parameter list is set to be 100%, AM output amplitude is the maximum when external modulation signal is +5V and the minimum when external modulation signal is -5V.

Comprehensive example

First set the instrument to run in amplitude modulation (AM) mode, and then set an internal sine wave of 200Hz as modulation signal and a square wave with frequency of 10kHz, amplitude of 200mVpp and duty ratio of 45% as carrier signal. Finally set modulation depth to be 80%.

The specific steps are as follows:

1) Use AM function

Press MOD to use the function, and select AM function (press soft key "Type" to select).

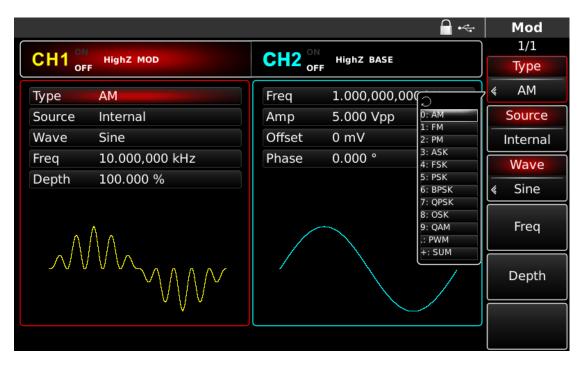


Figure 4- 4 Select AM function

2) Set modulation signal parameters

Set with the multi-functional control and direction key after using AM function. You can also press soft keys of function on the above interface for using AM function.

			∂ •<-	Mod
				1/1
	HighZ MOD F		HighZ BASE	Туре
Туре	AM	Freq	1.000,000,000 kHz	≪ AM
Source	Internal	Amp	5.000 Vpp	Source
Wave	Sine	Offset	0 mV	Internal
Freq	10.000,000 kHz	Phase	0.000 °	Wave
Depth	100.000 %			« Sine
Λ	$\wedge \wedge$			Freq
\mathcal{N}				Depth

Figure 4-5 Set modulation parameters

Press the corresponding soft key, input the required value and select the unit.

			- Mod
CILIA ON			1/1
CH1 OFF Highz MOD		HighZ BASE	uHz
Туре АМ	Freq	1.000,000,000 kHz	
Source Internal	Amp	5.000 Vpp	
Wave Sine	Offset	0 mV	mHz
Freq Please enter the Freq:			
Depth 100			Hz
Range:1 uHz~200.000,00	kHz	J	
$\wedge \wedge \wedge$			kHz
			MHz
			Boturn
			Return

Figure 4- 6 Set frequency of modulation source

3) Set carrier signal parameters

Select type of basic waveform in modulation mode. Press Square to select the carrier signal as a square wave.

			· ~	Square
	ON HighZ MOD	CH2 OFF	HighZ BASE	$]$ $\frac{1/1}{}$
	OFF	OFF		uHz
Freq	10.000,000,000 kHz	Freq	1.000,000,000 kHz	
Amp	200 mVpp	Amp	5.000 Vpp	
Offset	0 mV	Offset	0 mV	mHz
Phase	Please enter the Freq:			
Duty	10			Hz
k ──	Range:1 uHz~50.000,000,0	000,0 MHz	J	
				kHz
				MHz
				Return

Figure 4-7 Set carrier frequency

You can set with multi-functional control and direction key, or press corresponding soft keys of function again.

			- • 4	Square
	HighZ MOD	CH2 OFF	HighZ BASE	1/1
OFF	Highz Hob	OFF	HIGHZ BASE	Freq
Freq	10.000,000,000 kHz	Freq	1.000,000,000 kHz	Period
Amp	200 mVpp	Amp	5.000 Vpp	Amp
Offset	0 mV	Offset	0 mV	High
Phase	0.000 °	Phase	0.000 °	Offset
Duty	45.00 %			Low
<u>×</u>			Phase	
				Duty

Figure 4-8 Select carrier duty ratio

To set some parameters, press the corresponding soft key, input the required value and select the unit.

			· ~	Square
CH1	ON HighZ MOD	CH2 OFF	HighZ BASE] $1/1$
	OFF	OFF		%
Freq	10.000,000,000 kHz	Freq	1.000,000,000 kHz	
Amp	200 mVpp	Amp	5.000 Vpp	25%
Offset	0 mV	Offset	0 mV	25%
Phase	Please enter the Duty:			
Duty	45			50%
к—	Range:0.01 %~99.99 %		J	
				75%
				95%
				Return

Figure 4-9 Set carrier duty ratio

4) Set modulation depth

Press soft key Return to return to the interface below to set modulation depth after setting the carrier parameters.

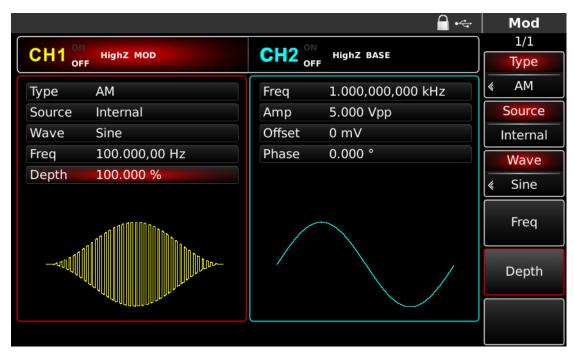


Figure 4- 10 Select modulation depth

You can set with multi-functional control and direction key. You can also press the soft key Depth again, input number 80 through numeric keyboard and press soft key % to set the modulation depth.

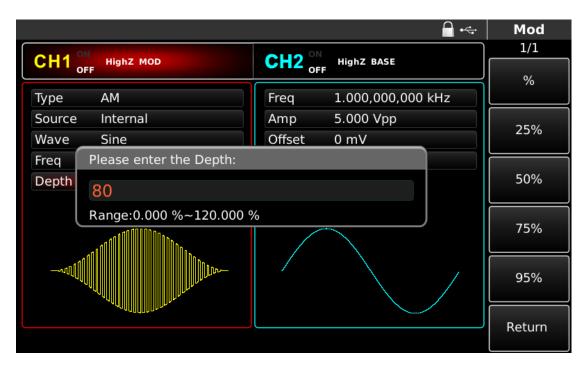


Figure 4-11 Set modulation depth

5) Use channel output

Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" on the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.

			- •~		Mod
) 	1/1
	HighZ MOD F	CH2 OFF	HighZ BASE		Туре
Туре	AM	Freq	1.000,000,000 kHz	«	АМ
Source	Internal	Amp	5.000 Vpp		Source
Wave	Sine	Offset	0 mV		Internal
Freq	100.000,00 Hz	Phase	0.000 °		Wave
Depth	80.000 %				Sine
lin-					Freq
					Depth

Figure 4-12 Use channel output

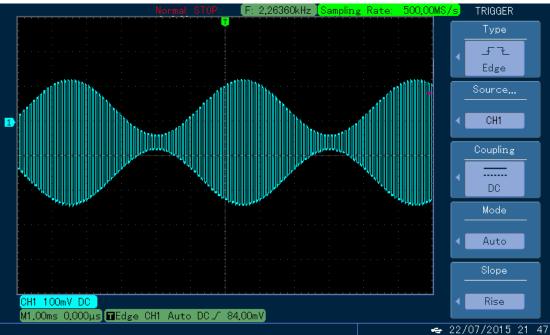


Figure 4-13 Observe AM waveform with oscilloscope

4.1.2 Frequency Modulation (FM)

In frequency modulation, the modulated waveform generally is composed of a carrier wave and modulation wave. The frequency of the carrier wave will vary with amplitude of the modulation wave. The modulation mode of the two channels is mutually independent. You can configure identical or different modulation modes for channels 1 and 2.

Select FM

Press MOD, Type and FM in turn to use the FM function (press soft key "Type" to select). After FM function is used, the function/arbitrary waveform generator will output modulated waveform with the current modulation waveform and carrier wave when output is turned on.

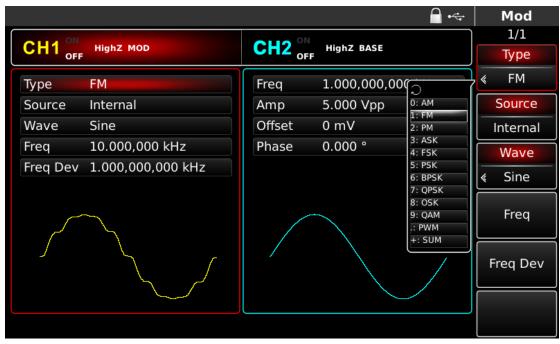


Figure 4-14 Select FM

Select carrier waveform

FM carrier waveform can be sine wave, square wave, sawtooth wave or arbitrary wave (except DC), and is sine wave by default. After FM is selected, press the key of basic waveform setting to set corresponding carrier waveform.

			-	Sine
			HighZ BASE	1/1
		CH2 OFF	HIGHZ BASE	Freq
Freq 1.000,0	00,000 kHz	Freq	1.000,000,000 kHz	Period
Amp 5.000 V	/pp	Amp	5.000 Vpp	Amp
Offset 0 mV		Offset	0 mV	High
Phase 0.000 °		Phase	0.000 °	Offset
				Low
*	к			Phase

Figure 4-15 Select carrier waveform

Set carrier frequency

Carrier frequency range varies with carrier waveform. The default frequency of all carrier waves is 1kHz. See the table below for frequency range of carrier wave:

Carrier Waveform	Frequency					
	72-14120	72-14122	72-14126			
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz			
Square wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz			
Sawtooth wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz			
Pulse wave	1µHz ~ 2MHz	1µHz ~ 3MHz	1µHz ~ 4MHz			
Arbitrary wave	1µHz ~ 30MHz	1µHz ~ 30MHz	1µHz ~ 30MHz			

Table 4-2

To set carrier frequency, please use multi-functional control and direction key or press Freq, input the required value and select the unit after selecting the carrier waveform.

Select modulation source

The function/arbitrary waveform generator can select either internal or external modulation source. After you use FM function, the modulation source is internal by default. You can change it with multi-functional control on interface for using frequency modulation or by pressing <u>Source</u>.

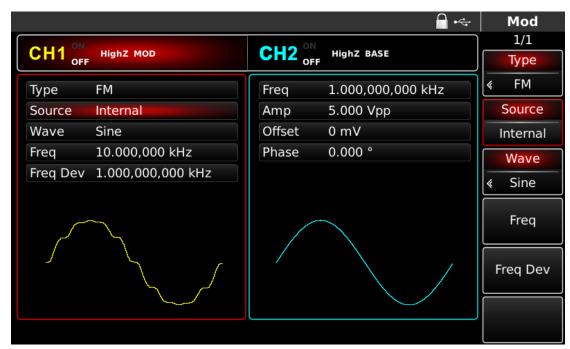


Figure 4-16 Select modulation source

1) Internal source

In case of internal modulation source, modulation wave can be sine wave, square wave, sawtooth wave and arbitrary wave, and is sine wave by default. After you use FM function, the modulation wave is sine wave by default. You can change it with multi-functional control on interface for using frequency modulation or by pressing the relevant key for basic waveform setting.

- Square wave: duty ratio is 50%
- Sawtooth wave: degree of symmetry is 0.10%
- Arbitrary wave: when selecting arbitrary wave as modulation waveform, function/arbitrary waveform generator limits length of arbitrary wave to 32Mpts by automatic test count.

2) External source

When using an external modulation source, the modulation wave and frequency will be hidden in the parameter list when an external waveform will be used to modulate carrier waveform. Frequency deviation of FM is controlled by ±5V signal level on external analog modulation input terminal (Modulation In connector) on the back panel. Output frequency of FM is more than carrier frequency at positive signal level and less than the latter at negative signal level. Lower external signal level generates less deviation. For example, if frequency deviation in the parameter list is set to be 1kHz, output frequency of FM is 1kHz more than the current carrier frequency when external modulation signal is +5V and 1kHz less than the current carrier frequency when external modulation signal is -5V.

Set modulation wave frequency

The frequency of modulation wave can be set when an internal modulation source is used. After you use FM function, you the frequency of the modulation wave is 100Hz by default. You can change it with the multi-functional control and direction key on the interface for using frequency modulation or by pressing Freq. Modulation frequency range is 2mHz~200kHz. When an external modulation source is used, modulation wave and frequency will be hidden in parameter list, when an external waveform is used to modulate the carrier waveform. The frequency range of modulation signal of the external input is 2mHz~20kHz.

Set frequency deviation

Frequency deviation is the deviation of frequency of waveform subject to FM from the carrier frequency. The range of FM frequency deviation is 1μ Hz to half of the maximum carrier frequency, 1kHz by default. You can change it with the multi-functional control and direction key on the interface for using frequency modulation or by pressing Freq.

- Frequency deviation must not be more than carrier frequency. If the frequency deviation is more than the carrier frequency, function/ arbitrary waveform generator will automatically limit the deviation to the allowable maximum carrier frequency.
- The sum of frequency deviation and carrier frequency must not be more than the allowable maximum carrier frequency. If the frequency deviation is invalid, the function/arbitrary waveform generator will automatically limit the deviation to the allowable maximum carrier frequency.

Comprehensive example

First make the instrument run in frequency modulation (FM) mode, and then set an internal square wave of 2kHz as modulation signal and a sine wave with frequency of 10kHz and amplitude of 100mVpp as carrier signal. Finally set frequency deviation to be 5kHz. *The specific steps are as follows:*

1) Use FM function

Press MOD, Type and FM in sequence (press Type to select if "Type" is not highlighted) to use FM function.

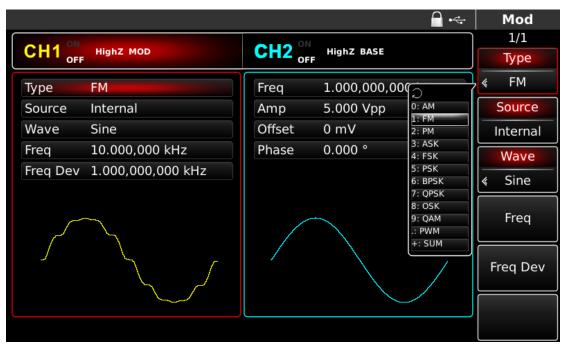


Figure 4-17 Select FM function

2) Set modulation signal parameters

Set with the multi-functional control and direction key after using FM function. You can also press the corresponding soft keys on the above interface for using the FM function, when the interface will display:

			□ ~ .	Mod
				1/1
	HighZ MOD	CH2 OFF	HighZ BASE	Туре
Туре	FM	Freq	1.000,000,000 kHz	≰ FM
Source	Internal	Amp	5.000 Vpp	Source
Wave	Sine	Offset	0 mV	Internal
Freq	10.000,000 kHz	Phase	0.000 °	Wave
Freq Dev	1.000,000,000 kHz			∢ Sine
	~~~			Freq
				Freq Dev

Figure 4-18 Set modulation parameters

To set some parameter, press corresponding soft key, input the required value and select the unit.

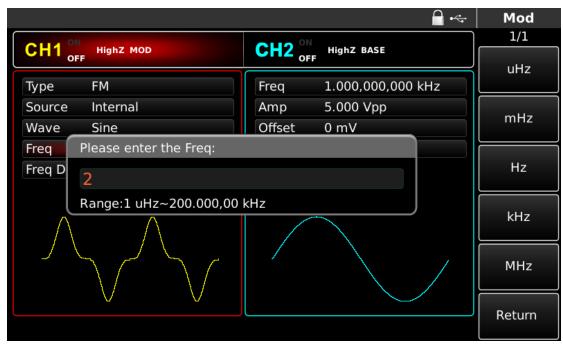



Figure 4-19 Set frequency of modulation source

#### 3) Set carrier signal parameters

Press Sine to select carrier signal as a sine wave if previously set to another mode. (Default carrier signal is a sine wave).

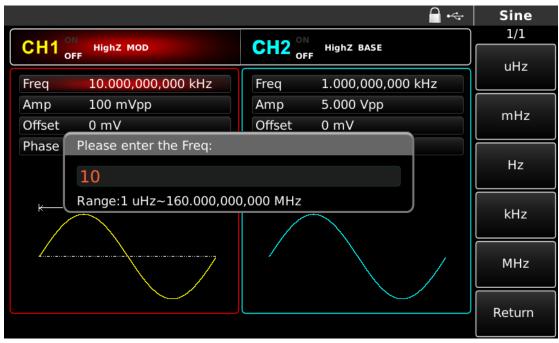



Figure 4- 20 Set carrier frequency

You can input settings using the multi-functional control and direction key.

Press corresponding soft key, input the required value and select the unit.

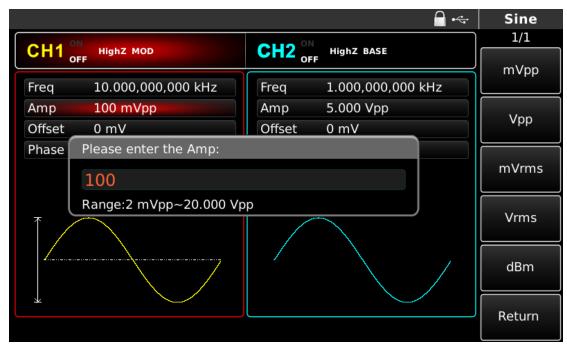



Figure 4- 21 Set carrier amplitude

## 4) Set frequency deviation

Press MOD to return to the interface below to set the frequency deviation after setting carrier parameters.

			<b>·</b> ~	Mod
			HighZ BASE	1/1
	HighZ MOD		HIGNZ BASE	Туре
Туре	FM	Freq	1.000,000,000 kHz	≰ FM
Source	Internal	Amp	5.000 Vpp	Source
Wave	Sine	Offset	0 mV	Internal
Freq	2.000,000,0 kHz	Phase	0.000 °	Wave
Freq Dev	5.000,000,000 kHz			« Sine
				Freq Freq Dev

Figure 4- 22 Return to FM setting

You can input settings using the multi-functional control and direction key. You can also press Freq Dev again, input number 5 through numeric keyboard and press soft key kHz to set the frequency deviation.

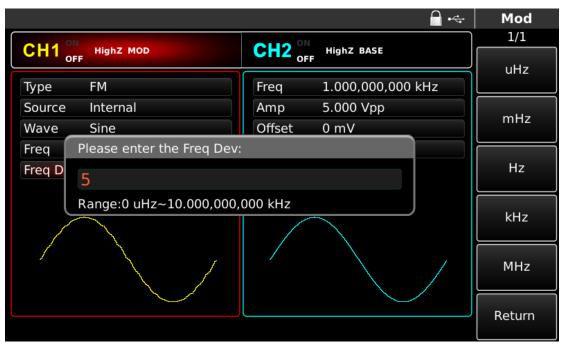



Figure 4-23 Set frequency deviation

# 5) Use channel output

Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" on the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.

			<b>-</b>	Mod
CH1 ON				1/1
	HighZ MOD		HighZ BASE	Туре
Туре	FM	Freq	1.000,000,000 kHz	≰ FM
Source	Internal	Amp	5.000 Vpp	Source
Wave	Sine	Offset	0 mV	Internal
Freq	2.000,000,0 kHz	Phase	0.000 °	Wave
Freq Dev	5.000,000,000 kHz			« Sine
$\land$	$\land \land \land \land$			Freq
				Freq Dev

Figure 4- 24 Use channel output

Check the shape of FM modulation waveform through oscilloscope, which is shown in the figure below:

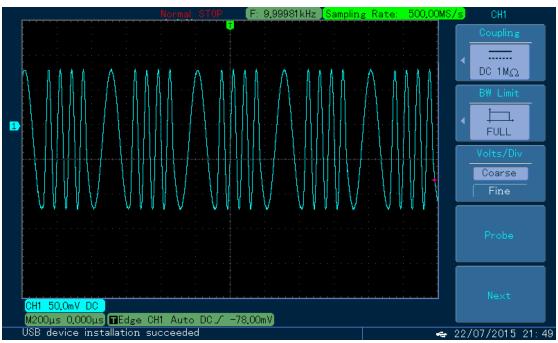



Figure 4- 25 Observe waveform with oscilloscope

### 4.1.3 Phase Modulation (PM)

In phase modulation, the modulated waveform generally is composed of carrier wave and modulation wave. The phase of the carrier wave will vary with amplitude of the modulation wave. The modulation mode of the two channels is mutually independent. You can configure identical or different modulation modes for channels 1 and 2.

## Select PM

Press MOD, Type and PM in sequence to use the PM function (if "Type" is not highlighted, press soft key Type to select). After PM function is used, the function/arbitrary waveform generator will output modulated waveform with the current modulation waveform and carrier wave when output is turned on.

					Mod
CH1 ON			HighZ BASE		1/1
OFF	HighZ MOD		HIGHZ BASE		Туре
Туре	PM	Freq	1.000,000,000		, ≪ PM
Source	Internal	Amp	5.000 Vpp	0: AM	Source
P Dev	180.000 °	Offset	0 mV	1: FM 2: PM	Internal
Wave	Sine	Phase	0.000 °	3: ASK 4: FSK	
Freq	10.000,000,000 kHz			5: PSK 6: BPSK	Phase Dev
				7: QPSK	
I MA M	An Malia II a a la a		~	8: OSK 9: QAM	Wave
I MAAA				.: PWM +: SUM	« Sine
				+: 30M	Freq
	a a l a a l ha m M a M a M				

Figure 4- 26 Select PM function

### Select carrier waveform

The PM carrier waveform can be sine wave, square wave, sawtooth wave or arbitrary wave (except DC), and is sine wave by default. After PM is selected, press the key of basic waveform setting to enter the interface for setting carrier wave.

			<b>-</b>	Sine
	HighZ MOD	CH2 OFF	HighZ BASE	1/1
OFI		OFF OFF	nignz base	Freq
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	Period
Amp	5.000 Vpp	Amp	5.000 Vpp	Amp
Offset	0 mV	Offset	0 mV	High
Phase	0.000 °	Phase	0.000 °	Offset
				Low
ĸ	*			Phase

Figure 4- 27 Select carrier waveform

# Set carrier frequency

Carrier frequency range varies with carrier waveform. The default frequency of all carrier waves is 1kHz. See following table for frequency range of carrier wave:

Carrier waveform		Frequency	
Carrier waveform	72-14120	72-14122	72-14126
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz
Square wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz
Sawtooth wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz
Pulse wave	1µHz ~ 2MHz	1µHz ~ 3MHz	1µHz ~ 4MHz
Arbitrary wave	1µHz ~ 30MHz	1µHz ~ 30MHz	1µHz ~ 30MHz

To set carrier frequency, please use multi-functional control and direction key or press Freq, input the required value and select the unit after selecting carrier waveform.

### Select modulation source

The function/arbitrary waveform generator can select internal or external modulation source. After you use PM function, the modulation source is internal by default. You can change it with multi-functional control on interface for using phase modulation or by pressing MOD and Source in turn.

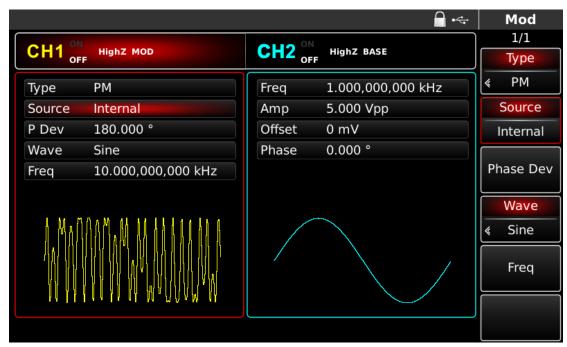



Figure 4-28 Select modulation source

#### Internal source

In case of internal modulation source, modulation wave can be sine wave, square wave, sawtooth wave and arbitrary wave, and is sine wave by default. After you use PM function, the modulation wave is sine wave by default. You can change it with multi-functional control on interface for using phase modulation function or by pressing the key of basic waveform type setting.

- Square wave: duty ratio is 50%
- Sawtooth wave: degree of symmetry is 0.10%
- Arbitrary wave: when selecting arbitrary wave as modulation waveform, function/arbitrary waveform generator limits length of arbitrary wave to 32Mpts by automatic test count.

### External source

When using an external modulation source, modulation wave and frequency will not show in the parameter list, when an external waveform will be used to modulate carrier waveform. Phase deviation of PM is controlled by ±5V signal level on external analog modulation input terminal (Modulation In connector) on the back panel. For example, if phase deviation in parameter list is set to be 180°, phase shift is 180° when external modulation signal is +5V, and lower external signal level generates less deviation.

### Set modulation wave frequency

The frequency of modulation wave can be set when using an internal modulation source. After you use PM function, the frequency of the modulation wave is 100Hz by default. You can change it with the multi-functional control and direction key on interface for using phase modulation or by pressing Freq. Modulation frequency range is 2mHz-200kHz. When using an external modulation source, modulation wave and frequency will not show in parameter list, when an external waveform will be used to modulate carrier waveform. The frequency range of modulation signal of external input is 100Hz-20kHz.

#### Set phase deviation

Phase deviation is the change in phase of the waveform subject to PM, relative to carrier phase. The range of PM phase deviation is 0°~360°, set at 180° by default. You can change it with the multi-functional control and direction keys on interface for using phase modulation or by pressing Phase Dev.

#### **Comprehensive example**

First set the instrument to phase modulation (PM) mode, and then set an internal sine wave of 200Hz as modulation signal and a sine wave with frequency of 900Hz and amplitude of 100mVpp as carrier signal. Finally set phase deviation to be 200°. *The specific steps are as follows:* 

#### **Use PM function**

Press MOD, Type and PM successively (press soft key "Type" to select ) to use PM function.

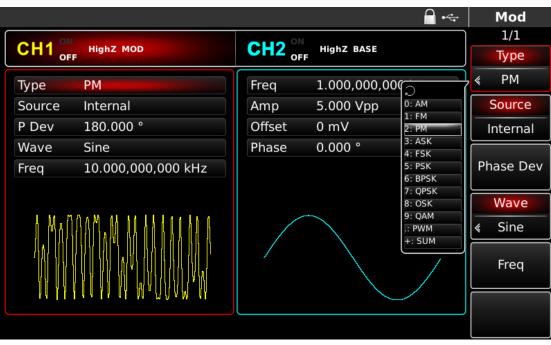



Figure 4- 29 Select PM function

## 1) Set modulation signal parameters

Set with the multi-functional control and direction keys after using the PM function. You can also press the corresponding soft keys of function on the above interface for using PM function, when the screen shown below will display. Press the corresponding soft key, input the required value and select the unit.

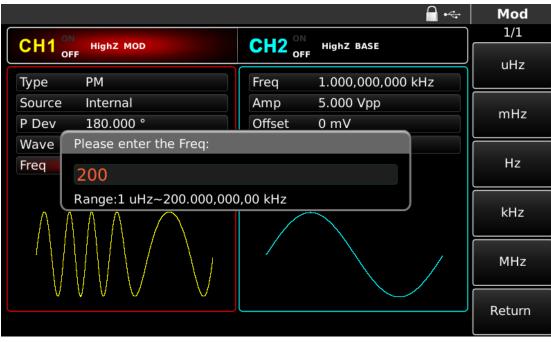



Figure 4- 30 Set modulation parameters

# 2) Set carrier signal parameters

Press Sine to select carrier signal as a sine wave if previously set to another mode (Default carrier signal is a sine wave) when PM modulation signal is on.

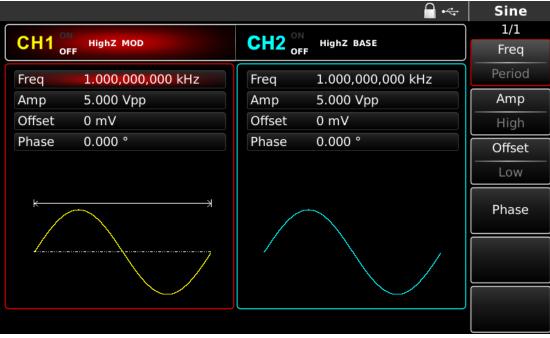



Figure 4- 31 Set carrier frequency

You can also set with the multi-functional control and direction keys. You can also press corresponding soft keys of function again, when the interface below will display. To set some parameter, press corresponding soft key, input the required value and select the unit.

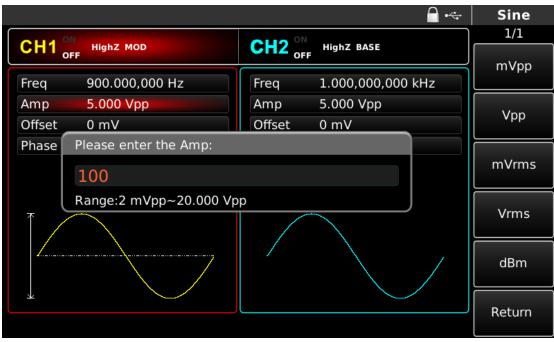



Figure 4- 32 Set carrier amplitude

# 3) Set phase deviation

Press MOD to return to the interface below to set phase deviation after setting carrier parameters.

			<b>∂</b> •<-	Mod
				1/1
	HighZ MOD	CH2 OFF	HighZ BASE	Туре
Туре	PM	Freq	1.000,000,000 kHz	≰ PM
Source	Internal	Amp	5.000 Vpp	Source
P Dev	180.000 °	Offset	0 mV	Internal
Wave	Sine	Phase	0.000 °	
Freq	200.000,000 Hz			Phase Dev
				Wave
$\land \land$	$\land \land \land$			« Sine
				Freq
V				

Figure 4-33 Set modulation parameters

You can set with the multi-functional control and direction keys. You can also press soft key Phase Dev again, input number 200 through the numeric keyboard and press soft key  $\circ$  to set the phase deviation.

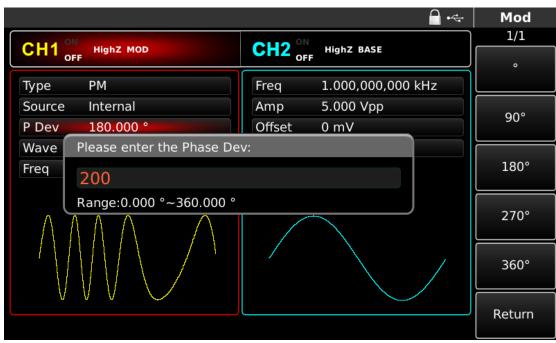



Figure 4-34 Set phase deviation

# 4) Use channel output

Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" to the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.

		<b>-</b>	Mod
			1/1
		HighZ BASE	Туре
Туре РМ	Freq	1.000,000,000 kHz	≰ PM
Source Internal	Amp	5.000 Vpp	Source
P Dev 200.000 °	Offset	0 mV	Internal
Wave Sine	Phase	0.000 °	
Freq 200.000,000 Hz			Phase Dev
			Wave < Sine Freq

Figure 4- 35 Use channel output

Check the shape of PM modulation waveform through the oscilloscope, which is shown in the figure below:

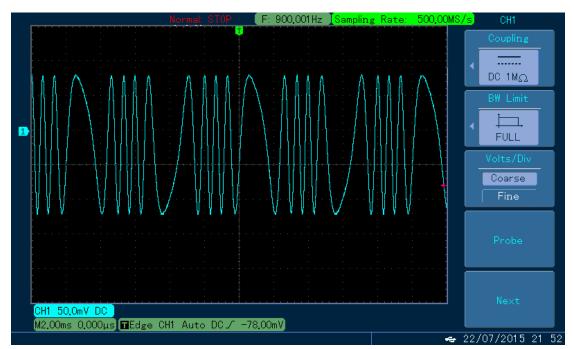



Figure 4- 36 Observe PM waveform with oscilloscope

# 4.1.4 Amplitude Shift Keying (ASK)

In amplitude shift keying, ASK expresses digital signals "0" and "1" by changing amplitude of carrier signal and outputs carrier signals with different amplitude according to logic of modulation signal. The modulation mode of the two channels is mutually independent. You can configure identical or different modulation modes for channels 1 and 2.

# Select ASK modulation

Press MOD, Type and ASK in sequence to use ASK function (if "Type" is not highlighted, press soft key Type to select). After ASK function is used, the function/arbitrary waveform generator will output modulated waveform with the current ASK rate and carrier wave.

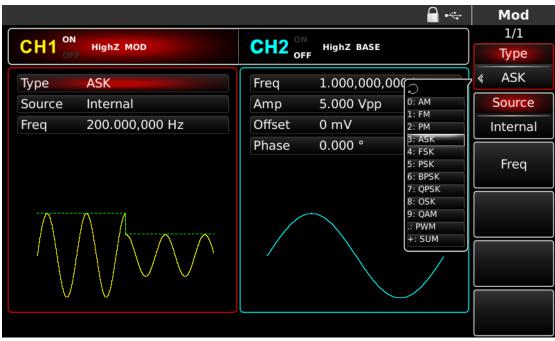



Figure 4- 37 Select ASK function

#### Select carrier waveform

ASK carrier waveform can be sine wave, square wave, sawtooth wave or arbitrary wave (except DC), and is sine wave by default. After ASK modulation is selected, press the key of basic waveform setting to enter the interface for selecting carrier waveform.

			<b>_</b> ⊷	Sine
CH1 ^{on}	HighZ MOD	CH2 OFF	HighZ BASE	1/1 Freq
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	Period
Amp	100 mVpp	Amp	5.000 Vpp	Amp
Offset	0 mV	Offset	0 mV	High
Phase	0.000 °	Phase	0.000 °	Offset
				Low
*	k k			Phase

Figure 4-38 Select carrier waveform

## Set carrier frequency

Carrier frequency range varies with carrier waveform. The default frequency of all carrier waves is 1kHz. See the table below for frequency range of carrier wave:

Carrier	Frequency		
waveform	72-14120	72-14122	72-14126
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz
Square wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz
Sawtooth wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz
Pulse wave	1µHz ~ 2MHz	1µHz ~ 3MHz	1µHz ~ 4MHz
Arbitrary wave	1µHz ~ 30MHz	1µHz ~ 30MHz	1µHz ~ 30MHz

Tab	le	4-	4
IUN		-	-

To set the carrier frequency, please use the multi-functional control and direction keys or press soft function key Freq, input the required value and select the unit after selecting carrier waveform.

#### Select modulation source

The function/arbitrary waveform generator can select an internal or external modulation source. After you use ASK function, the modulation source is internal by default. You can change it with multi-functional control on interface for using amplitude shift keying function or by pressing Source.

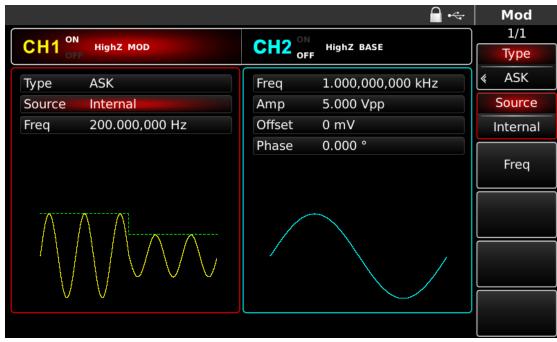



Figure 4- 39 Select modulation source

#### 1) Internal source

When using an internal modulation source, the modulation wave can be sine wave, square wave, sawtooth wave and arbitrary wave, and is sine wave by default. After you use PM function, the modulation wave is sine wave by default. You can change this with the multi-functional control on the interface for using phase modulation function or by pressing the key of basic waveform type setting.

- Square wave: duty ratio is 50%
- Sawtooth wave: degree of symmetry is 0.10%
- Arbitrary wave: when selecting arbitrary wave as modulation waveform, function/arbitrary waveform generator limits length of arbitrary wave to 32Mpts by automatic test count.

#### 2) External source

When using an external modulation source, the rate will not show in the parameter list, when an external waveform will be used to modulate carrier waveform. ASK output amplitude is determined by logic level on external digital modulation interface (FSK Trig connector). For example, when external input logic is low, the current carrier amplitude is output; when external input logic is high, output amplitude is less than the current carrier amplitude.

#### Set ASK rate

The frequency of ASK amplitude jump can be set when using an internal modulation source. After you use ASK function, you can set ASK rate, which is in the range of 2mHz~1MHz and 100Hz by default. You can change it with multi-functional control and direction key on the interface for using ASK function or by pressing Freq.

#### **Comprehensive example**

First set the instrument to run in ASK mode, and then set an internal logic signal of 300Hz as modulation signal and a sine wave with frequency of 15kHz and amplitude of 2Vpp as carrier signal. The specific steps are as follows:

**Note:** only the frequency of this signal can be set. This frequency is the rate of ASK amplitude jump. Logic signal is configured by the instrument.

# 1) Use ASK function

Press MOD, Type and ASK in sequence (press soft key "Type" to select ) to use ASK function.

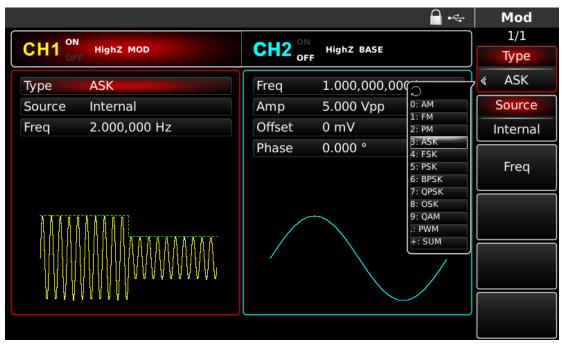



Figure 4- 40 Select ASK function

# 2) Set carrier signal parameters

3) Press Sine to select carrier signal as a sine wave if previously set to another mode (Default carrier signal is a sine wave) when ASK modulation signal is on.

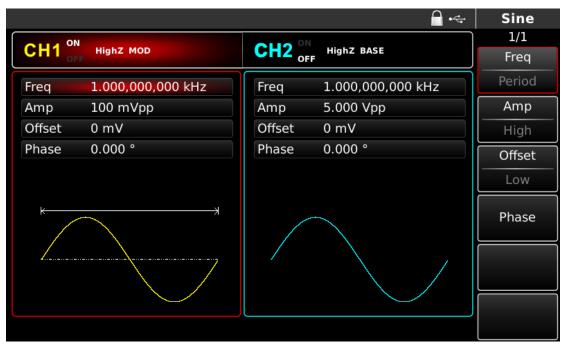



Figure 4- 41 Set carrier parameters

You can also set with the multi-functional control and direction keys. You can also press the corresponding soft keys of function again, when the interface below will display. To set the parameter, press corresponding soft key, input the required value and select the unit.

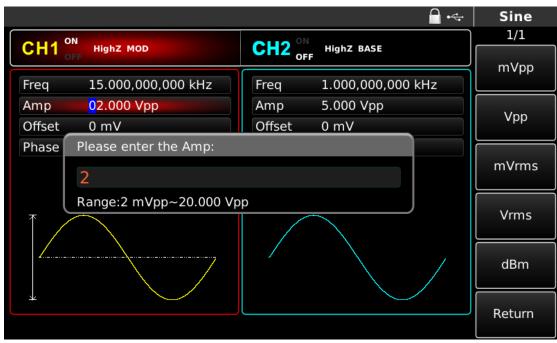



Figure 4- 42 Set carrier amplitude

# 4) Set ASK rate

Press MOD to return to the interface below to set ASK rate after setting carrier parameters.

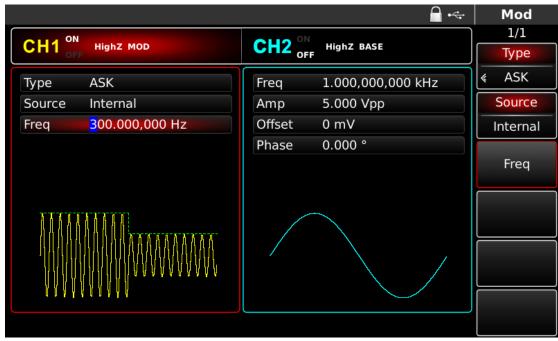



Figure 4-43 Set ASK rate

You can also set with the multi-functional control and direction keys. You can also press soft function key Freq again, input number 300 through the numeric keyboard and press soft key Hz to set the ASK rate.

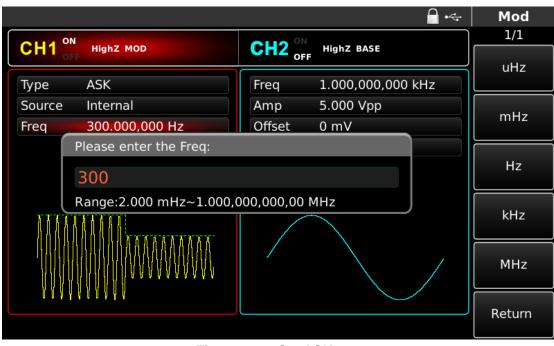



Figure 4- 44 Set ASK rate

# 5) Use channel output

Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" to the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.

				Mod
CH1 ^{on}	HighZ MOD	CH2 OFF	HighZ BASE	1/1
OFF	ingitz hoo	OFF		Туре
Туре	ASK	Freq	1.000,000,000 kHz	≪ ASK
Source	Internal	Amp	5.000 Vpp	Source
Freq	300.000,000 Hz	Offset	0 mV	Internal
		Phase	0.000 °	Freq

Figure 4- 45 Use channel output

Check the shape of the ASK modulation waveform through oscilloscope, which is shown in the figure below:

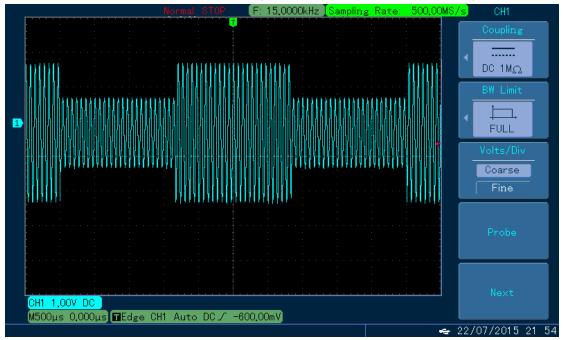



Figure 4- 46 Observe ASK waveform with oscilloscope

# 4.1.5 Frequency Shift Keying (FSK)

The function/arbitrary waveform generator can move between two preset frequency (carrier frequency and hopping frequency) in frequency shift keying. Frequency of carrier signal or hopping signal is output according to logic of modulation signal. The modulation mode of the two channels is mutually independent. You can configure same or different modulation mode for channel 1 and 2.

# Select FSK modulation

Press Menu, Type and FSK in sequence to use the FSK function (if "Type" is not highlighted, press soft key Type to select). After FSK function is used, the function/arbitrary waveform generator will output modulated waveform with the current setting.

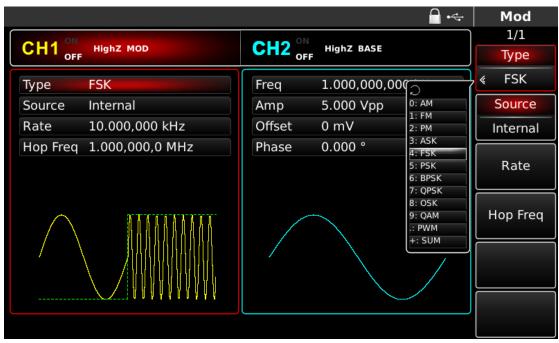



Figure 4- 47 Select FSK function

### Select carrier waveform

FSK carrier waveform can be sine wave, square wave, sawtooth wave or arbitrary wave (except DC), and is sine wave by default. After FSK modulation is selected, press the key of basic waveform setting to select carrier waveform.

		<b>-</b>	Sine
CILIA ON			1/1
		HighZ BASE	Freq
Freq 1.000,000,000 kHz	Freq	1.000,000,000 kHz	Period
Amp 5.000 Vpp	Amp	5.000 Vpp	Amp
Offset 0 mV	Offset	0 mV	High
Phase 0.000 °	Phase	0.000 °	Offset
			Low
*			Phase

Figure 4- 48 Select carrier waveform

## Set carrier frequency

Carrier frequency range varies with carrier waveform. The default frequency of all carrier waves is 1kHz. See the table below for frequency range of carrier wave:

Carrier waveform	Frequency				
Carrier waverorm	72-14120	72-14122	72-14126		
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz		
Square wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz		
Sawtooth wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz		
Pulse wave	1µHz ~ 2MHz	1µHz ~ 3MHz	1µHz ~ 4MHz		
Arbitrary wave	1µHz ~ 30MHz	1µHz ~ 30MHz	1µHz ~ 30MHz		

To set the carrier frequency, please use the multi-functional control and direction keys or press soft function key Freq, input the required value and select the unit after selecting carrier waveform. If the current carrier waveform meets your requirements, you can also directly set the carrier frequency in the interface of FSK modulation, providing a more flexible and intuitive input mode.

### Select modulation source

The function/arbitrary waveform generator can select either an internal or external modulation source. After you use FSK function, the modulation source is internal by default. You can change it with the multi-functional control on the interface for using FSK function or by pressing Source.

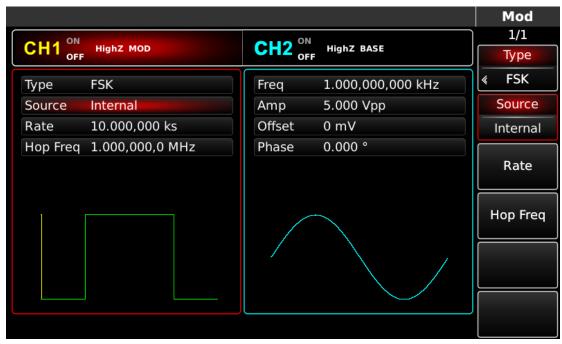



Figure 4-49 Select modulation source

## 1) Internal source

In case of internal modulation source, modulation wave can be sine wave, square wave, sawtooth wave and arbitrary wave, and is sine wave by default. After you use PM function, you can see that modulation wave is sine wave by default. You can change it with the multi-functional control on the interface for using phase modulation function or by pressing the key of basic waveform type setting.

- Square wave: duty ratio is 50%
- Sawtooth wave: degree of symmetry is 0.10%
- Arbitrary wave: when selecting arbitrary wave as modulation waveform, function/arbitrary waveform generator limits length of arbitrary wave to 32Mpts by automatic test count.

### 2) External source

When using an external modulation source, the rate will not be shown in the parameter list, when an external waveform will be used to modulate carrier waveform. FSK output frequency is determined by logic level on the external digital modulation interface (FSK Trig connector). For example, when external input logic is low, carrier frequency is output; when external input logic is high, hopping frequency is output.

#### Set hopping frequency

After you use FSK function, the default hopping frequency is 1MHz. You can change it with the multi-functional control and direction keys on the interface for using FSK function or by pressing Hop Freq. The range of hopping frequency depends on the carrier waveform. See the table below for frequency range of carrier wave:

Carrier waveform	Frequency				
Carrier waverorm	72-14120	72-14122	72-14126		
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz		
Square wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz		
Sawtooth wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz		
Pulse wave	1µHz ~ 2MHz	1µHz ~ 3MHz	1µHz ~ 4MHz		
Arbitrary wave	1µHz ~ 30MHz	1µHz ~ 30MHz	1µHz ~ 30MHz		

Table 4-6

#### Set FSK rate

The frequency between carrier frequency and hopping frequency can be set in case of internal modulation source. After you use FSK function, you can set FSK rate, which is in the range of 2mHz~100kHz and 100Hz by default. You can change it with multi-functional control and direction key on the interface for using FSK function or by pressing Rate. Note: FSK rate can only be changed after FSK function is used. Press MOD, Type and FSK in sequence (press soft key "Type" to select ) to use FSK function.

#### Comprehensive example

First set the instrument to run in FSK mode, and then set an internal sine wave of 2kHz and 1Vpp as carrier signal. Set hopping frequency to be 800Hz. Finally set frequency between carrier frequency and hopping frequency to be 200Hz. The specific steps are as follows:

#### 3) Use FSK function

Press MOD, Type and FSK in sequence (press soft key "Type" to select ) to use FSK function.

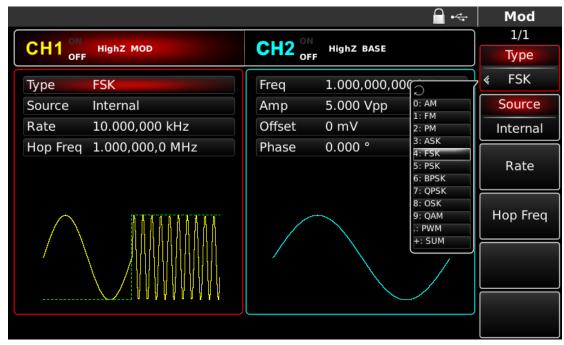



Figure 4- 50 Select FSK function

# 1) Set carrier signal parameters

Press Sine to select carrier signal as a sine wave if previously set to another mode (Default carrier signal is a sine wave) when FSK modulation signal is on.

You can also set with the multi-functional control and direction keys. You can also press corresponding soft keys of function again, when the interface below will display. To set some parameter, press corresponding soft key, input the required value and select the unit.

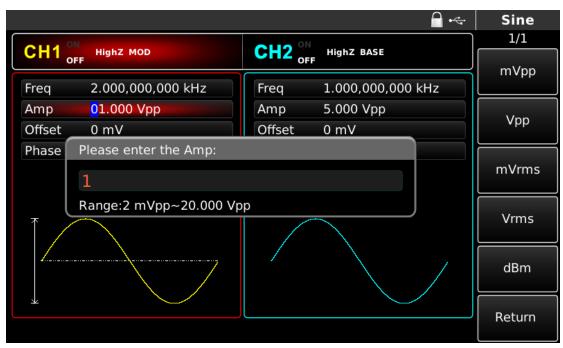



Figure 4- 51 Set carrier parameters

# 2) Set hopping frequency and FSK rate

Press MOD to return to the interface below after setting carrier parameters:

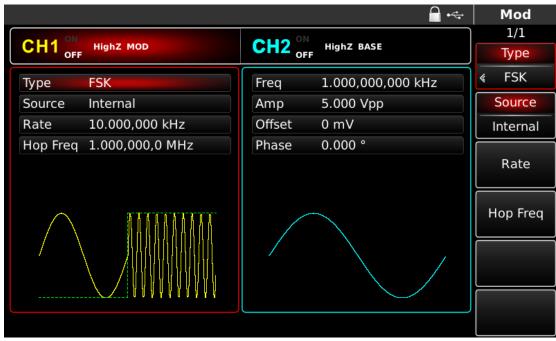



Figure 4- 52 Set modulation amplitude

You can set with the multi-functional control and direction keys directly on this interface. You can also press the corresponding soft keys of function again, when the interface below will display. Press the corresponding soft key, input the required value and select the unit.

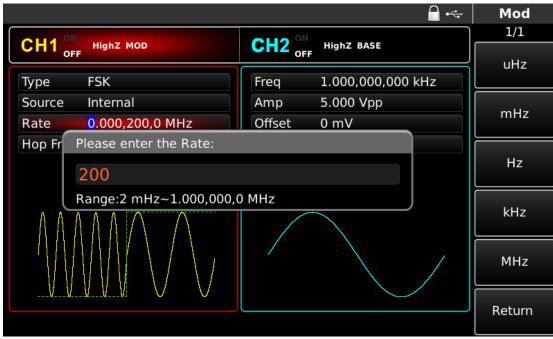



Figure 4- 53 Set FSK rate

# 3) Use channel output

Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" to the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.

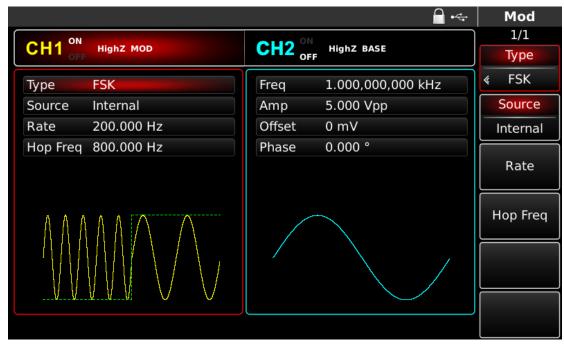



Figure 4-54 Use channel output

Check the shape of FSK modulation waveform through the oscilloscope, which is shown in the figure below:

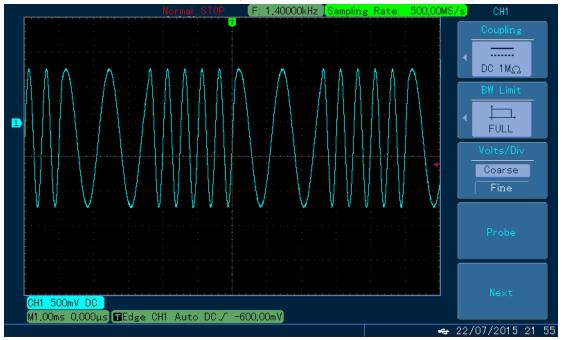



Figure 4- 55 Observe FSK waveform with oscilloscope

### 4.1.6 Phase Shift Keying (PSK)

The function/arbitrary waveform generator can move between two preset phases (carrier phase and modulation phase) in phase shift keying. Phase of carrier signal or modulation signal is output according to logic of modulation signal. The modulation mode of the two channels is mutually independent. You can configure identical or different modulation mode for channels 1 and 2.

# Select PSK modulation

Press MOD, Type and PSK in sequence to use PSK function (if "Type" is not highlighted, press soft key Type to select). After PSK function is used, the function/arbitrary waveform generator will output modulated waveform with the current carrier phase and modulation phase.

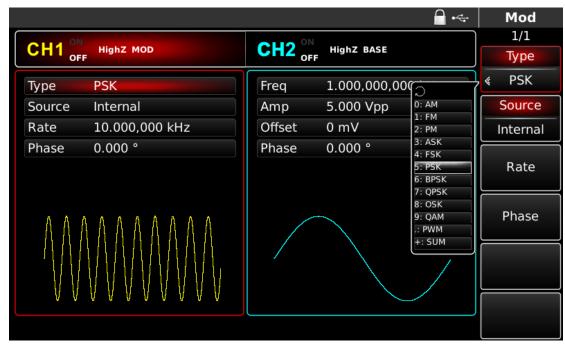



Figure 4-56 Select PSK function

#### Select carrier waveform

PSK carrier waveform can be sine wave, square wave, sawtooth wave or arbitrary wave (except DC), and is sine wave by default. After PSK modulation is selected, press the key of basic waveform setting to select carrier waveform.

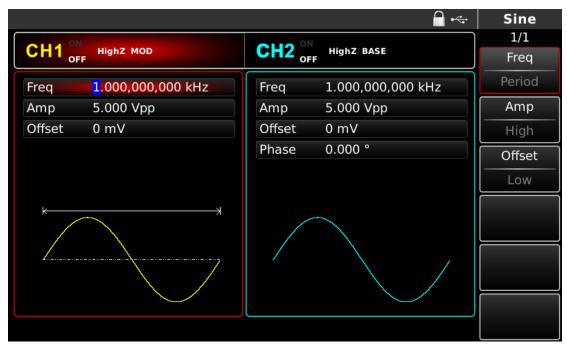



Figure 4- 57 Select carrier waveform

#### Set carrier frequency

Carrier frequency range varies with carrier waveform. The default frequency of all carrier waves is 1kHz. See the table below for frequency range of carrier wave:

Table	4- 7
-------	------

Carrier waveform	Frequency				
Carrier waverorm	72-14120	72-14122	72-14126		
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz		
Square wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz		
Sawtooth wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz		
Pulse wave	1µHz ~ 2MHz	1µHz ~ 3MHz	1µHz ~ 4MHz		
Arbitrary wave	1µHz ~ 30MHz	1µHz ~ 30MHz	1µHz ~ 30MHz		

To set carrier frequency, use the multi-functional control and direction keys or press soft key Freq, input the required value and select the unit after selecting carrier waveform.

### Select modulation source

The function/arbitrary waveform generator can select internal or external modulation source. After you use PSK function, the modulation source is internal by default. You can change it with multi-functional control on the interface for using PSK function or by pressing soft function key Source.

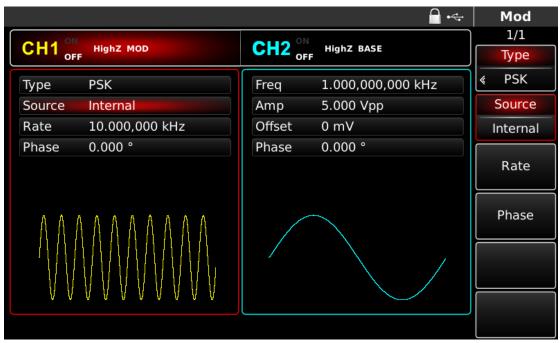



Figure 4-58 Select modulation source

# 1) Internal source

When using an internal modulation source, the modulation wave can be sine wave, square wave, sawtooth wave and arbitrary wave, and is sine wave by default. After you use PM function, the modulation wave is sine wave by default. You can change it with the multi-functional control on the interface for using phase modulation function or by pressing the key of basic waveform type setting.

- Square wave: duty ratio is 50%
- Sawtooth wave: degree of symmetry is 0.10%
- Arbitrary wave: when selecting arbitrary wave as modulation waveform, function/arbitrary waveform generator limits length of arbitrary wave to 32Mpts by automatic test count

## 2) External source

When using an external modulation source, the rate will not show in the parameter list, when an external waveform will be used to modulate carrier waveform. PSK output phase is determined by logic level on external digital modulation interface (FSK Trig connector). For example, when external input logic is low, carrier phase is output; when external input logic is high, modulation phase is output.

### Set PSK rate

The frequency between carrier phase and modulation phase can be set when using an internal modulation source. After you use PSK function, you can set PSK rate, which is in the range of 2mHz~1MHz and 10kHz by default. You can change it with multi-functional control and direction key on the interface for using PSK function or by pressing Rate.

## Set modulation phase

Modulation phase is change in phase of waveform subject to PSK modulation relative to carrier phase. The range of PSK modulation phase is 0°~360°, 180° by default. You can change it with the multi-functional control and direction keys on the interface for using PSK function or by pressing Parameter Phase successively.

## Comprehensive example

Set the instrument run in PSK mode, and then set an internal sine wave of 2kHz and 2Vpp as carrier signal. Finally set frequency between carrier phase and modulation phase to be1kHz and phase to be 180°.

# The specific steps are as follows:

# 1) Use PSK function

Press MOD, Type and PSK in sequence (press soft key Type to select ) to use PSK function.

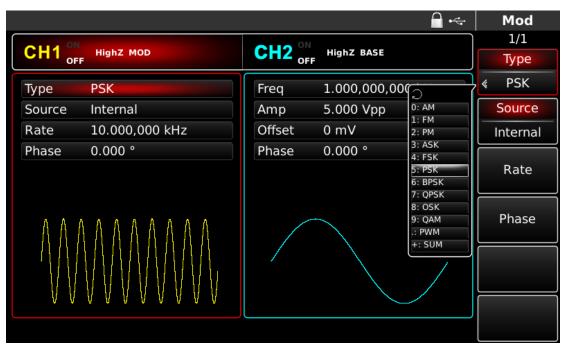



Figure 4- 59 Select PSK function

# 2) Set carrier signal parameters

Press Sine to select carrier signal as a sine wave if previously set to another mode (Default carrier signal is a sine wave). You can set with the multi-functional control and direction keys. You can also press the corresponding soft keys of function again, when the interface below will display. To set some parameter, press corresponding soft key, input the required value and select the unit.

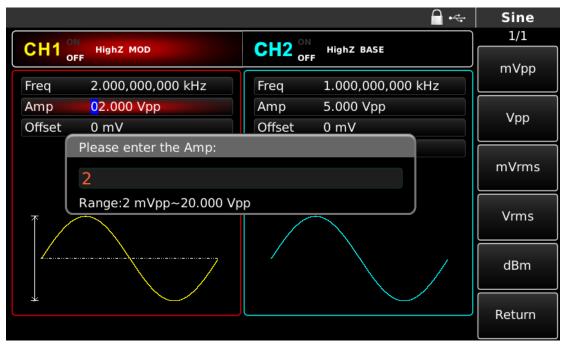
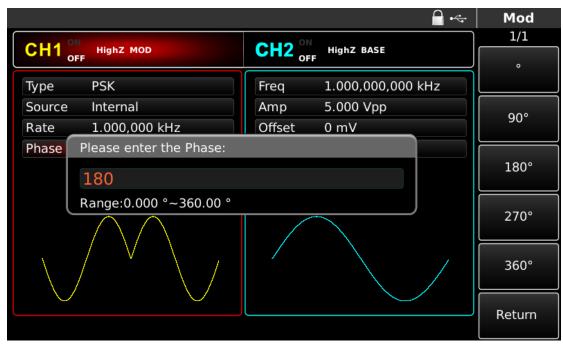




Figure 4- 60 Set modulation parameters

### 3) Set PSK rate and modulation phase

Press MOD to return to the interface below after setting carrier parameters:



# Figure 4- 61 Set modulation parameters

You can set with the multi-functional control and direction keys directly on this interface. You can also press the corresponding soft keys of function again, when the interface below will display. To set some parameter, press the corresponding soft key, input the required value and select the unit.

### 4) Use channel output

Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" to the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.

			<b>-</b>	Mod
CH1 ^{ON}	HighZ MOD	CH2 OFF	HighZ BASE	1/1
OFI	Highz MOD	OFF OFF	HIGHZ BASE	Туре
Туре	PSK	Freq	1.000,000,000 kHz	≰ PSK
Source	Internal	Amp	5.000 Vpp	Source
Rate	1.000,000 kHz	Offset	0 mV	Internal
Phase	180.00 °	Phase	0.000 °	
				Rate
	$\land \land$			Phase

Figure 4- 62 Use channel output

Check the shape of PSK modulation waveform through oscilloscope, which is shown in the figure below:

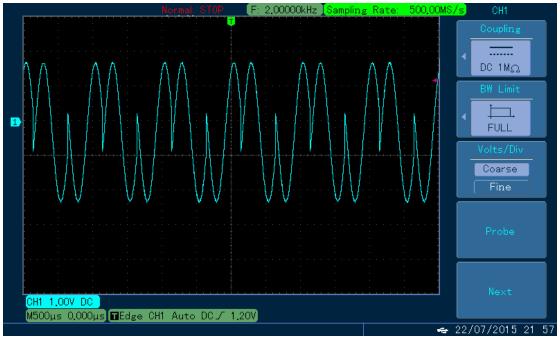



Figure 4- 63 Observe PSK waveform with oscilloscope

### 4.1.7 Binary Phase Shift Keying (BPSK)

The function/arbitrary waveform generator can move between two preset phases (carrier phase and modulation phase) in binary phase shift keying, expressing 0 and 1. Phase of carrier signal or modulation signal is output according to logic of modulation signal. The modulation mode of the two channels is mutually independent. You can configure same or different modulation mode for channel 1 and 2.

## Select BPSK modulation

Press MOD, Type and BPSK in sequence to use BPSK function (if "Type" is not highlighted, press soft key Type to select). After BPSK function is used, the function/arbitrary waveform generator will output modulated waveform with the current carrier phase (0° by default and not adjustable) and modulation phase.

				₽ •	Mod
					1/1
	HighZ MOD		HighZ BASE		Туре
Туре	BPSK	Freq	1.000,000,00		✓ BPSK
Source	Internal	Amp	5.000 Vpp	0: AM	Source
Phase	90.000 °	Offset	0 mV	1: FM 2: PM	Internal
Source	PN15	Phase	0.000 °	3: ASK 4: FSK	
Rate	10.000,000 kHz			5: PSK 6: BPSK	Phase
				2: OPSK 2: OSK 9: QAM .: PWM +: SUM	Data Source « PN15
				+: JUM	Rate

Figure 4- 64 Select BPSK function

### Select carrier waveform

BPSK carrier waveform can be sine wave, square wave, sawtooth wave or arbitrary wave (except DC), and is sine wave by default. After PSK modulation is selected, press the key of basic waveform setting to select carrier waveform.

				• <del>4</del> -	Mod
					1/1
	HighZ MOD		HighZ BASE		Туре
Туре	BPSK	Freq	1.000,000,000 k		≪ BPSK
Source	Internal	Amp	5.000 Vpp	0: AM 1: FM	Source
Phase	0.000 °	Offset	0 mV	2: PM	Internal
Phase1	90.000 °	Phase	0.000 °	3: ASK 4: FSK	
Source	PN15			5: PSK 6: BPSK	Phase
Rate	10.000,000 kHz			7: QPSK	
	~		~	8: OSK 9: QAM	Phase1
			$\sim$	.: PWM +: SUM	
			$\sim$		Data Source
					« PN15
					Rate
					Kate

Figure 4- 65 Select carrier waveform

# Set carrier frequency

Carrier frequency range varies with carrier waveform. The default frequency of all carrier waves is 1kHz. See the table below for frequency range of carrier wave:

Table	4- 8	
-------	------	--

Carrier waveform	Frequency				
	72-14120	72-14122	72-14126		
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz		
Square wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz		
Sawtooth wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz		
Pulse wave	1µHz ~ 2MHz	1µHz ~ 3MHz	1µHz ~ 4MHz		
Arbitrary wave	1µHz ~ 30MHz	1µHz ~ 30MHz	1µHz ~ 30MHz		

To set the carrier frequency, please use the multi-functional control and direction keys or press soft key Freq, input the required value and select the unit after selecting carrier waveform.

### Select modulation source

The function/arbitrary waveform generator can select internal or external modulation source. After you use BPSK function, the modulation source is internal by default. You can change it with multi-functional control on the interface for using PSK function or by pressing soft function key Source.

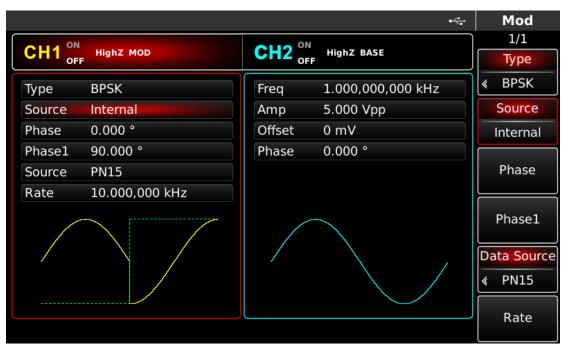



Figure 4- 66 Select modulation source

# 1) Internal source

When using an internal modulation source, the modulation wave can be sine wave, square wave, sawtooth wave and arbitrary wave, and is sine wave by default. After you use PM function, the modulation wave is sine wave by default. You can change it with the multi-functional control on the interface for using phase modulation function or by pressing the key of basic waveform type setting.

- Square wave: duty ratio is 50%
- Sawtooth wave: degree of symmetry is 0.10%
- Arbitrary wave: when selecting arbitrary wave as modulation waveform, function/arbitrary waveform generator limits length of arbitrary wave to 32Mpts by automatic test count.

## 2) External source

When using an external modulation source, rate will not show in the parameter list, when an external waveform will be used to modulate carrier waveform. BPSK output phase is determined by logic level on external digital modulation interface (FSK Trig connector). For example, when external input logic is low, carrier phase is output; when external input logic is high, modulation phase is output.

## Set BPSK rate

The frequency between carrier phase and modulation phase can be set. After you use BPSK function, you can set BPSK rate, which is in the range of 2mHz~1MHz and 10kHz by default. You can change it with the multi-functional control and direction keys on the the interface for using PSK function or by pressing Rate.

# Set PN code

The relationship between carrier phase and modulation phase can be set when using an internal modulation source. After you use BPSK function, you can set PN code, which is divided into four types: PN15, PPN21, 01 and 10. You can change it with the multi-functional control and direction keys on the interface for using PSK function or by pressing Data Source.

# Set modulation phase

Modulation phase is the change in phase of a waveform subject to PSK modulation relative to carrier phase. The range of BPSK modulation phase is 0°~360°, 90° by default. You can change it with the multi-functional control and direction keys on the interface for using PSK function or by pressing Phase.

# Comprehensive example

Set the instrument to run in BPSK mode, and then set an internal sine wave of 2kHz and 2Vpp as carrier signal. Finally set carrier phase and initial modulation phase to be 90 °, frequency between phases to be 1kHz and PN code to be PN15. *The specific steps are as follows*:

1) Use BPSK function

Press MOD, Type and BPSK in sequence (press soft key Type to select ) to use BPSK function.

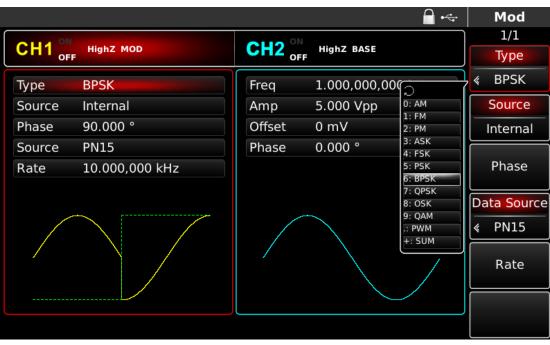



Figure 4- 67 Select BPSK function

# 2) Set carrier signal parameters

Press Sine to select carrier signal as a sine wave if previously set to another mode (Default carrier signal is a sine wave). You can set with the multi-functional control and direction keys. You can also press corresponding soft keys of function again, when the interface below will display. To set the parameters, press corresponding soft key, input the required value and select the unit.

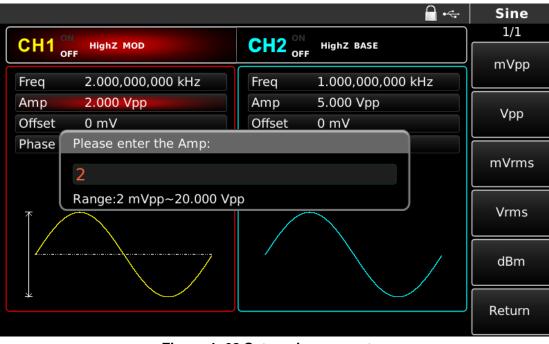



Figure 4-68 Set carrier parameters

# 3) Set BPSK initial phase, rate, modulation phase and PN code

Press MOD to return to the interface below after setting carrier parameters:

			<b>a</b> •~	Mod
OLIA ON				1/1
	HighZ MOD		HighZ BASE	Туре
Туре	BPSK	Freq	1.000,000,000 kHz	≰ BPSK
Source	Internal	Amp	5.000 Vpp	Source
Phase	90.000 °	Offset	0 mV	Internal
Source	PN15	Phase	0.000 °	
Rate	10.000,000 kHz			Phase
				Data Source PN15 Rate

Figure 4- 69 Set modulation parameters

You can set with the multi-functional control and direction keys directly on this interface. You can also press the corresponding soft keys of function again, when the interface below will display. To set the parameters, press corresponding soft key, input the required value and select the unit.

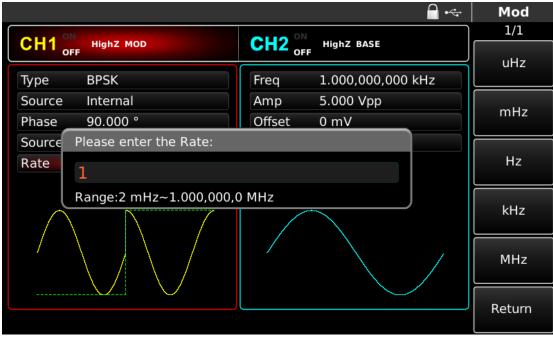



Figure 4- 70 Set modulation rate

# 4) Use channel output

Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" to the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.

	<u> </u>	Mod
	OU12 ^{ON}	1/1
	CH1 ^{ON} HighZ MOD CH2 ^{ON} HighZ BASE	
Туре ВРЅК	Freq 1.000,000,000 kHz	≪ BPSK
Source Internal	Amp 5.000 Vpp	Source
Phase 90.000 °	Offset 0 mV	Internal
Source PN15	Phase 0.000 °	
Rate 1.000,000 kHz		Phase
$\bigwedge \qquad \bigvee \qquad $		Data Source « PN15
	Rate	

Figure 4-71 Use channel output

Check the shape of BPSK modulation waveform through oscilloscope, which is shown in the figure below:

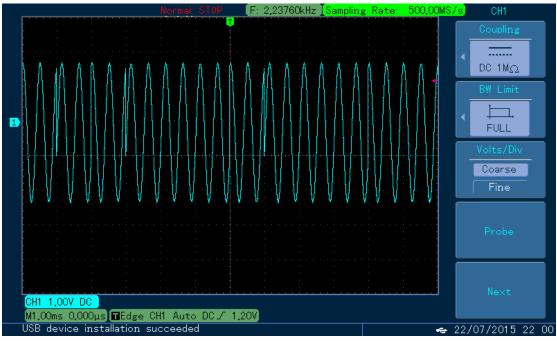



Figure 4-72 Observe BPSK waveform with oscilloscope

# 4.1.8 Quadrature Phase Shift Keying (QPSK)

The function/arbitrary waveform generator can move between four preset phases (carrier phase and 3 modulation phases) in QPSK. Phase of carrier signal or modulation signal is output according to logic of modulation signal. The modulation mode of the two channels is mutually independent. You can configure identical or different modulation mode for channels 1 and 2.

# Select QPSK modulation

Press MOD, Type and QPSK in sequence to use QPSK function (if "Type" is not highlighted, press soft key Type to select). After QPSK function is used, the function/arbitrary waveform generator will output modulated waveform with the current carrier phase and modulation phase.

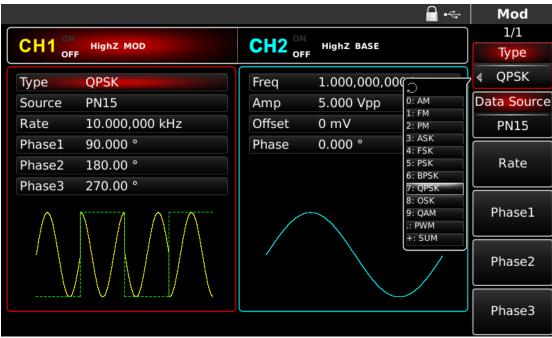



Figure 4-73 Select QPSK function

#### Select carrier waveform

QPSK carrier waveform can be sine wave, square wave, sawtooth wave or arbitrary wave (except DC), and is sine wave by default. After QPSK modulation is selected, press the key of basic waveform setting to select carrier waveform.

			<b>-</b>	Sine
			HighZ BASE	1/1
CH1 OF	HighZ MOD	CH2 OFF	HIGNZ BASE	Freq
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	Period
Amp	5.000 Vpp	Amp	5.000 Vpp	Amp
Offset	0 mV	Offset	0 mV	High
Phase	0.000 °	Phase	0.000 °	Offset
				Low
*	*			Phase

Figure 4-74 Select carrier waveform

#### Set carrier frequency

Carrier frequency range varies with carrier waveform. The default frequency of all carrier waves is 1kHz. See the table below for frequency range of carrier wave:

Carrier waveform	Frequency			
	72-14120	72-14122	72-14126	
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz	
Square wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz	
Sawtooth wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz	
Pulse wave	1µHz ~ 2MHz	1µHz ~ 3MHz	1µHz ~ 4MHz	
Arbitrary wave	1µHz ~ 30MHz	1µHz ~ 30MHz	1µHz ~ 30MHz	

Table 4-9

To set the carrier frequency, use the multi-functional control and direction keys or press soft key Freq, input the required value and select the unit after selecting carrier waveform.

# Select modulation data source

The function/arbitrary waveform generator can select PN15 or PN21. After you use QPSK function, you can see that modulation data source is PN15 by default. You can change it with multi-functional control on the interface for using PSK function or by pressing soft function key Data Source.

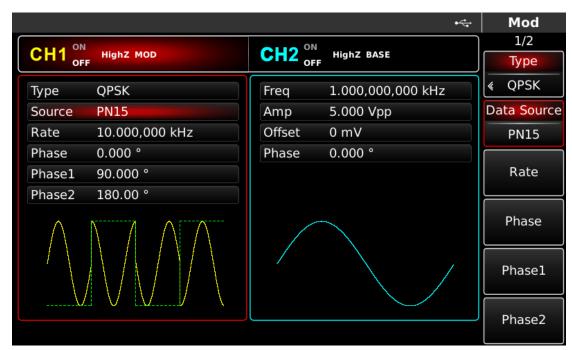



Figure 4-75 Select modulation source

## Set QPSK rate

The frequency between carrier phase and modulation phase can be set. After you use QPSK function, you can set QPSK rate, which is in the range of 2mHz~1MHz and 10kHz by default. You can change it with multi-functional control and direction key on the interface for using PSK function or by pressing Rate.

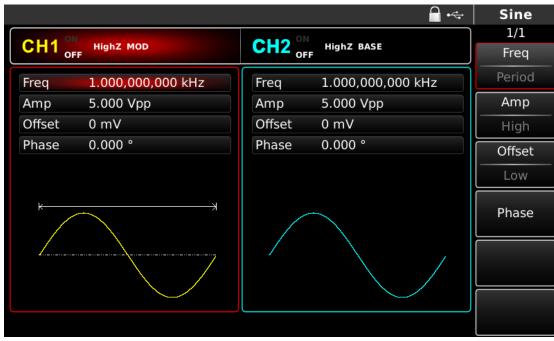
#### Set modulation phase

Modulation phase is change in phase of waveform subject to QPSK modulation relative to carrier phase. The range of QPSK modulation phase is 0°~360°. The three default modulation sources are 90°, 180° and 270°. You can change it with the multi-functional control and direction key on the interface for using PSK function or by pressing Phase1, Phase2 and Phase3.

#### **Comprehensive example**

First set the instrument run in QPSK mode, and then set an internal sine wave of 2kHz and 2Vpp as carrier signal. Finally set the three carrier phases and initial modulation phase to be 90°, 180° and 270°, frequency between phases to be 1kHz, and PN code to be PN15. The specific steps are as follows:

1) Use QPSK function


Press MOD, Type and QPSK in sequence (press soft key Type to select) to use QPSK function.

					Mod
					1/1
OFF	CH1 OFF HighZ MOD CH2 OFF HighZ BASE			Туре	
Туре	QPSK	Freq	1.000,000,00		₂ « QPSK
Source	PN15	Amp	5.000 Vpp	0: AM 1: FM 2: PM 3: ASK 4: FSK 5: PSK 6: BPSK	Data Source
Rate	10.000,000 kHz	Offset	0 mV		PN15
Phase1	90.000 °	Phase	0.000 °		Rate
Phase2	180.00 °				
Phase3	270.00 °			7: QPSK	
	$ \land \land$			8: OSK 9: QAM	Phase1
				.: PWM +: SUM	
			$\sim$	+: SUM	
					Phase2
					Phase3

Figure 4-76 Select QPSK function

# 2) Set carrier signal parameters

Press Sine to select carrier signal as a sine wave if previously set to another mode (Default carrier signal is a sine wave). You can set with the multi-functional control and direction keys. You can also press the corresponding soft keys of function again, when the interface below will display. To set some parameter, press corresponding soft key, input the required value and select the unit.



# Figure 4-77 Set carrier parameters

# 3) Set QPSK rate, modulation phase and PN code

Press MOD to return to the interface below after setting carrier parameters:

			<b>·</b>	Mod
				1/1
	HighZ MOD		HighZ BASE	Туре
Туре	QPSK	Freq	1.000,000,000 kHz	≰ QPSK
Source	PN15	Amp	5.000 Vpp	Data Source
Rate	10.000,000 kHz	Offset	0 mV	PN15
Phase1	90.000 °	Phase	0.000 °	
Phase2	180.00 °			Rate
Phase3	270.00 °			
$\wedge$				Phase1
				Phase2
V				Phase3

Figure 4-78 Set QPSK parameters

You can set with the multi-functional control and direction keys directly on this interface. You can also press the corresponding soft keys of function again, when the interface below will display. To set some parameter, press corresponding soft key, input the required value and select the unit.

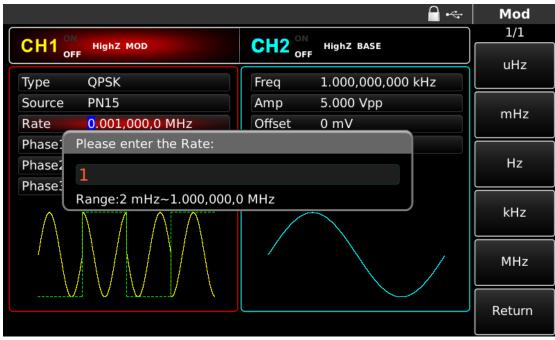



Figure 4-79 Set QPSK rate

## 4) Use channel output

Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" to the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.

			<b>·</b>	Mod
CH1 ^{ON}				1/1
	HighZ MOD		HighZ BASE	Туре
Туре	QPSK	Freq	1.000,000,000 kHz	« QPSK
Source	PN15	Amp	5.000 Vpp	Data Source
Rate	1.000,000 kHz	Offset	0 mV	PN15
Phase1	90.000 °	Phase	0.000 °	
Phase2	180.00 °			Rate
Phase3	270.00 °			
$\wedge$				Phase1
				Phase2
V.				Phase3

## Figure 4-80 Use channel output

Check the shape of QPSK modulation waveform through oscilloscope, which is shown in the figure below:



Figure 4-81 Observe QPSK waveform with oscilloscope

### 4.1.9 Oscillation Keying (OSK)

The function/arbitrary waveform generator can output a sinusoidal signal of intermittent oscillation in OSK. Carrier waveform is output when internal crystal oscillator starts oscillation; output is stopped when internal crystal oscillator stops oscillation. The modulation mode of the two channels is mutually independent. You can configure identical or different modulation mode for channels 1 and 2.

#### Select OSK modulation

Press MOD, Type and OSK in sequence to use BPSK function (if "Type" is not highlighted, press soft key Type to select). After OSK function is used, the function/arbitrary waveform generator will output modulated waveform with the current carrier phase (0° by default and not adjustable) and modulation phase.

				₽ +∻	Mod
					1/1
	HighZ MOD		HighZ BASE		Туре
Туре	OSK	Freq	1.000,000,000		₂ ≼ OSK
Source	Internal	Amp	5.000 Vpp	0: AM 1: FM	Source
OscTime	500.000 us	Offset	0 mV	2: PM	Internal
Rate	500.000 Hz	Phase	0.000 °	3: ASK 4: FSK	
				5: PSK 6: BPSK	OscTime
				7: QPSK 8: OSK 9: QAM .: PWM	Rate
				+: SUM	

Figure 4-82 Select OSK function

## Select carrier waveform

OSK carrier waveform is sine wave.

			🔒 •<+	Sine
				1/1
	HighZ MOD	CH2 OFF	HighZ BASE	Freq
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	Period
Amp	5.000 Vpp	Amp	5.000 Vpp	Amp
Offset	0 mV	Offset	0 mV	High
Phase	0.000 °	Phase	0.000 °	Offset
				Low
ĸ	*			Phase

Figure 4-83 Select carrier waveform

## Set carrier frequency

The default frequency of carrier wave is 1kHz. See the table below for frequency range of carrier wave:

Table 4- 10

Carrier	Frequency					
waveform	72-14120	72-14120 72-14122 72·				
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz			

To set carrier frequency, please use the multi-functional control and direction keys or press soft key Freq, input the required value and select the unit.

### Select modulation source

The function/arbitrary waveform generator can select internal or external modulation source. After you use PSK function, the modulation source is internal by default. You can change it with the multi-functional control on the the interface for using PSK function or by pressing soft function key <u>Source</u>.

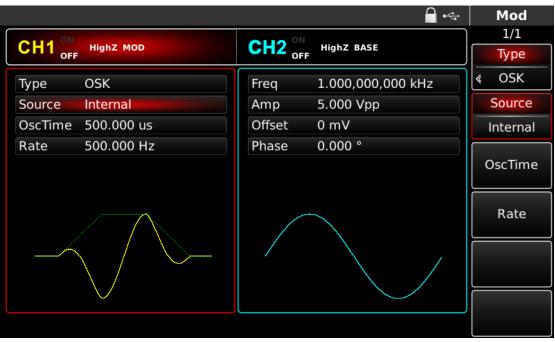



Figure 4-84 Select modulation source

### 1) Internal source

When using an internal modulation source, internal modulation wave is sine wave. The phase relation between oscillation starting and stop can be designated by setting OSK rate.

### 2) External source

When using an external modulation source, rate will not show in the parameter list, when an external waveform will be used to modulate carrier waveform. OSK output phase is determined by logic level on external digital modulation interface (FSK Trig connector). For example, when external input logic is low, carrier phase is output; when external input logic is high, modulation phase is output.

### Set OSK rate

The frequency between carrier phase and modulation phase can be set when using an internal modulation source. After you use OSK function, you can set QPSK rate, which is in the range of 2mHz~1MHz and 500Hz by default. You can change it with the multi-functional control and direction keys on the interface for using PSK function or by pressing Rate.

### Set oscillation period

Oscillation period is oscillation period of internal crystal oscillator. Press soft function key OcsTime to highlight it, and input the required value through the numeric keyboard or direction keys and control, which is in the range of 8ns -1ms and 50µs by default.

### Comprehensive example

First set the instrument run in OSK mode, and then set an internal sine wave of 2kHz and 2Vpp as carrier signal. Set rate to be 100Hz and oscillation period to be 1µs. *The specific steps are as follows:* 

## 1) OSK function

Press MOD, Type and OSK successively (press soft key Type to select ) to use OSK function.

					Mod
CH1 ON					1/1
OFF	HighZ MOD	CH2 OFF	HighZ BASE		Туре
Туре	OSK	Freq	1.000,000,00		, ≪ OSK
Source	Internal	Amp	5.000 Vpp	0: AM 1: FM	Source
OscTime	1.000,000 ms	Offset	0 mV	2: PM	Internal
Rate	500.000 Hz	Phase	0.000 °	3: ASK 4: FSK	
				5: PSK 6: BPSK	OscTime
				7: QPSK 8: OSK 9: QAM .: PWM	Rate
				+: SUM	

Figure 4-85 Select OSK function

# 2) Set carrier signal parameters

Press Sine to select carrier signal as a sine wave if previously set to another mode (Default carrier signal is a sine wave). You can set with the multi-functional control and direction keys. You can also press the corresponding soft keys of function again, when the interface below will display. To set the parameters, press corresponding soft key, input the required value and select the unit.

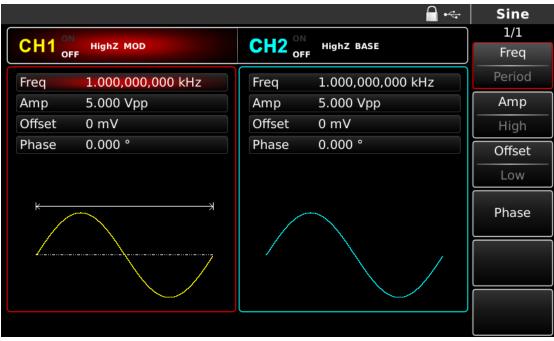



Figure 4-86 Set carrier parameters

### 3) Set OSK rate, modulation phase and PN code

			🔒 •<+	Mod
				1/1
CH1 OFF	HighZ MOD	CH2 OFF	HighZ BASE	Туре
Туре	OSK	Freq	1.000,000,000 kHz	∉ OSK
Source	Internal	Amp	5.000 Vpp	Source
OscTime	1.000,000 ms	Offset	0 mV	Internal
Rate	500.000 Hz	Phase	0.000 °	
			_	OscTime Rate

Press MOD to return to the interface below after setting carrier parameters:

Figure 4-87 Set modulation parameters

You can set with the multi-functional control and direction keys directly on this interface. You can also press the corresponding soft keys of function again, when the interface below will display. To set the parameters, press corresponding soft key, input the required value and select the unit.

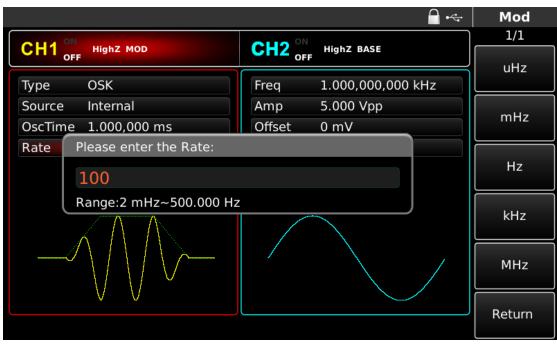
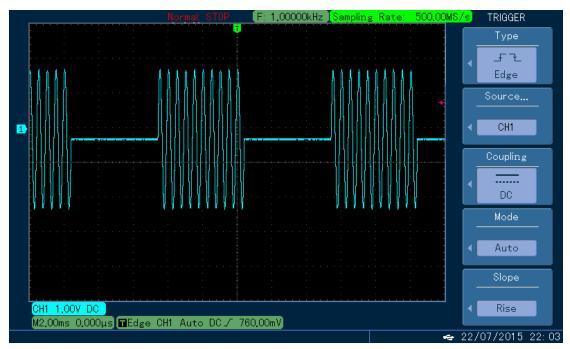
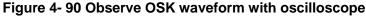



Figure 4-88 Set modulation rate


### 4) Use channel output


Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" to the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.

			<b>-</b> •~	Mod
CH1 ^{on}	50Ω MOD	CH2 OFF	HighZ BASE	1/1
OFF		OFF		Туре
Туре	OSK	Freq	1.000,000,000 kHz	∢ OSK
Source	Internal	Amp	5.000 Vpp	Source
OscTime	1.000 us	Offset	0 mV	Internal
Rate	100.000 Hz	Phase	0.000 °	
				OscTime
				Rate
	0074400744			

### Figure 4-89 Use channel output

Check the shape of OSK modulation waveform through the oscilloscope, which is shown in the figure below:





#### 4.1.10 Quadrature Amplitude Modulation (QAM)

In QAM, two signals of the same frequency but with phase difference of 90° are used as carrier wave, which is subject to amplitude modulation with baseband signal. The function/arbitrary waveform generator can output seven modulation modes: 4QAM, 8QAM, 16QAM, 32QAM, 64QAM, 128QAM and 256QAM. The modulation mode of the two channels is mutually independent. You can configure identical or different modulation mode for channel 1 and 2.

## Select QAM

Press MOD, Type and QAM in sequence to use QAM function (if "Type" is not highlighted, press soft key Type to select). After QAM function is used, the function/arbitrary waveform generator will output modulated waveform with the current carrier phase (0° by default and not adjustable) and modulation phase.

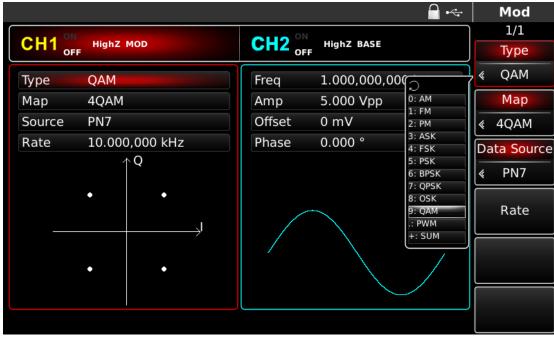



Figure 4-91 Select QAM function

## Select carrier waveform

QAM carrier waveform is a sine wave.

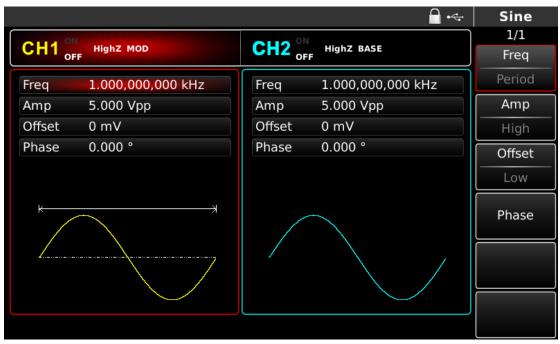



Figure 4-92 Select carrier waveform

#### Set carrier frequency

Tab	le	4-	11	
IUN		<b>—</b>		

Carrier	Frequency					
waveform	72-14120 72-14122 72-14126					
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz			

To set carrier frequency, use the multi-functional control and direction keys or press soft key Freq, input the required value and select the unit after selecting carrier waveform.

### Set modulation mode

Modulation mode is a subsection of constellation, which varies with the modulation mode selected. Press soft function key Map to highlight it, and input the required period value through the numeric keyboard or direction key and control, which can be 4QAM, 8QAM, 16QAM, 32QAM, 64QAM, 128QAM or 256QAM.

#### **Comprehensive example**

First set the instrument to run in QAM mode, and then set an internal sine wave of 2kHz and 2Vpp as carrier signal. Set rate to be 100Hz and modulation mode to be 64QAM. The specific steps are as follows:

## 1) QAM function

Press MOD, Type and QAM in sequence (press soft key Type to select) to use QAM function.

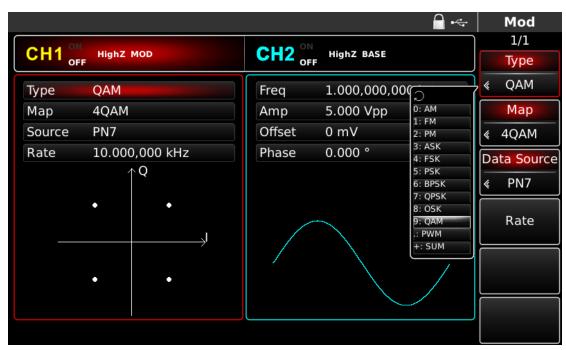



Figure 4-93 Select QAM function

### 2) Set carrier signal parameters

Press Sine to select carrier signal as a sine wave if previously set to another mode (Default carrier signal is a sine wave). You can set with the multi-functional control and direction keys. You can also press the corresponding soft keys of function again, when the interface below will display. To set the parameters, press the corresponding soft key, input the required value and select the unit.

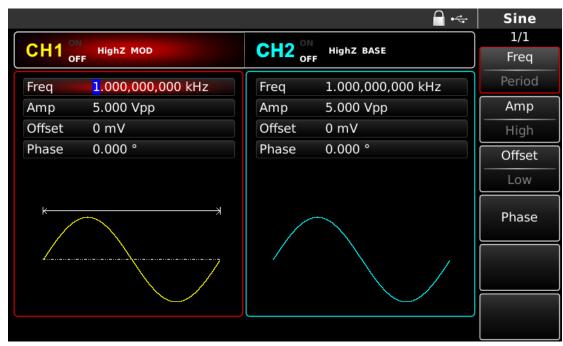



Figure 4-94 Set carrier parameters

## 3) Set QAM modulation mode, PN code and modulation rate

Press MOD to return to the interface below after setting carrier parameters:

			<b>-</b> +	Mod
				1/1
CH1 [™]	HighZ MOD		HighZ BASE	Туре
Туре	QAM	Freq	1.000,000,000 kHz	≰ QAM
Мар	4QAM	Amp	5.000 Vpp	Мар
Source	PN7	Offset	0 mV	≪ 4QAM
Rate	10.000,000 kHz	Phase	0.000 °	Data Source
	↑Q			≰ PN7
	• •			Rate
	• •			

Figure 4-95 Set modulation parameters

You can set with the multi-functional control and direction keys directly on this interface. You can also press the corresponding soft keys of function again, when the interface below will display. To set the parameters, press corresponding soft key, input the required value and select the unit.

				Mod
				1/1
		HighZ BASE		Туре
Type QAM	Freq	1.000,000,0	00 kHz	« QAM
Map 64QAM	Amp	5.000 Vpp		Мар
Source PN7	Offset	0 mV		, ≪ 64QAM
Rate 100.000 Hz	Phase	0.000 °	.⊃ 0: 4QAM 1: 8QAM	Data Source
• • • • • • • •			2: 16QAM 3: 32QAM	≪ PN7
			4: 64QAM 5: 128QAM 6: 256QAM	Rate

Figure 4-96 Set modulation rate

## 4) Use channel output

Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" to the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.

			<b>a</b> •~	Mod
CH1 ^{on}				1/1
OFF	HighZ MOD		HighZ BASE	Туре
Туре	QAM	Freq	1.000,000,000 kHz	≰ QAM
Мар	64QAM	Amp	5.000 Vpp	Мар
Source	PN7	Offset	0 mV	≪ 64QAM
Rate	100.000 Hz	Phase	0.000 °	Data Source
	$\cdot \cdot \cdot \uparrow^{Q} \cdot \cdot \cdot$			≰ PN7
	· · · · · · · · · · · · · · · · · · ·			Rate
	· · ·   · · · · · · · · · · · · · · · ·			

Figure 4-97 Use channel output

Check the shape of QAM modulation waveform through oscilloscope, which is shown in the figure below:



Figure 4-98 Observe QAM waveform with oscilloscope

## 4.1.11 Sum Modulation (SUM)

In SUM, the modulated waveform generally is composed of carrier wave and modulation wave. The output waveform is obtained by the sum of product of carrier amplitude and modulation factor and product of amplitude of modulation wave and modulation factor. The modulation mode of the two channels is mutually independent. You can configure identical or different modulation mode for channels 1 and 2.

### Select SUM

Press MOD, Type and SUM in sequence to use SUM function (if "Type" is not highlighted, press the soft key Type to select). After SUM function is used, the function/arbitrary waveform generator will output modulated waveform with the current modulation waveform and carrier wave.

					Mod
CH1 ^{ON}					1/1
	HighZ MOD		HighZ BASE		Туре
Туре	SUM	Freq	1.000,000,000	[] []	₂ ≼ SUM
Source	Internal	Amp	5.000 Vpp	0: AM 1: FM	Source
Wave	Sine	Offset	0 mV	2: PM	Internal
Freq	100.000 Hz	Phase	0.000 °	3: ASK 4: FSK	Wave
Depth	100.000 %			5: PSK 6: BPSK 7: QPSK	« Sine
				8: OSK 9: QAM .: PWM	Freq
				+: SUM	Depth

Figure 4-99 Select SUM function

#### Select carrier waveform

SUM carrier waveform can be sine wave, square wave, sawtooth wave or arbitrary wave (except DC), and is sine wave by default. After SUM is selected, press the key of basic waveform setting to set the corresponding carrier waveform.

#### Set carrier frequency

Carrier frequency range varies with carrier waveform. The default frequency of all carrier waves is 1kHz. See the table below for frequency range of carrier wave:

Carrier waveform	Frequency					
Carrier waverorm	72-14120	72-14122	72-14126			
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz			
Square wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz			
Sawtooth wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz			
Pulse wave	1µHz ~ 2MHz	1µHz ~ 3MHz	1µHz ~ 4MHz			
Arbitrary wave	1µHz ~ 30MHz	1µHz ~ 30MHz	1µHz ~ 30MHz			

Table 4-12

To set carrier frequency, please use the multi-functional control and direction keys or press the corresponding key, input the required value and select the unit.

#### Select modulation source

The function/arbitrary waveform generator can select internal or external modulation source. After you use SUM function, the modulation source is internal by default. You can change it with the multi-functional control on the interface for using SUM function or by pressing function menu Source.

			<b>-</b> ~~	Mod
CH1 ^{ON}				1/1
OFI	HighZ MOD		HighZ BASE	Туре
Туре	SUM	Freq	1.000,000,000 kHz	≪ SUM
Source	Internal	Amp	5.000 Vpp	Source
Wave	Sine	Offset	0 mV	Internal
Freq	100.000 Hz	Phase	0.000 °	Wave
Depth	100.000 %			✓ Sine
				Freq
				Depth

Figure 4-100 Select modulation source

#### 1) Internal source

When using an internal modulation source, modulation wave can be sine wave, square wave, ascending sawtooth wave, descent sawtooth wave, arbitrary wave and noise, and is sine wave by default. After you use SUM function, the modulation wave is sine wave by default. You can change it with the multi-functional control on the interface for using amplitude modulation function or by pressing Wave.

- Square wave: duty ratio is 50%
- Sawtooth wave: degree of symmetry is 0.10%
- Arbitrary wave: when selecting arbitrary wave as modulation waveform, function/arbitrary waveform generator limits length of arbitrary wave to 32Mpts by automatic test count.
- Noise: white Gaussian noise

## 2) External source

When using an external modulation source, modulation wave and frequency will not show in the parameter list, when an external waveform will be used to modulate carrier waveform. SUM depth is controlled by ±5V signal level on external analog modulation input terminal (Modulation In connector) of back panel. For example, if modulation depth in parameter list is set to be 100%, SUM output amplitude is the maximum when external modulation signal is +5V and the minimum when external modulation signal is -5V.

#### Set frequency of modulation wave

The frequency of modulation wave can be set in case of internal modulation source. After you use SUM function, the default frequency of modulation wave is 10kHz. You can change it with the multi-functional control and direction keys on the interface for using amplitude modulation function or by pressing Freq. The range of modulation frequency is 2mHz~100kHz. When using an external modulation source, modulation wave and frequency will not show in the parameter list, when an external waveform will be used to modulate carrier waveform. The frequency range of modulation signal of external input is 2mHz~20kHz.

#### Set modulation depth

Modulation depth is the degree of amplitude change, expressed as a percentage. The range of SUM depth is 0%~100%, 100% by default. When modulation depth is 0%, carrier wave is output. When modulation depth is 100%, modulation wave is output. You can change it with the multi-functional control and direction keys on the interface for using amplitude modulation function or by pressing Depth. When using an external modulation source, the output amplitude of the instrument is also controlled by  $\pm 5V$  signal level on external analog modulation input terminal (Modulation In connector) on the back panel.

#### **Comprehensive example**

First set the instrument to run in SUM mode, and then set an internal sine wave of 1kHz as modulation signal and a square wave with frequency of 2kHz, amplitude of 200mVpp and duty ratio of 45% as carrier signal. Finally set the modulation depth to be 80%. *The specific steps are as follows:* 

### 1) Use SUM function

Press MOD to use the function and select SUM function (press soft key Type to select ).

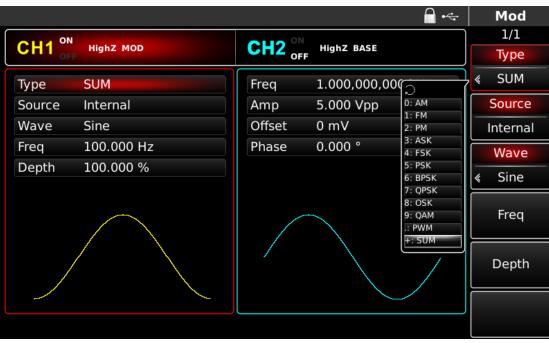



Figure 4-101 Select SUM function

### 2) Set modulation signal parameters

Set with the multi-functional control and direction keys after using SUM function. You can also press soft keys of function on the above interface for using the SUM function. To set the parameters, press the corresponding soft key, input the required value and select the unit.

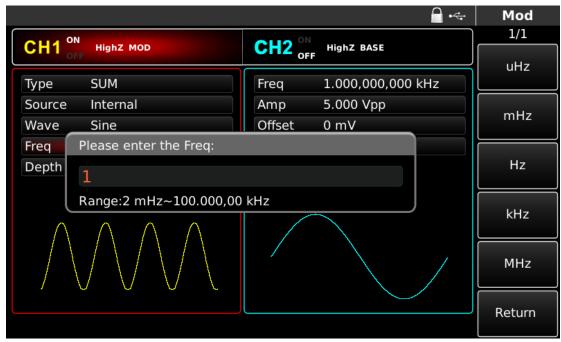



Figure 4- 102 Set modulation parameters

## 3) Set carrier signal parameters

Select type of basic waveform in modulation mode. Press Square to select the carrier signal as a square wave.

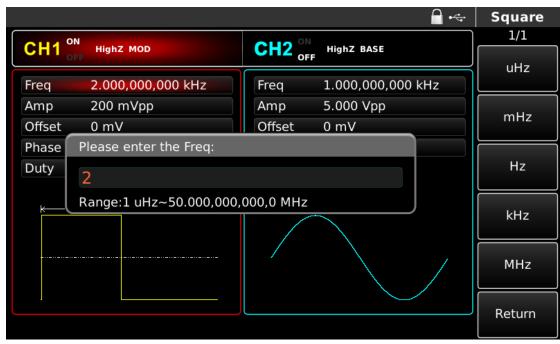



Figure 4- 103 Set carrier parameters

You can set with the multi-functional control and direction keys. You can also press the corresponding soft keys of function again. To set the parameters, press the corresponding soft key, input the required value and select the unit.

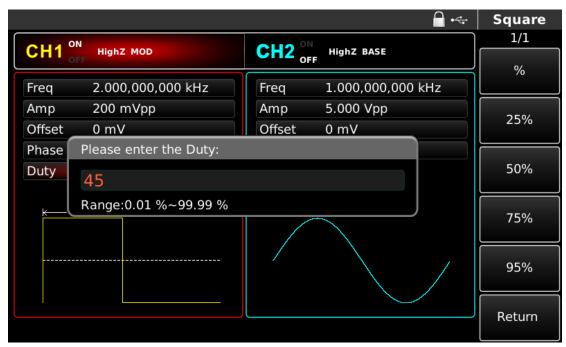



Figure 4-104 Set carrier duty ratio

### 4) Set modulation depth

Press soft key MOD to return to the interface below to set the modulation depth after setting carrier parameters. You can set with the multi-functional control and direction keys. You can also press soft key Depth again, input the number 80 through the numeric keyboard and press soft key % to set the modulation depth.

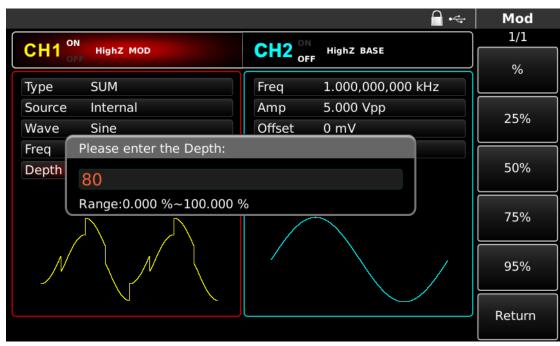
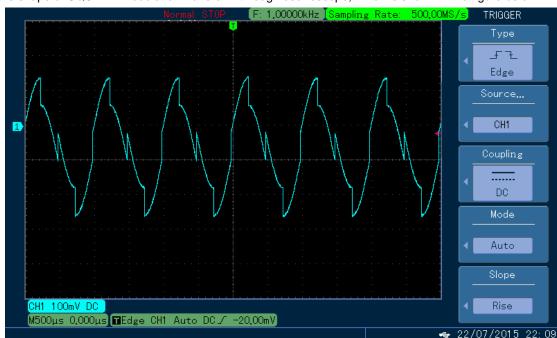




Figure 4-105 Set modulation depth

## 5) Use channel output

Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" to the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.



Check the shape of SQUARE modulation waveform through oscilloscope, which is shown in the figure below:

Figure 4- 106 Use channel output

## 4.1.12 Pulse Width Modulation (PWM)

In PWM, the modulated waveform generally is composed of carrier wave and modulation wave. The pulse width of carrier wave will vary with the amplitude of modulation wave. The modulation mode of the two channels is mutually independent. You can configure identical or different modulation mode for channels 1 and 2.

## Select PWM

Press MOD, Type and PWM in sequence to use PWM function (if "Type" is not highlighted, it may be necessary to press soft key Type twice to display the next screen of sub-tags). After PWM function is used, the function/arbitrary waveform generator will output modulated waveform with the current modulation waveform and carrier wave.

				₽ •∻	Mod
					1/1
	HighZ MOD	CH2 OFF	HighZ BASE		Туре
Туре	PWM	Freq	1.000,000,00	<u>ا دا</u>	₂ ≰ PWM
Source	Internal	Amp	5.000 Vpp	0: AM 1: FM	Source
Wave	Sine	Offset	0 mV	2: PM	Internal
Duty	50.00 %	Phase	0.000 °	3: ASK 4: FSK	Wave
Rate	10.000,000 kHz			5: PSK 6: BPSK	<ul><li>≼ Sine</li></ul>
				7: QPSK 8: OSK 9: QAM .: PWM	Duty
				+: SUM	Rate

Figure 4- 107 Select PWM function

#### **Carrier waveform**

PWM carrier waveform can only be pulse wave. After PWM is selected, press Pulse to enter interface of carrier waveform.

_			<b>□</b> •<÷	Pulse
CH1 ^{ON} OF	HighZ MOD F	CH2 OFF	HighZ BASE	1/2 Freq
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	Period
Amp	5.000 Vpp	Amp	5.000 Vpp	Amp
Offset	0 mV	Offset	0 mV	High
Phase	0.000 °	Phase	0.000 °	Offset
Duty	50.00 %			Low
Rise k	5.0 ns		Phase	
				Duty
				Rise

Figure 4- 108 Set carrier waveform

#### Set carrier frequency

The frequency range of pulse wave is  $1\mu$ H~50MHz. Default frequency is 1kHz. To set carrier frequency, please use the multi-functional control and direction keys in the interface or press soft function key Freq, input the required value and select the unit.

#### Set carrier duty ratio

The range of duty ratio of pulse wave is 0.01%~99.99%. Default duty ratio is 50%. To set carrier duty ratio, please use the multi-functional control and direction keys in the interface or press soft function key **Duty**, input the required value and select the unit.

#### Select modulation source

The function/arbitrary waveform generator can select internal or external modulation source. After you use PWM function, the modulation source is internal by default. You can change it with the multi-functional control on the interface for using frequency modulation function or by pressing Source.

**Note:** the modulation source can only be selected after PWM function is used. Press MOD, Type and PWM in sequence (if "Type" is not highlighted, it may be necessary to press soft key Type twice to display the next screen of sub-tags) to use PWM function.

						Mod
CH1 ON	HighZ MOD	CH2 OFF	HighZ BASE			1/1
OFF	nigiiz MOD	OFF OFF	HIGHZ BASE			Туре
Туре	PWM	Freq	1.000,000,00	00 kHz	\$	PWM
Wave	Sine	Amp	5.000 Vpp			Wave
Duty	50.00 %	Offset	0 mV		, «	Sine
		Phase	0.000 °	<ul> <li>○</li> <li>0: Sine</li> <li>1: Square</li> <li>2: UpRamp</li> <li>3: DnRamp</li> <li>4: Noise</li> <li>5: Arb</li> </ul>		Duty
		/				

Figure 4-109 Select modulation source

## 1) Internal source

When using an internal modulation source, the modulation wave can be sine wave, square wave, ascending sawtooth wave, descent sawtooth wave, arbitrary wave and noise, and is sine wave by default. After you use PWM function, the modulation wave is sine wave by default. You can change it with the multi-functional control on the interface for using PWM function or by pressing Wave.

- Square wave: duty ratio is 50%
- Ascending sawtooth wave: degree of symmetry is 100%
- Descent sawtooth wave: degree of symmetry is 0%
- Arbitrary wave: when selecting arbitrary wave as modulation waveform, function/arbitrary waveform generator limits length of arbitrary wave to 32Mpts by automatic test count.
- Noise: white Gaussian noise

## 2) External source

When using an external modulation source, the modulation wave and frequency will not show in the parameter list, when an external waveform will be used to modulate carrier waveform. Duty ratio deviation of PWM is controlled by ±5V signal level on the external analog modulation input terminal (Modulation In connector) on the back panel. For example, if duty ratio deviation in parameter list is set to be 15%, duty ratio of carrier signal (pulse wave) increases by 15% when external modulation signal is +5V. Lower external signal level generates less deviation.

### Set duty ratio deviation

Duty ratio deviation is the deviation of the modulated waveform from the current carrier duty ratio. The range of PWM duty ratio is 0%~49.99%, 20% by default. You can change it with the multi-functional control and direction keys on the interface for using PWM function or by pressing Duty.

- Duty ratio deviation is change in duty ratio of modulated waveform relative to original pulse waveform (%).
- Duty ratio deviation should not be more than current duty ratio of pulse wave.
- The sum of duty ratio deviation and current duty ratio of pulse wave must be ≤99.99%.
- Duty ratio deviation is restricted by minimum duty ratio of pulse wave and the current edge time.

## **Comprehensive example**

First set the instrument to run in PWM mode, and then set an internal sine wave of 1kHz as modulation signal and a pulse wave with frequency of 10kHz, amplitude of 2Vpp, duty ratio of 50% and rising/falling time of 100ns as carrier signal. Finally set duty ratio deviation to be 40%. *The specific steps are as follows:* 

## 1) Use PWM function

Press MOD, Type and PWM in sequence (if "Type" is not highlighted, it may be necessary to press soft key Type twice to display the next screen of sub-tags) to use PWM function.

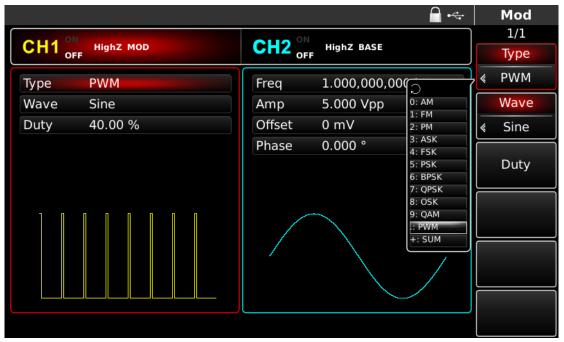



Figure 4 - 110 Select PWM function

## 2) Set modulation signal parameters

Set with the multi-functional control and direction keys after using PWM function. You can also press the corresponding soft keys of function on the above interface for using the PWM function, when the interface below will display. To set some parameter, press the corresponding soft key, input the required value and select the unit.

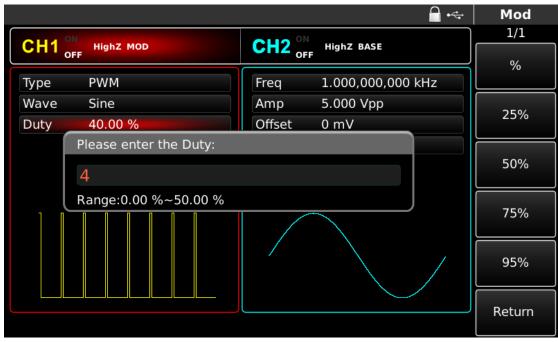



Figure 4 - 111 Set modulation parameters

## 3) Set carrier signal parameters

Press soft function key Pulse to enter the interface for setting carrier parameters in the interface for using PWM function.

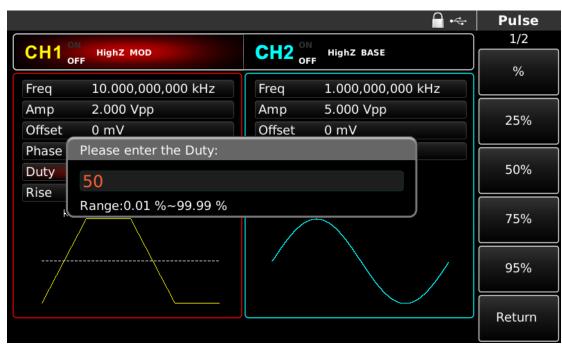



Figure 4 - 112 Set carrier parameters

You can set with the multi-functional control and direction keys. You can also press the corresponding soft keys of function again, when the interface below will display. To set the parameters, press the corresponding soft key, input the required value and select the unit.

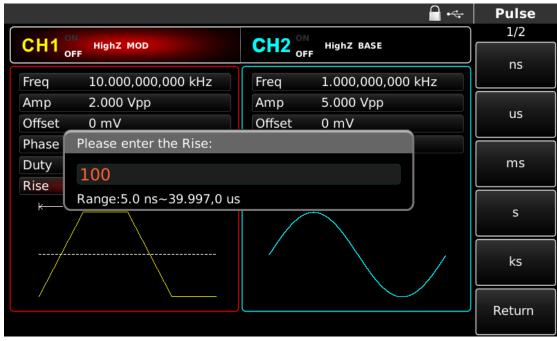



Figure 4- 113 Set rising edge

## 4) Set duty ratio deviation

Press Pulse to return to the interface below to set frequency deviation after setting carrier parameters.

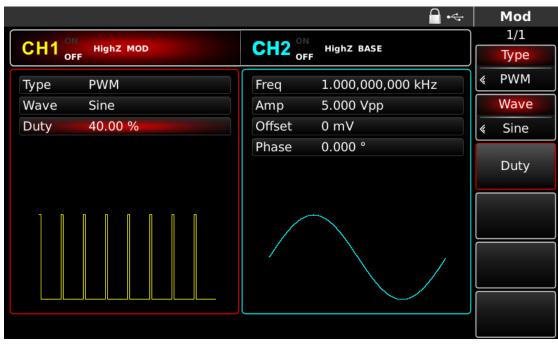



Figure 4- 114 Set modulation parameters

You can set with the multi-functional control and direction keys. You can also press the soft function key Duty again, input the number 40 through the numeric keyboard and press soft key  $\boxed{\%}$  to set the duty ratio deviation.

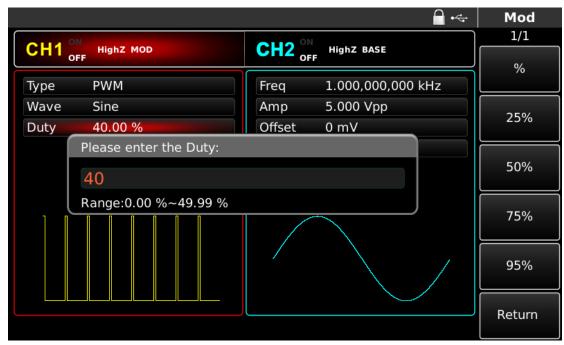



Figure 4- 115 Set duty ratio deviation

## 5) Use channel output

Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" to the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.

			<b>∂</b> •<-		Mod
CH1 ^{on}	HighZ MOD	CH2 ON	HighZ BASE		1/1
OFF	Ingh2 Hob	OFF			Туре
Туре	PWM	Freq	1.000,000,000 kHz	\$	PWM
Wave	Sine	Amp	5.000 Vpp		Wave
Duty	40.00 %	Offset	0 mV	*	Sine
		Phase	0.000 °		
					Duty
				$\vdash$	
1 1			<u>_</u>		

Figure 4- 116 Use channel output

Check the shape of PWM modulation waveform through oscilloscope, which is shown in the figure below:

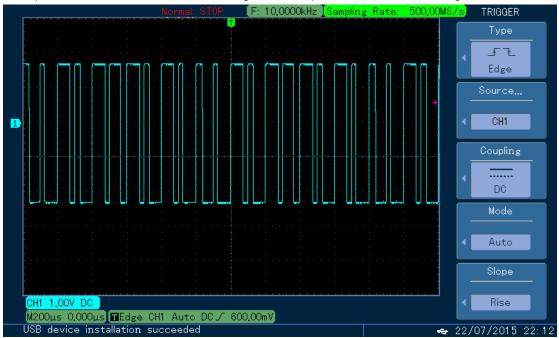



Figure 4- 117 Observe PWM waveform with oscilloscope

# 4.2 Output Frequency Sweep Waveform

When selecting frequency sweep mode, the output frequency of function/arbitrary waveform generator changes in a linear or logarithmic way from starting frequency to stop frequency in designated frequency sweep time. Trigger source can be internal, external or manual; it can generate frequency sweep output for sine wave, square wave, sawtooth wave and arbitrary wave (except DC). The modulation mode of the two channels is mutually independent. You can configure identical or different modulation mode for channels 1 and 2.

## 4.2.1 Select Frequency Sweep

### Start frequency sweep

Press SWEEP to start frequency sweep. After frequency sweep is used, the function/arbitrary waveform generator will output frequency sweep waveform with the current setting.

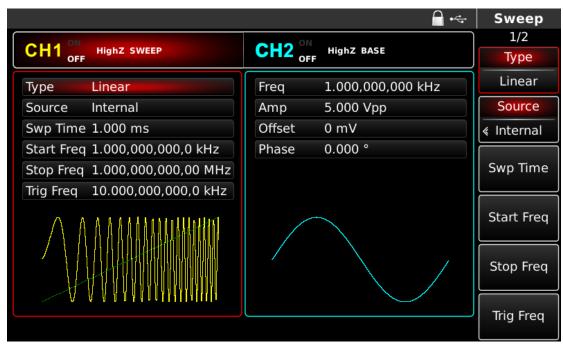



Figure 4- 118 Select SWEEP function

### Select frequency sweep waveform

After frequency sweep is started, press the key of basic waveform setting to select frequency sweep waveform. For example, select square wave as frequency sweep. Press Square and SWEEP. The interface is shown in the figure below:

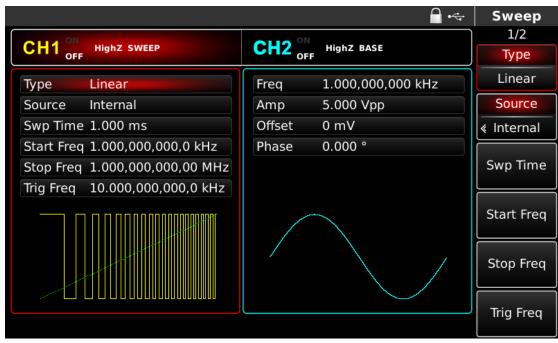



Figure 4- 119 Select frequency sweep waveform

### 4.2.2 Set Starting and Stop Frequency

Starting frequency and stop frequency are the upper limit and lower limit of frequency sweep. Function/arbitrary waveform generator always sweeps from starting frequency to stop frequency and then returns to starting frequency. To set starting or stop frequency, press <u>SWEEP</u> to return to interface of frequency sweep mode after setting carrier parameters, when you can use multi-functional control and direction key or press corresponding soft function key, input number through the numeric keyboard and press the corresponding soft key of unit to finish setting.

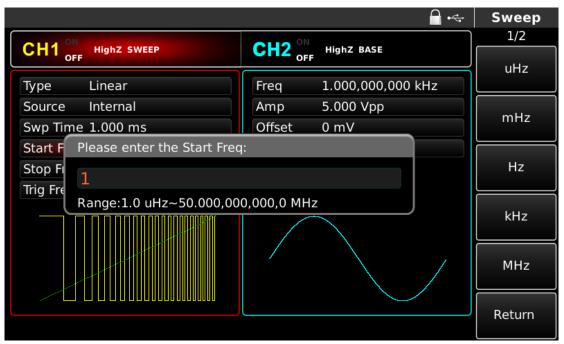



Figure 4- 120 Set frequency sweep parameters

- When starting frequency < stop frequency, function / arbitrary waveform generator sweeps from low frequency to high frequency.
- When starting frequency> stop frequency, function / arbitrary waveform generator sweeps from high frequency to low frequency.
- When starting frequency= stop frequency, function / arbitrary waveform generator outputs fixed frequency.
- The synchronous signal of frequency sweep mode is low from starting point to midpoint of frequency sweep time, and high from midpoint to end of frequency sweep time.

By default, starting frequency is 1kHz and stop frequency is 1MHz, but the range of starting and stop frequency can vary with frequency sweep waveform. See the table below for the frequency range of frequency sweep wave:

Carrier waveform	Frequency					
	72-14120	72-14122	72-14126			
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz			
Square wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz			
Sawtooth wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz			
Pulse wave	1µHz ~ 2MHz	1µHz ~ 3MHz	1µHz ~ 4MHz			
Arbitrary wave	1µHz ~ 30MHz	1µHz ~ 30MHz	1µHz ~ 30MHz			

Table	4-	13	
-------	----	----	--

### 4.2.3 Frequency Sweep Mode

For linear frequency sweep, the waveform generator changes the output frequency in a linear way during frequency sweep; for logarithmic frequency sweep, waveform generator changes the output frequency in a logarithmic way. Linear frequency sweep mode is default. To change it, please press soft key Type on the interface for starting frequency sweep mode (please press SWEEP first to enter the interface for selecting frequency sweep waveform).

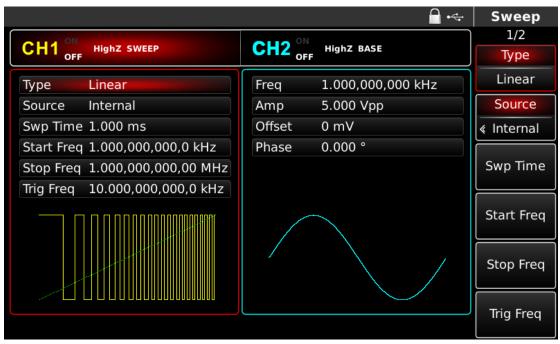



Figure 4-121 Select linear frequency sweep

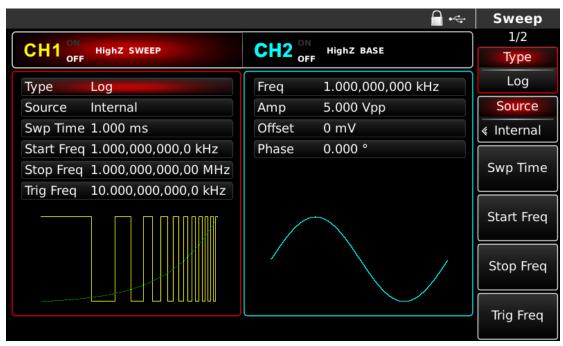



Figure 4-122 Select logarithmic frequency sweep

## 4.2.4 Frequency Sweep Time

Set the time from starting frequency to stop frequency, which is 1ms by default and in the range of 1µs~500s. To change it, you can use the multi-functional control and direction keys on the interface for selecting frequency sweep mode or press soft function key Swp Time, input number through the numeric keyboard and press the corresponding soft key of unit.

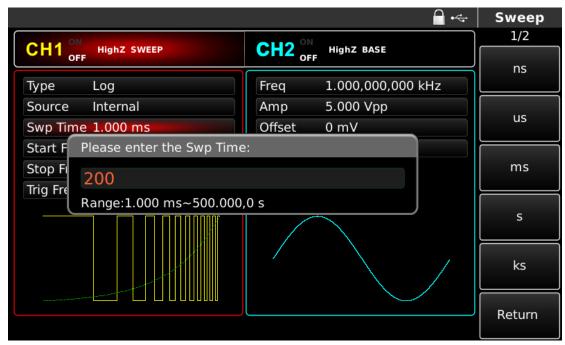
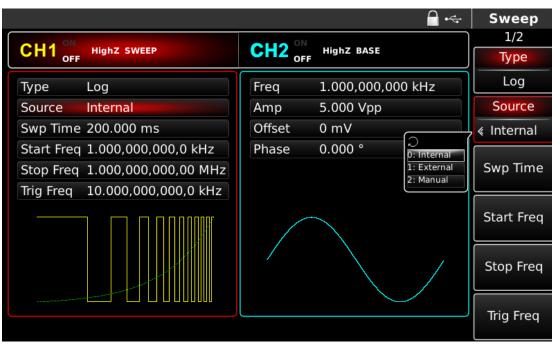




Figure 4- 123 Set frequency sweep time

## 4.2.5 Select Trigger Source

The signal generator generates frequency sweep output upon receiving a trigger signal and then waits for the next trigger signal. The trigger source of frequency sweep can be internal, external or manual. To change it, you can use the multi-functional control and direction keys on the interface for selecting frequency sweep mode or press the soft function key <u>Source</u>.



## Figure 4- 124 Select trigger source

When using an internal trigger, the waveform generator will output a continuous frequency sweep, the rate of which is determined by frequency sweep time.

When using an external trigger, the waveform generator will accept a hardware trigger that has been connected to the external digital modulation interface (FSK Trig connector) on the back panel. The waveform generator will start a frequency sweep upon receiving a TTL pulse with designated polarity.

**Note:** in the event of an external trigger source, trigger output will not be shown in the parameter list, as trigger output is also achieved through external digital modulation interface (FSK Trig connector). This interface cannot be simultaneously used as external trigger input and internal trigger output.

			<b>-</b>	Sweep
CH1 ON OFF	HighZ SWEEP	CH2 ON	HighZ BASE	2/2
OFF		OFF		Trig Out
Туре	Log	Freq	1.000,000,000 kHz	Off
Source	External	Amp	5.000 Vpp	
Swp Time	200.000 ms	Offset	0 mV	
Start Freq	1.000,000,000,0 kHz	Phase	0.000 °	
Stop Freq	1.000,000,000,00 MHz			
Trig Out	Off			
	<b>Element</b> 4 405 0 4		- 1 4	

Figure 4- 125 Select external trigger source

When using manual trigger, the backlight of Trigger on the front panel flashes. Frequency sweep is output upon pressing Trigger.

# 4.2.6 Trigger Output

When using an internal or manual trigger source, the trigger signal (square wave) can be output through external digital modulation interface (FSK Trig connector), compatible with TTL level. The default trigger output is "OFF". To change it, you can use the multi-functional control and direction keys on the interface for selecting frequency sweep mode or press Page Up/Down and soft function key Trig Out successively.

- In internal trigger, signal generator outputs a square wave with duty ratio of 50% from external digital modulation interface (FSK Trig connector) when frequency sweep starts. Trigger period depends on designated frequency sweep time.
- In manual trigger, signal generator outputs a pulse more than 1µs wide from external digital modulation interface (FSK Trig connector) when frequency sweep starts.
- In external trigger, trigger output will be hidden in parameter list, as trigger output is also achieved through external digital modulation interface (FSK Trig connector). This interface can not be simultaneously used as external trigger input and internal trigger output.

# 4.2.7 Trigger Edge

Edge can be designated when an external digital modulation interface (FSK Trig connector) is used as input. When it is used as input (i.e. internal trigger source), "rising edge" means that rising edge of external signal triggers output of a frequency sweep wave, and "falling edge" means that falling edge of external signal triggers output of a frequency sweep wave. The default edge is "rising edge". To change it, you can use the multi-functional control and direction keys on the interface for selecting the frequency sweep mode or press soft key Trig Edge .

## 4.2.8 Comprehensive Example

First set the instrument to run in frequency sweep mode, and then set a square wave signal with amplitude of 1Vpp and duty ratio of 50% as frequency sweep wave. The frequency sweep mode is linear. Set starting frequency to be 1kHz, stop frequency to be 50kHz and frequency sweep time to be 2ms. *The specific steps are as follows:* 

## Use frequency sweep function

Press SWEEP and Type in sequence to display a linear frequency sweep (press soft key Type to select) to start linear frequency sweep function.

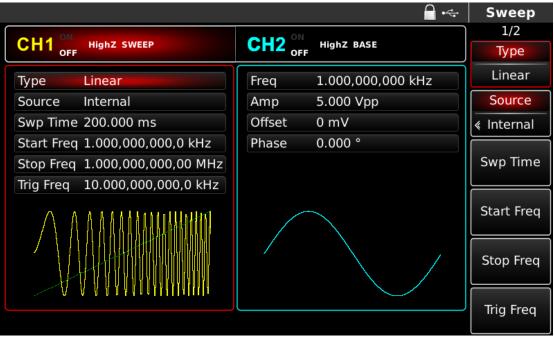
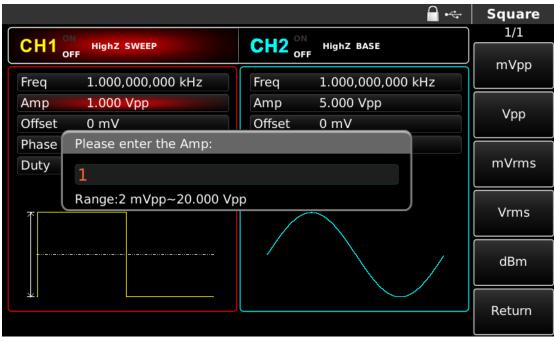


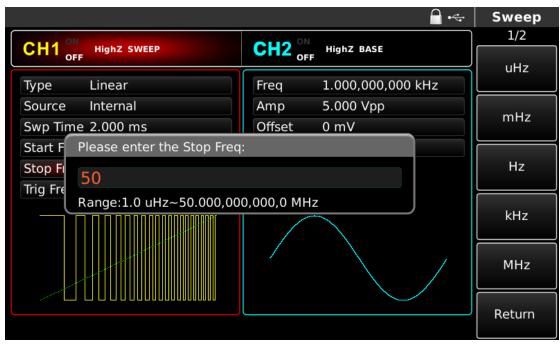

Figure 4- 126 Select SWEEP function


## Select frequency sweep waveform

After linear frequency sweep function is used, press Square to select frequency sweep waveform, when the interface below will display:

			<b>-</b>	Square
	HighZ SWEEP	CH2 OFF	HighZ BASE	1/1
OF	CH1 OFF HighZ SWEEP CH2 OFF HighZ BASE		Freq	
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	Period
Amp	5.000 Vpp	Amp	5.000 Vpp	Amp
Offset	0 mV	Offset	0 mV	High
Phase	0.000 °	Phase	0.000 °	Offset
Duty	50.00 %			Low
k	ж Г			Phase
				Duty

Figure 4- 127 Select frequency sweep waveform


You can set the amplitude with the multi-functional control and direction keys. You can also press the corresponding soft function keys again, when the interface below will display. To set the parameters, press the corresponding soft key, input the required value and select the unit.



## Figure 4- 128 Set waveform amplitude

Set starting/stop frequency, frequency sweep time, trigger source and edge.

Press SWEEP to return to the interface below after selecting frequency sweep waveform and relevant parameters:



# Figure 4- 129 Set frequency sweep parameters

You can set with the multi-functional control and direction keys. You can also press the corresponding soft function keys again, when the interface below will display. To set some parameter, press the corresponding soft key, input the required value and select the unit.

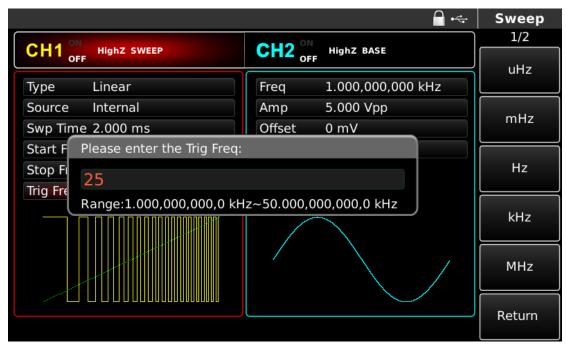



Figure 4-130 Set trigger frequency

## Use channel output

Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" to the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.

	🔒 • <del>«.</del>	Sweep
		1/2
	CH2 OFF HighZ BASE	Туре
Type Linear	Freq 1.000,000,000 kHz	Linear
Source Internal	Amp 5.000 Vpp	Source
Swp Time 2.000 ms	Offset 0 mV	
Start Freq 1.000,000,000,0 kHz	Phase 0.000 °	
Stop Freq 50.000,000,000,0 kHz		Swp Time
Trig Freq 25.000,000,000,0 kHz		
		Start Freq
		Stop Freq
		Trig Freq

# Figure 4- 131 Use channel output

Check the shape of frequency sweep waveform through the oscilloscope, which is shown in the figure below:

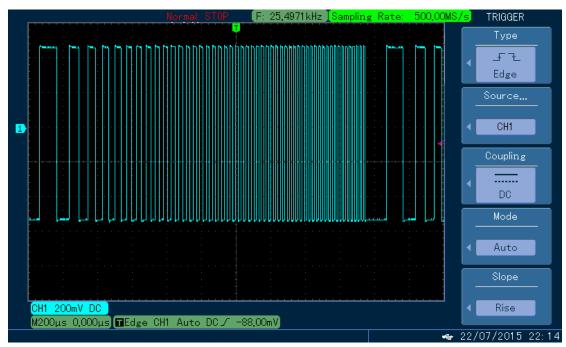



Figure 4- 132 Observe frequency sweep waveform with oscilloscope

# 4.3 Output Burst

Signal generator can create a waveform with designated recurring number (known as pulse train). The function/arbitrary waveform generator supports control of pulse train output with internal, external or manual trigger, and three types of pulse train, including N cycle, gating and infinite. It can generate pulse train for sine wave, square wave, sawtooth wave, pulse wave, arbitrary wave (except DC) and noise (only applicable to gating pulse train). The modulation mode of the two channels is mutually independent. You can configure identical or different modulation mode for channels 1 and 2.

## 4.3.1 Select Burst

### Start Burst function

Press **BURST** to start function of pulser. After pulse train function is used, the function/arbitrary waveform generator will output pulse train with the current setting.

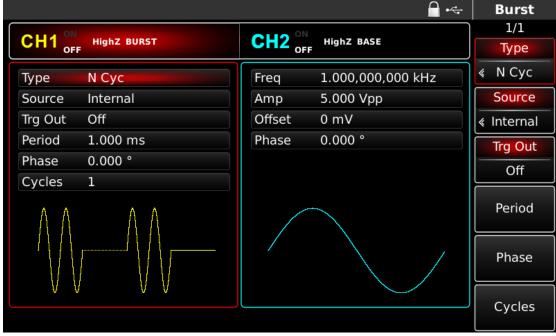



Figure 4-133 Select BURST function

#### Select waveform

- N cycle mode supports sine wave, square wave, sawtooth wave, pulse wave and arbitrary wave (except DC).
- Gating mode supports sine wave, square wave, sawtooth wave, pulse wave, arbitrary wave (except DC) and noise.
- Infinite mode supports sine wave, square wave, sawtooth wave, pulse wave and arbitrary wave (except DC).

After pulse train function is started, press the key of basic waveform setting to select frequency sweep waveform. For example, press Square, the interface is shown in the figure below:

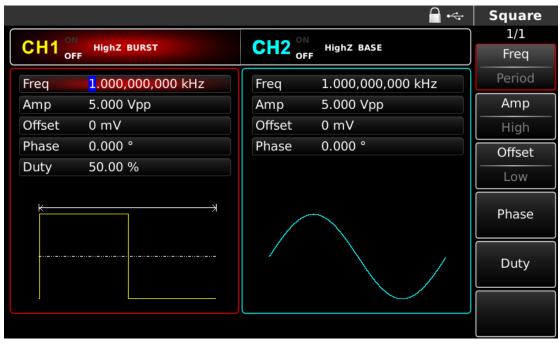



Figure 4-134 Select waveform

#### Set waveform frequency

In N cycle and gating modes, waveform frequency defines signal frequency during period of pulse train. In N cycle mode, the pulse train will be output with designated cycle index and waveform frequency. In gating mode, when trigger signal is at high level, pulse train is output with waveform frequency.

**Note:** waveform frequency is different with period of pulse train that designates interval between pulse trains (only for N cycle mode). The default frequency of waveform is 1kHz. See the table below for the range:

Carrier waveform	Frequency				
	72-14120	72-14122	72-14126		
Sine wave	1µHz~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz		
Square wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz		
Sawtooth wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz		
Pulse wave	1µHz ~ 2MHz	1µHz ~ 3MHz	1µHz ~ 4MHz		
Arbitrary wave	1µHz ~ 30MHz	1µHz ~ 30MHz	1µHz ~ 30MHz		

Table	e 4-	14
-------	------	----

To set the waveform frequency, please use the multi-functional control and direction keys or press the soft function key Freq, input the required value and select the unit after selecting waveform.

## 4.3.2 Type of Burst

The function/arbitrary waveform generator can output three types of pulse train, N cycle, gating and infinite. The default type is N cycle.

## N cycle mode

Press soft keys Type and N Cyc in sequence on the interface for starting pulse function to enter N cycle mode. In this mode, the waveform generator will output a waveform with designated recurring number (pulse train) upon receiving trigger. After outputting a designated number of cycles, the waveform generator will stop and wait for the next trigger. The trigger source of pulse train can be internal, external or manual in this mode. To change it, you can use the multi-functional control and direction keys on the interface for selecting the type of pulse train (as shown in the figure below) or press the soft function key Source.

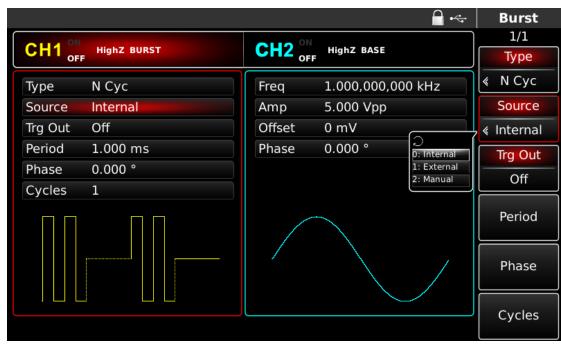



Figure 4-135 Select N cycle mode

## Gating mode

Press the soft function keys Type and Gated in sequence on the interface for starting pulse function to enter gating mode. In mode of gating pulse train, trigger source, trigger output, trigger edge, burst period (period of pulse train) and recurring number will not be shown in the parameter list. As only an external trigger source can be used, waveform generator is triggered according to the hardware connected to the external digital modulation interface (FSK Trig connector) on the back panel. When polarity is positive and trigger input signal is at high level, a continuous waveform is output; when trigger input signal is at low level, the current waveform period is finished first and then stop at the level corresponding to the initial phase of the waveform selected. For noise waveform, when gated signal is spurious, output will be immediately stopped. Polarity can be changed with the multi-functional control and direction keys on the interface for selecting gating mode (as shown in the figure below) or by pressing soft key Trg Edge.

	<b>_</b> • <del>≪</del>	Burst
		]1/1
	CH2 OFF HighZ BASE	Туре
Type Gated	Freq 1.000,000,000 kHz	« Gated
Trg Edge Rise	Amp 5.000 Vpp	Trg Edge
Phase 0.000 °	Offset 0 mV	Rise
	Phase 0.000 °	Phase

Figure 4-136 Select gating mode

#### Infinite mode

Press soft function keys Type and Infinite in sequence on the interface for starting pulse function to enter infinite mode. In mode of infinite pulse train, burst period (period of pulse train) and recurring number will not be shown in the parameter list. Infinite pulse train amounts to infinite cycle index of waveform. The signal generator outputs continuous waveform when receiving trigger signal. The trigger source of pulse train can be internal, external or manual in this mode. To change it, you can use the multi-functional control and direction keys on the interface for selecting the type of pulse train (as shown in the figure below) or press the soft function key Source.

				₽ •∻	Burst
					1/1
	HighZ BURST		HighZ BASE		Туре
Туре	Infinite	Freq	1.000,000,00	00 kHz	« Infinite
Source	Internal	Amp	5.000 Vpp		Source
Trg Out	Off	Offset	0 mV		, ∢ Internal
Phase	0.000 °	Phase	0.000 °	୍କ 0: Internal	Trg Out
				1: External 2: Manual	Off
	n nnn				Phase

Figure 4-137 Select infinite mode

#### 4.3.3 Phase of Burst

Phase of pulse train is phase at starting point of pulse train. It is in the range of -360°~+360°. The default initial phase is 0°. To change it, you can use the multi-functional control and direction keys on the interface for selecting type of pulse train or press soft function key Phase.

- For sine wave, square wave, sawtooth wave and pulse wave, 0° is the point at which the waveform passes 0V (or DC offset value) in forward direction.
- For arbitrary waveform, 0° is the first waveform point downloaded to the storage.
- Initial phase has no effect on the noise wave.

#### 4.3.4 Period of Burst

Burst period (period of pulse train) is only applicable to N cycle mode, and is defined as the time from one pulse train to the next pulse train. When trigger source is external or manual, burst period (period of pulse train) will not be shown in the parameter list. The range of burst period (period of pulse train) is 1µs~500s; the default "burst period" is 1ms. To change it, you can use the multi-functional control and direction keys or press the soft key Period after selecting type of pulse train as N cycle.

- Burst period (period of pulse train) ≥ waveform period ×recurring number (number of pulse trains). The waveform period is reciprocal of waveform frequency mentioned in "select pulse train".
- If burst period (period of pulse train) is too short, signal generator will automatically increase the period to allow output of a designated number of cycles.

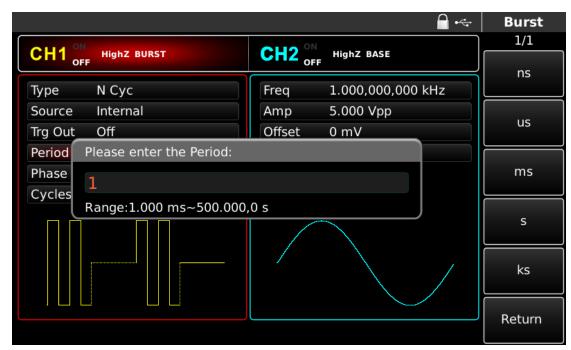



Figure 4-138 Set period of pulse train

## 4.3.5 Counting of Burst

In N cycle mode, counting of pulse train is used to designate the number of waveform cycles. It is in the range of 1~50000 periods and 1 by default. To change it, you can use the multi-functional control and direction or press soft function key Cycles after selecting the type of pulse train as "N cycle".

- Recurring number≤ burst period × waveform frequency
- If recurring number exceeds the above limit, signal generator will automatically increase period of pulse train to adapt to the designated counting of pulse train (without changing waveform frequency).

#### 4.3.6 Select Trigger Source

The signal generator generates output of pulse train upon receiving a trigger signal, and then waits for the next trigger signal. The trigger source of pulse train can be internal, external or manual. To change it, you can use the multi-functional control and direction keys on the interface for selecting the type of pulse train or press soft key <u>Source</u>.

When using an internal trigger, pulse train is output continuously with designated frequency. The frequency of pulse train output is determined by period of pulse train. The signal generator can output "N cycle" or "infinite" pulse train.

When using an external trigger, the waveform generator will accept a hardware trigger that has been applied to the external digital modulation interface (FSK Trig connector) on the back panel. The waveform generator will output a pulse train upon receiving a TTL pulse with designated polarity. The signal generator can output "N cycle", "gating" or "infinite" pulse train.

When using a manual trigger, the backlight of Trigger on the front panel flashes. A pulse train is output upon pressing Trigger. The signal generator can output "N cycle" or "infinite" pulse train.

#### 4.3.7 Trigger Output

When using an internal or manual trigger source, the trigger signal (square wave) can be output through sync output interface. The signal is compatible with TTL level.

#### 4.3.8 Trigger Edge

Trigger edge can be designated when external digital modulation interface (FSK Trig connector) is used as input. When it is used as input (i.e. internal trigger source), "rising edge" means that rising edge of an external signal triggers output of a pulse train, and "falling edge" means that falling edge of an external signal triggers output of a pulse train. In gating mode, when polarity in parameter list is "positive", external signal triggers output of a pulse train at high level, and "negative polarity" means that external signal triggers output of a pulse train at low level. When it is used as output (i.e. "internal" or "manual" trigger and trigger output is "ON"), the default edge is "rising edge".

### 4.3.9 Comprehensive Example

First set the instrument to run in pulse train mode, and then set a sine wave signal with period of 5ms and amplitude of 500mVpp as waveform of pulse train, set type of pulse train to be N-cycle, period of pulse train to be 15ms and recurring number to be 2. *The specific steps are as follows:* 

#### Use pulse train function

Press BURST, Type and N Cyc in sequence (press soft key Type to select) to set type of pulse train to be "N-cycle" mode.



Figure 4-139 Set N cycle function

#### Select waveform of Burst

After setting N-cycle mode of pulse train, press Sine to select carrier signal as a sine wave if previously set to another mode (Default carrier signal is a sine wave).

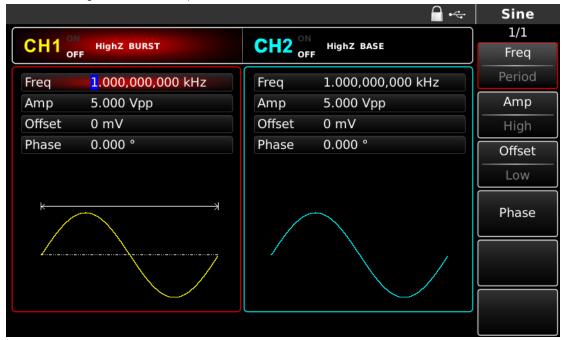



Figure 4-140 Select waveform of pulse train

You can set amplitude with multi-functional control and direction key (note: if frequency is displayed, only frequency can be set, which means that conversion between frequency and period cannot be realized. If frequency is displayed, period of 2ms is corresponding to frequency of 500Hz. They are reciprocal, i.e. T=1/f). You can also press the soft function key Freq again (press the soft key Freq twice for conversion between frequency and period in parameter list), when the interface below will display. To set the parameters, press the corresponding soft key, input the required value and select the unit.

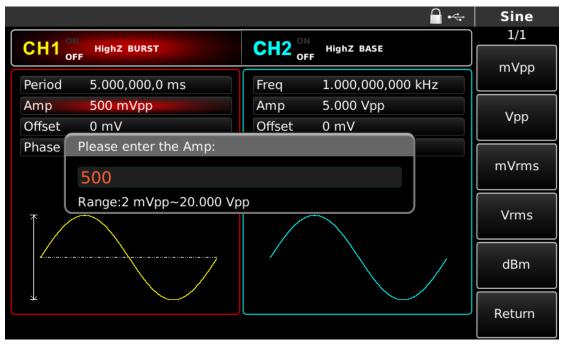
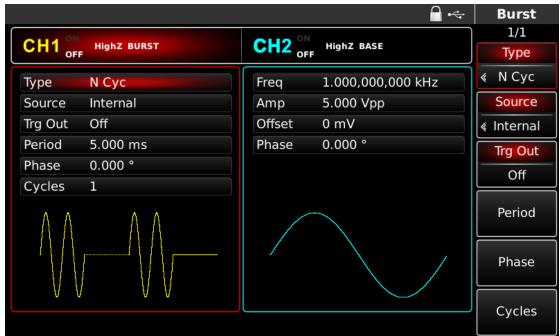




Figure 4-141 Set waveform amplitude

### Set period of pulse train and recurring number of waveform

Press soft function key **BURST** to return to the interface below after selecting waveform of pulse train and relevant parameters:



### Figure 4-142 Set pulse train parameters

You can set with the multi-functional control and direction keys. You can also press the corresponding soft keys of parameters again, when the interface below will display. To set some parameter, press the corresponding soft key, input the required value and select the unit.

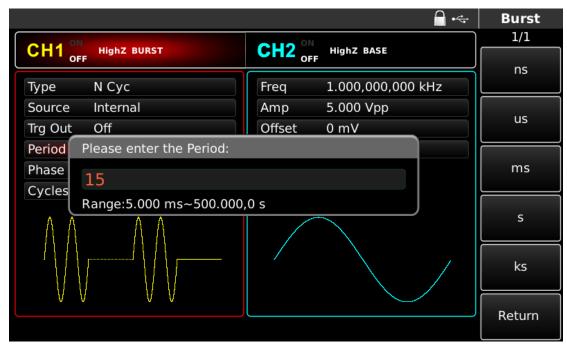



Figure 4-143 Set period of pulse train

#### Use channel output

Press CH1 on the front panel to turn on output of channel 1. The backlight of CH1 illuminates after channel output is turned on, "ON" to the right of CH1 information tag turns white, and "OFF" is greyed out, indicating that the output of channel 1 is turned on.

			<b>·</b>	Burst
CH1 ^{on}		CH2 OFF		1/1
	HighZ BURST		HighZ BASE	Туре
Туре	N Cyc	Freq	1.000,000,000 kHz	М Сус
Source	Internal	Amp	5.000 Vpp	Source
Trg Out	Off	Offset	0 mV	<pre>« Internal</pre>
Period	15.000 ms	Phase	0.000 °	Trg Out
Phase	0.000 °			Off
Cycles	2			
ΛΛ	ΛΛ			Period
				Phase
	V V			Cycles

Figure 4-144 Use channel output

Check the shape of pulse train through oscilloscope, which is shown in the figure below:

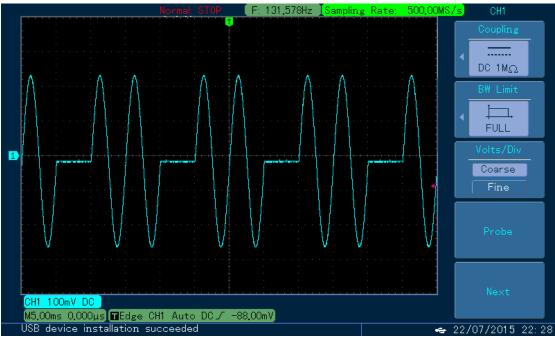



Figure 4-145 Observe BURST waveform with oscilloscope

## 4.4 Output Arbitrary Wave

The function/arbitrary waveform generator stores 160 types of standard waveform in nonvolatile storage. See Table 4-1 (list of built-in arbitrary wave) for the name of waveform. The instrument creates and edits arbitrary waveform through high level computer software, and reads arbitrary waveform data file stored in U disk through the USB interface of front panel.

### 4. 4. 1 Use Arbitrary Wave Function

Press Arb to use arbitrary wave function. After the function is used, the function/arbitrary waveform generator will output arbitrary waveform with the current setting.

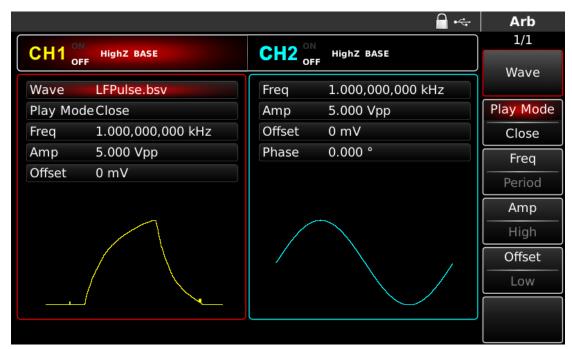



Figure 4-146 Select Arb function

### 4. 4. 2 Point-by-point Output/Play Mode

The function/arbitrary waveform generator supports point-by-point output of arbitrary waveform. In point-by-point output mode, the signal generator automatically calculates frequency of output signal (476.837158203Hz) according to waveform length (e.g. 1,048,576 points) and sampling rate. The signal generator outputs waveform points one by one with this frequency. Point-by-point output mode can prevent loss of important waveform point. The default is "No". In such a case, arbitrary waveform is output with fixed length (16k points) and frequency in parameter list through automatic interpolation of software or test count. To change it, you can use the multi-functional control and direction keys on the interface for using arbitrary wave function or press Play Mode. When play mode is activated, the frequency and phase will be displayed in the parameter list.

			<b>_</b> •<-	Arb
				1/1
CH1 or	HighZ BASE F	CH2 OFF	HighZ BASE	Wave
Wave	LFPulse.bsv	Freq	1.000,000,000 kHz	
Play Mod	de Open	Amp	5.000 Vpp	Play Mode
Freq	15.258,789,063 kHz	Offset	0 mV	Open
Amp	5.000 Vpp	Phase	0.000 °	Freq
Offset	0 mV			 Period
Phase	0.000 °			Amp
			~	
			High	
				Offset
			Low	
			)	Phase

Figure 4- 147 Set point-by-point output function

#### 4. 4. 3 Select Arbitrary Wave

The function/arbitrary waveform generator allows users to output arbitrary waveform in internal or external storage of the instrument. You can select the arbitrary wave you need with the multi-functional control and direction keys on the interface for using arbitrary wave function or by pressing soft keys Arb and Wave in sequence.

**Note:** use the multi-functional control and direction keys or press the soft keys Arb and Wave in sequence to select storage after inserting U disk into the USB interface on the front panel, and then select the arbitrary waveform you need. The function/arbitrary waveform generator supports *.csv or *.bsv files with waveform  $8\sim32M$  points long.

Туре	Name	Description		
	DC	DC voltage		
	AbsSine	Absolute value of sine		
	AbsSineHalf	Absolute value of half sine		
	AmpALT	Gain oscillation curve		
	AttALT	Damped oscillation curve		
	GaussPulse	Gaussian pulse		
	Gaussian monopulse	Gaussian monopulse signal		
Common	NegRamp	Inverted triangle		
(15 types)	NPulse	Negative pulse		
	PPulse	Positive pulse		
	SineTra	Sine-Tra waveform		
	SineVer	Sine-Ver waveform		
	StairDn	Stair down		
	StairUD	Stair up/down		
	StairUp	Stair up		
	Trapezia	Trapezoid		
	BandLimited	Band-limited signal		
	BlaseiWave	Blasting vibration "time-vibration velocity" curve		
	Butterworth	Butterworth filter		
	Chebyshev1	Type I Chebyshev filter		
	Chebyshev2	Type II Chebyshev filter		
	Combin	Composite function		
Engine	CPulse	C-Pulse signal		
(25 types)	CWPulse	CW pulse signal		
	DampedOsc	Damped oscillation "time-displacement" curve		
	DualTone	Dual tone signal		
	Gamma	Gamma signal		
	GateVibar	Gate self-oscillation signal		
	LFMPulse	Linear frequency modulation pulse signal		
	MCNoise	Mechanical construction noise		

Table 4-15 List of built-in arbitrary wave

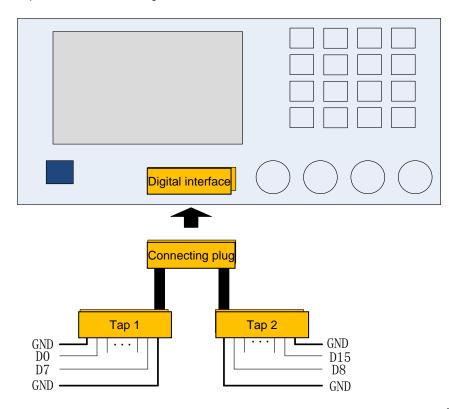
	Discharge	Discharge curve of NI-MH battery	
	Pahcur	Current waveform of brushless DC motor Seismic wave Radar signal Power ripple Hemispheric wave RoundsPM waveform Step response signal Swing oscillation function- time curve TV signal /oice signal Airy function Class-I Bessel function Sesselk function Class-II Bessel function Class-II Bessel function Class-II Bessel function Class-II Bessel function	
	Quake	Seismic wave	
	Radar	Radar signal	
	Ripple	Power ripple	
	RoundHalf	Hemispheric wave	
	RoundsPM	RoundsPM waveform	
	StepResp	Current waveform of brushless DC motor Seismic wave Radar signal Power ripple Hemispheric wave	
	SwingOsc	Swing oscillation function- time curve	
	TV	TV signal	
	Voice	Current waveform of brushless DC motor Seismic wave Radar signal Power ripple Hemispheric wave RoundsPM waveform Step response signal Swing oscillation function- time curve TV signal Voice signal Airy function Class-I Bessel function Class-I Bessel function Class-II Bessel function Class-II Bessel function Clauchy distribution Cubic function Dirichlet function Error function Complementary error function Inverse complementary error function Inverse error function Exponential falling function Exponential rising function Matural logarithm of Gamma function Gaussian distribution or normal distribution Haversine function Quartic Laguerre polynomial Laplace distribution Logarithmic function Logarithmic function Raxwell distribution Rayleigh distribution Versiera Weibull distribution	
	Airy	Airy function	
	Besselj	Class-I Bessel function	
	Besselk	Besselk function	
	Bessely	Class-II Bessel function	
	Cauchy	Cauchy distribution	
	Cubic	Cubic function	
	Dirichlet	Dirichlet function	
	Erf	Error function	
	Erfc	Complementary error function	
	ErfcInv	Inverse complementary error function	
	ErfInv	Inverse error function	
	ExpFall	Exponential falling function	
<b>N A</b> - 41	ExpRise	Exponential rising function	
Maths	Gammaln	Natural logarithm of Gamma function	
(27 types)	Gauss	Gaussian distribution or normal distribution	
	HaverSine	Haversine function	
	Laguerre	Quartic Laguerre polynomial	
	Laplace	Laplace distribution	
	Legend	Quintic Legendre polynomial	
	Log	Denary logarithmic function	
	LogNormal	Logarithmic normal distribution	
	Lorentz	Lorentzian function	
	Maxwell	Maxwell distribution	
	Rayleigh	Rayleigh distribution	
	Versiera	Versiera	
	Weibull	Weibull distribution	
	ARB_X2	Square function	

	АМ	Sectioned amplitude modulation wave of sine		
_	FM	Sectioned frequency modulation wave of sine		
SectMod	PFM	Sectioned frequency modulation wave of pulse		
(5types)	РМ	Sectioned phase modulation wave of sine		
	PWM	Sectioned frequency modulation wave of pulse width		
	Cardiac	Electrocardiosignal		
	EOG	Electro-oculogram		
Bioelect	EEG	Electroencephalogram		
(6 types)	EMG	Electromyogram		
	Pulseilogram	Pulsilogram of common people		
	ResSpeed	Respiratory speed curve of common people		
	LFPulse	Respiratory speed curve of common people         Low-frequency pulse electrotherapy waveform         Transcutaneous electric nerve stimulation waveform 1         Transcutaneous electric nerve stimulation waveform 2         Transcutaneous electric nerve stimulation waveform 3         Ignition waveform of automobile internal-combustion engine         Automobile starting sectional drawing with oscillation         Automobile voltage waveform caused by start-up1         Automobile voltage waveform caused by start-up 3         Automobile voltage waveform caused by start-up 4         Sectional drawing of automobile working voltage in resetting		
Medical	Tens1	Transcutaneous electric nerve stimulation waveform 1		
(4 types)	Tens2	Transcutaneous electric nerve stimulation waveform 2		
	Tens3	Transcutaneous electric nerve stimulation waveform 3		
	Ignition	-		
	ISO16750-2 SP	Automobile starting sectional drawing with oscillation		
	ISO16750-2 Starting1	Automobile voltage waveform caused by start-up1		
	ISO16750-2 Starting2	Automobile voltage waveform caused by start-up 2		
	ISO16750-2 Starting3	Automobile voltage waveform caused by start-up 3		
	ISO16750-2 Starting4	Automobile voltage waveform caused by start-up 4		
	ISO16750-2 VR			
	ISO7637-2 TP1	Transient phenomena of automobile caused by power caused by po		
Standard	ISO7637-2 TP2A	Transient phenomena of automobile caused by inductance in wiring		
(17 types)	ISO7637-2 TP2B	Transient phenomena of automobile caused by turning of start-up changer		
	ISO7637-2 TP3A	Transient phenomena of automobile caused by conversion		
	ISO7637-2 TP3B	Transient phenomena of automobile caused by conversion		
	ISO7637-2 TP4	Working sectional drawing of automobile in start-up		
	ISO7637-2 TP5A	Transient phenomena of automobile caused by power c of battery		
	ISO7637-2 TP5B	Transient phenomena of automobile caused by power c of battery		
	SCR	SCR sintering temperature release drawing		
	Surge	Surge signal		

	CosH	Hyperbolic cosine		
	CosInt	Cosine integral		
	Cot	Cotangent function		
	CotHCon	Concave hyperbolic cotangent		
	CotHPro	Convex hyperbolic cotangent		
	CscCon	Concave cosecant		
	CscPro	Convex cosecant		
	CotH	Hyperbolic cotangent		
	CscHCon	Cosine integral           Cotangent function           Concave hyperbolic cotangent           Concave cosecant           Concave cosecant           Concave cosecant           Hyperbolic cotangent           Concave cosecant           Concave hyperbolic cosecant           Concave hyperbolic cosecant           Concave nyperbolic cosecant           Concave reciprocal           Concave secant           Concave secant           Concave secant           Hyperbolic secant           Sinc function           Hyperbolic sine           Sine integral           Square root function           Tangent function           Hyperbolic cosine function           Concave arc cotangent function           Concave arc cotangent function           Concave arc cotangent function           Concave arc hyperbolic cosine function           Concave arc hyperbolic cosecant function           Concave arc secant function           Concave arc secant function           Convex arc sec		
Trigonometric	CscHPro	Convex hyperbolic cosecant		
function	RecipCon	Concave reciprocal		
Trigonome (21 types)	RecipPro	Convex reciprocal		
(21 (9900)	SecCon	Concave secant		
	SecPro	Concave secant		
	SecH	Hyperbolic secant		
	Sinc	Sinc function		
	SinH	Hyperbolic sine		
	SinInt	Sine integral		
	Sqrt	Square root function		
	Tan	Tangent function		
	TanH	Hyperbolic tangent		
	ACos	Arc-cosine function		
	ACosH	Arc- hyperbolic cosine function		
	ACotCon	Concave arc cotangent function		
	ACotPro	Convex arc cotangent function		
	ACotHCon	Concave arc- hyperbolic cosine function		
	ACotHPro	Convex arc- hyperbolic cosine function		
	ACscCon	Concave arc cosecant function		
Inverse Trigonome	ACscPro	Convex arc cosecant function		
(17 types)	ACscHCon	Concave arc hyperbolic cosecant function		
	ACscHPro	Convex arc hyperbolic cosecant function		
	ASecCon	Concave arc secant function		
	ASecPro	Convex arc secant function		
	ASecH	Arc hyperbolic secant function		
	ASin	Arcsin function		
	ASinH	Arc hyperbolic sine function		
	ATan	Arctan function		
	ATanH	Arc hyperbolic tangent function		

	Bartlett	Bartlett window		
	BarthannWin	Corrected Bartlett window		
	Blackman	Blackman window		
	BlackmanH	BlackmanH window		
	BohmanWin	BohmanWin window		
	Boxcar	Rectangular window		
	ChebWin	Chebyshev window		
Window Function	GaussWin	Gaussian window		
(17 types)	FlattopWin	Flat-top window		
(17 types)	Hamming	Hamming window		
	Hanning	Hanning window		
	Kaiser	Kaiser window		
	NuttallWin	Minimum four-item Blackman-Harris window		
	ParzenWin	Parzen window		
	TaylorWin	Taylaor window		
	Triang	Triangle window, also Fejer window		
	TukeyWin	Tukey window		
	Complex Frequency	Complex Frequency B-spline function		
	B-spline			
Osmalau	Complex Gaussian	Complex Gaussian function		
Complex Wavelets	Complex Morlet	Complex Morlet wavelet		
(7 types)	Complex Shannon	Complex Shannon function		
	Mexican hat	Mexican hat wavelet		
	Meyer	Meyer wavelet		
	Morlet	Morlet wavelet		

### 4. 4. 4 Create and Edit Arbitrary Waveform


The function/arbitrary waveform generator creates and edits complicated arbitrary waveforms (of any amplitude and shape) through powerful high level computer software. Please see *Operation Manual of the Arbitrary Waveform Editing Software* for specific operation.

## 4.5 Output Digital Protocol Coding

The signal generator can output three types of protocol coding: I2C, SPI and UART.(TTL), and support the sending of continuous time and manual sending. Corresponding protocol parameters can be set in different protocol modes. Corresponding signal can be output through protocol output interface on the front panel.

# 4.5.1 Description of Interface Front Panel

Digital interface of front panel is shown in the figure below:



See the table below for correspondence of signal

Table 4	4- 16
---------	-------

Pin name	Function description
GND	Ground pin
D15	NC
D14	NC
D13	NC
D12	RS232_TXD, serial data sending end
D11	NC
D10	SPI_CS, SPI enable
D9	SPI_SDO, SPI data sending end
D8	SPI_CLK, SPI clock
D7	NC
D6	NC
D5	I2C_SDA, SPI data terminal
D4	I2C_SCL, SPI clock terminal
D3	NC
D2	NC
D1	NC
D0	NC

## 4.5.2 UART Protocol

The function/arbitrary waveform generator can generate serial port protocol signal for parameters and output through the digital interface on the front panel in UART protocol mode.

### Select UART

Press DIGITAL, Type and Uart in sequence to use UART function (if "Type" is not highlighted, press soft key Type to select). After UART function is used, the function/arbitrary waveform generator will output protocol signal with the current setting.

					Digital
	HighZ BASE	CH2 OFF	HighZ BASE		1/2
OFF	HIGHZ DASE	OFF	HIGHZ BASE		Туре
Freq	1.000,000,000 kHz	Freq	1.000,000,000		, ≪ Uart
Amp	5.000 Vpp	Amp	5.000 Vpp	0: Uart 1: I2C	Baud Rate
Offset	0 mV	Offset	0 mV	2: SPI	≰ 9600
Phase	0.000 °	Phase	0.000 °	3: DArb	Bit Type
					« 4
					× +
	_		_		Data
Digital	Uart 9600 4	AUTO 1 ms	s 1 NULL	- Char	Send Mode
14258544	14258544712547125412541414521452145236589521422222				AUTO
					Send Time

Figure 4- 148 Select UART function

### Select Baud rate

The Baud rate of UART can be 110, 300, 1200, 4800, 9600, 19200, 38400, 56700, 115200, 230400, 460800, 921600 and Clock speed. After UART is selected, the default Baud rate is 9600. To set Baud rate, please use the multi-functional control and direction keys after selecting protocol or press the soft function key Baud Rate to select the required setting.

				₽ •		Digital
	HighZ BASE	CH2 OFF	HighZ BASE			1/2
OFF		OFF				Туре
Freq	1.000,000,000 kHz	Freq	1.000,000,00	0 kHz	\$	Uart
Amp	5.000 Vpp	Amp	5.000 Vpp		B	aud Rate
Offset	0 mV	Offset	0 mV		, «	9600
Phase	0.000 °	Phase	0.000 °	ට 0: 110		Bit Type
				1: 300 2: 1200	_	4
				2: 1200 3: 2400	*	4
				4:4800		Data
			$\overline{}$	5: 9600 6: 19200		Data
Digital	Uart 9600 4	AUTO 1 m	5 1 NUL	7: 38400 8: 56700		end Mode
	471254712541254141	45214521	4522650052	0.115200		
14258544	471254712541254141	.: 230400		AUTO		
				+: 460800 921600		
				°Clock	Se	end Time

Figure 4-149 Select Baud rate

#### Set Bit

Different bit number can be set as required. In UART mode, there are five different modes, 4, 5, 6, 7 and 8. The default is 4. To set Baud rate, please use the multi-functional control and direction keys after selecting protocol or press the soft function key Bit Type to select the required setting.

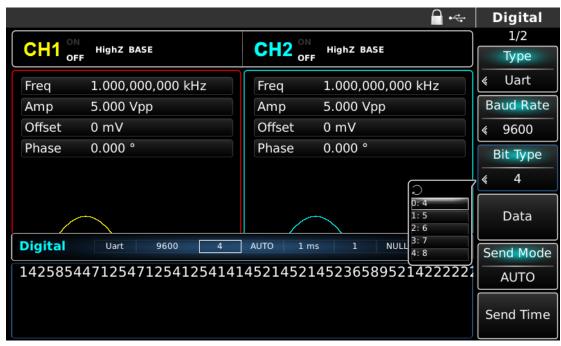



Figure 4- 150 Set bit

#### Set data sent

The function/arbitrary waveform generator can set protocol data coding to be sent. After you use UART function, the data is empty by default. You can set with the multi-functional control on the interface for using protocol function or by pressing Data. The data can be sent with multiple numerical systems, including decimal system, hexadecimal system and character, which is shown in the figure below.



Figure 4- 151 Set data sent

Multibyte sending can be set. The number of bytes is 8. The numeric string should be divided into digital sections not more than 255 when setting value sent. Segments are separated by a Space. Press Clear to clear input errors and press A/a to switch between upper and lower case. Press Ok after setting is finished. See the figure below.

													Key Board
			-					<u>ч</u>	ON			<b></b>	1/1
OFF	HighZ	BAS	E					Hź	OF	F	ignz	BASE	Туре
Freq	1.00		inte	ut/De	ecima	<u></u>		_				000,000 kHz	« Decimal
Amp	5.00		· · ·		54 1		56					√рр	<b>C 1 1 1</b>
Offset	0 m)												Space
Phase	0.00	1	2	3	4	5	6	7	8	9	0	2	
		Q	w	Е	R	т	Y	U	Т	0	Р		Clear
		4		5 C	D F	= (	G I		J	< 1	-		A/a
Digital	Ua	Aa	Z	Х	С	V	В	Ν	М	$\langle \times \rangle$		NULL Char	
1425854	47125	547	125	412	254	141	145	214	52	145	236	589521422222	
													Ok

Figure 4-152 Set data sent

#### Set sending mode

Automatic and manual sending can be set. In automatic sending mode, the instrument sends the set protocol coding at preset times and in manual mode, the instrument sends the set protocol signal when users press the send key.

#### 1) Automatic sending mode

Press soft function key SendMode to adjust to "AUTO" to set automatic sending mode of the instrument. You can set the send time. Press soft function key Send Time to set the send time using the numeric keys.

				₽ •∻	Digital		
	ON Water Back	CH3 ON			1/2		
CH1	HighZ BASE OFF	CH2 OFF	HighZ BASE		ns		
Freq	1.000,000,000 kHz	Freq	1.000,000,000	kHz			
Amp	5.000 Vpp	Amp	5.000 Vpp				
Offset	0 mV	Offset	0 mV		us		
Phase							
	2						
	Range:1 ms~10.000 s			)			
/	$\frown$				S		
Digital	Uart 9600 4	AUTO 1 m	s 1 NULL	DEC	ks		
214 56	214 56 54 123 56						
					Return		

Figure 4-153 Set automatic sending

### 2) Manual sending mode

Press soft function key SendMode to adjust to "Manual" to set to manual sending mode of the instrument. Press soft function key Send, the instrument will output the set waveform.

			<b>·</b>		Digital				
CH1 ^{ON} OFF	HighZ BASE	CH2 OFF	HighZ BASE		1/2				
OFF	HIGHZ BASE	OFF OFF	Highz BASE		Туре				
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	\$	Uart				
Amp	5.000 Vpp	Amp	5.000 Vpp	B	aud Rate				
Offset	0 mV	Offset	0 mV	*	9600				
Phase	0.000 °	Phase	0.000 °		Bit Type				
				*	4				
					Data				
Digital	Uart 9600 4	Manual 1	NULL DEC	Se	end Mode				
214 56 54	214 56 54 123 56								
					Send				

Figure 4-154 Set manual sending

#### Set stop bit

Different stop bit width can be set in UART protocol. Press the soft function key Stop Bit to set optional stop bit width, which can be 1 or 2 and is 1 set by default.

				Digital
CH1 OFF	HighZ BASE	CH2 OFF	HighZ BASE	2/2
OFF	nignz base	OFF OFF	nighz base	Stop Bit
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	2
Amp	5.000 Vpp	Amp	5.000 Vpp	Parity
Offset	0 mV	Offset	0 mV	« NULL
Phase	0.000 °	Phase	0.000 °	
	<u>_</u>			
Digital	Uart 9600 4	Manual 2		
214 56 54	4 123 56			

Figure 4- 155 Set stop bit

## Set check bit

Check mode can be set in UART protocol. Press the soft function key Parity to set different check mode, which can be no, odd and even and is set as "no" by default.

				₽ +∻		Digital
						2/2
CH1 OFF	HighZ BASE		HighZ BASE			Stop Bit
Freq	1.000,000,000 kHz	Freq	1.000,000,00	0 kHz		2
Amp	5.000 Vpp	Amp	5.000 Vpp			Parity
Offset	0 mV	Offset	0 mV		, «	NULL
Phase	0.000 °	Phase	0.000 °	ନ୍ତି p: NULL		
				1: Odd 2: Even		
	~		<hr/>			
Digital	Uart 9600 4	Manual 2	NULL	DEC		
214 56 5	4 123 56					

Figure 4- 156 Set check bit

#### Comprehensive example

First set the instrument to run in UART mode, and then set Baud rate of the instrument to be 4800, data to be decimal 5, 20, 13 or 14, check to be odd, stop bit to be 1 and sending interval to be 2ms. *The specific steps are as follows:* 

## 1) Use UART function

Press DIGITAL, Type and Uart in sequence (press soft key "Type" to select ) to use UART function.

					Digital				
	HighZ BASE	CH2 OFF	HighZ BASE		1/2				
OFF		OFF OFF			Туре				
Freq	1.000,000,000 kHz	Freq	1.000,000,0	0	, « Uart				
Amp	5.000 Vpp	Amp	5.000 Vpp	0: Uart 1: I2C	Baud Rate				
Offset	0 mV	Offset	0 mV	2: SPI	≰ 9600				
Phase	0.000 °	Phase	0.000 °	3: DArb	Bit Type				
					<u>« 4</u>				
					Data				
Digital	Uart 9600 4	Manual 2	NULL	DEC	Send Mode				
214 56 5	214 56 54 123 56								
					Send				

Figure 4-157 Select UART function

### 2) Set Baud rate to be 4800

Press soft function key <u>Baud Rate</u> to set the Baud rate in UART mode. You can set with the multi-functional control and direction keys. You can also press the corresponding soft function keys again, when the interface below will display. Select accordingly.

						Digital
CH1 OFF	HighZ BASE	CH2 OFF	HighZ BASE			1/2
OFF	Highz DASE	OFF OFF	HIGHZ BASE			Туре
Freq	1.000,000,000 kHz	Freq	1.000,000,0	000 kHz	\$	Uart
Amp	5.000 Vpp	Amp	5.000 Vpp		Ba	aud Rate
Offset	0 mV	Offset	0 mV		, ≪	4800
Phase	0.000 °	Phase	0.000 °	ට 0: 110	E	Bit Type
				1: 300 2: 1200	«	4
				3: 2400 4: 4800 5: 9600 6: 19200		Data
Digital	Uart 4800 4	Manual 2	NULL	7: 38400 8: 56700	Se	nd Mode
214 56 54	123 56	9: 115200 .: 230400 +: 460800		Manual		
				+: 460800 921600 °Clock		Send

Figure 4- 158 Select Baud rate

## 3) Set bit

To set the Baud rate, please use the multi-functional control and direction keys after selecting the protocol or press soft function key Bit Type to select the required setting. The bit number shown is 8 in this example.

				∻		Digital			
	HighZ BASE	CH2 OFF	HighZ BASE			1/2 Type			
Freq	1.000,000,000 kHz	Freq	1.000,000,0	000 kHz	\$	Uart			
Amp	5.000 Vpp	Amp	5.000 Vpp		Ba	aud Rate			
Offset	0 mV	Offset	0 mV		*	4800			
Phase	0.000 °	Phase	0.000 °		E	Bit Type			
				ົວ	, ≪	8			
				0: 4 1: 5 2: 6		Data			
Digital	Uart 4800 8	Manual 2	NULL	3: 7 4: 8	Se	end Mode			
214 56 54	214 56 54 123 56 1								
						Send			

Figure 4-159 Select bit

### 4) Set data sent

Press the soft function key Data for data setting in UART mode. You can set with the multi-functional control and direction keys. You can also press the corresponding soft function keys again, when the interface below will display. Select accordingly.

												<b>_</b> •∻	Key Board
			_										1/1
CH1 OFF	CH1 OFF HighZ BASE											Туре	
Freq	1.00			ut(De	cima	al)•						)00,000 kHz	< Decimal
Amp	5.00			0 13		ar).						√рр	C
Offset	0 m\												Space
Phase	0.00	1	2	3	4	5	6	7	8	9	0	·	
		Q	w	Е	R	т	Y	U	Т	0	Р		Clear
				5 C							-		A/a
Digital	Ua	Aa	Z	Х	С	V	В	Ν	М	$\langle \times \rangle$	-	DEC	
5 20 13 1	.4												
													Ok

Figure 4- 160 Set data sent

#### 5) Set send time

Press the soft function key <u>Send Mode</u> to set the sending mode to "AUTO" in UART mode. Press soft function key <u>Send Time</u> to set the sending interval to be 2ms set using the numeric keys.

	<b>∩</b> • <del>&lt;</del>	Digital
		1/2
OFF HIGHZ BASE	H2 OFF HighZ BASE	ns
Freq 1.000,000,000 kHz	req 1.000,000,000 kHz	
Amp 5.000 Vpp A	mp 5.000 Vpp	
Offset 0 mV	Offset 0 mV	us
Freq1.000,000,000 kHzFAmp5.000 VppAOffset0 mVCPhasePlease enter the Send Time:2Range:1 ms~10.000 s	ms	
		s
Digital         Uart         4800         8         AU           5 20 13 14         5         5         13         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14	ks	
		Return

Figure 4-161 Set send time

## 6) Set stop bit

Press the soft function key Stop Bit to set the sending mode and set the stop bit to be 1 in UART mode.

			<b>-</b>		Digital
					2/2
CH1 OFF	HighZ BASE	CH2 OFF	HighZ BASE		Stop Bit
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	ון	1
Amp	5.000 Vpp	Amp	5.000 Vpp	ĴГ	Parity
Offset	0 mV	Offset	0 mV	*	NULL
Phase	0.000 °	Phase	0.000 °		
Freq Amp Offset Phase	~				
Digital	Uart 4800 8	AUTO 2 m	s 1 NULL DEC	٦L	
		AUTO 2 m	s 1 NULL DEC		
5 20 13 1	_4				

Figure 4- 162 Set stop bit

### 7) Set check bit

Press the soft function key Parity to set the check bit to be "Odd" in UART mode.

						Digital
CH1 OFF	HighZ BASE	CH2 OFF	HighZ BASE			2/2
OFF		OFF				Stop Bit
Freq	1.000,000,000 kHz	Freq	1.000,000,00	00 kHz		1
Amp	5.000 Vpp	Amp	5.000 Vpp			Parity
Offset	0 mV	Offset	0 mV		, «	Odd
Phase	0.000 °	Phase	0.000 °	ට 0: NULL		
				1: Odd 2: Even		
					_	
	_		~			
Digital	Uart 4800 8	AUTO 2 ms	5 1 Od	d DEC		
5 20 13 1	4					

Figure 4-163 Set check bit

### 4.5.3 I2C Protocol

The function/arbitrary waveform generator can generate protocol signal for parameters and output through the digital interface on the front panel in I2C protocol mode.

### Select I2C

Press DIGITAL, Type and I2C in sequence to use UART function (if "Type" is not highlighted, press soft key Type to select). After I2C function is used, the function/arbitrary waveform generator will output protocol signal with the current setting.

				₽ •	Digital		
	HighZ BASE	CH2 OFF	HighZ BASE		1/2		
OFF		OFF OFF	HIGHZ BASE		Туре		
Freq	1.000,000,000 kHz	Freq	1.000,000,00		, ≪ I2C		
Amp	5.000 Vpp	Amp	5.000 Vpp	0: Uart 1: I2C			
Offset	0 mV	Offset	0 mV	2: SPI	Clock		
Phase	0.000 °	Phase	0.000 °	3: DArb			
					Addr		
			_		Data		
Digital	I2C 100,000 Hz 8	AUTO 0 m	s 7 bit	Char	Send Mode		
11111111	111111111111111111111111111111111111111						
					Send Time		

Figure 4-164 Select I2C function

### Set Clock

The transmitter Clock of the I2C can be set. You can set with the multi-functional control and direction keys after selecting a protocol or by pressing the soft function key Clock and using the numeric keys in the range of 10kHz~1MHz.

	<b>□</b> • <del>~</del>	Digital	
		1/2	
OFF HIGHZ BASE	OFF	Hz	
Freq 1.000,000,000 kHz	Freq 1.000,000,000 kHz		
Amp 5.000 Vpp	Amp 5.000 Vpp		
Offset 0 mV	Offset 0 mV	kHz	
Phase Please enter the Clock:			
10		MHz	
Range:10,000 Hz~1,000,00	D0 Hz		
Digital I2C 100,000 Hz 8	AUTO 1 ms 7 bit Char		
111111111111111111111111111111111111111	111111111111212541		
		Return	

Figure 4- 165 Set clock

#### Set address information

Different address information can be set as required. 7-bit or 10-bit address can be selected in I2C mode. Press Page Up/Down on the menu and press Addr Format on page 2 to switch between 7-bit address and 10-bit address. The default is 7-bit address.

	<b>_</b> •<-	Digital
Old ON		2/2
CH1 OFF HighZ BASE	CH2 OFF HighZ BASE	Addr Format
Freq 1.000,000,000 kHz	Freq 1.000,000,000 kHz	10 bit
Amp 5.000 Vpp	Amp 5.000 Vpp	
Offset 0 mV	Offset 0 mV	
Phase 0.000 °	Phase 0.000 °	
Digital I2C 10,000 Hz 8	AUTO 1 ms 10 bit Char	
111111111111111111111111111111111111111	1111111111111212541	

Figure 4- 166 Set address size

To set the address value, please press the soft function key Addr and use the numeric keys after selecting a protocol.

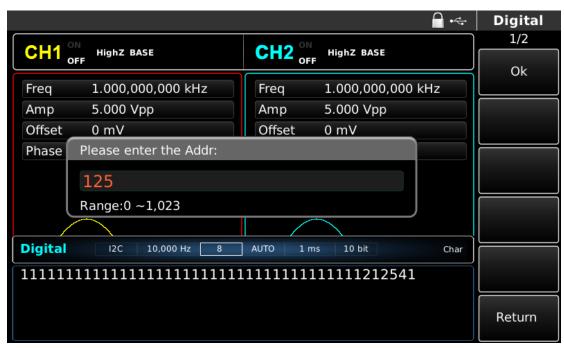



Figure 4-167 Set address information

#### Set data sent

The function/arbitrary waveform generator can set protocol data coding to be sent. After you use I2C function, the data is empty by default. You can set with the multi-functional control on the interface for using protocol function or by pressing Data and using the numeric keys. The data can be sent with multiple numerical systems, including decimal system, hexadecimal system and character, which is shown in the figure below.



#### Figure 4- 168 Set data sent

Multibyte sending can be set. The number of bytes is 8. The numeric string should be divided into digital sections not more than 255 when setting value sent. Numbers in each segment are divided with Space. Press Clear to clear incorrect input and press A/a to switch between upper and lower case. Press Ok after setting is finished.

#### Set sending mode

Automatic and manual sending can be set. When set to automatic sending, the instrument sends the set protocol coding at a certain time.; In manual mode, the instrument sends the set protocol signal when users press the send key.

### 1) Automatic sending mode

Press soft function key SendMode and adjust to "AUTO" to set automatic sending mode of the instrument. You can set the send time. Press soft function key Send Time to set send time using the numeric keys.

		🗠 Digital
		1/2
CH1 OFF HighZ BASE	CH2 OFF HighZ BASE	ns
Freq 1.000,000,000 kHz	Freq 1.000,000,000 kHz	
Amp 5.000 Vpp	Amp 5.000 Vpp	
Offset 0 mV	Offset 0 mV	us
Phase Please enter the Send Tim	e:	
2		ms
Range:1 ms~10.000 s	J	
		s
Digital 12C 10,000 Hz 8	AUTO 1 ms 10 bit	DEC
126 56 141 36 5		ks
		Return

Figure 4-169 Set automatic sending

### 2) Manual sending mode

Press the soft function key <u>SendMode</u> and adjust to "Manual" to set manual sending mode of the instrument. Press the soft function key <u>Send</u>, the instrument will output the set waveform.

	🔒 • <del>«</del> -	Digital
CH1 ON HighZ BASE		1/2 Type
Freq 1.000,000,000 kHz	Freq 1.000,000,000 kHz	« I2C
Amp 5.000 Vpp	Amp 5.000 Vpp	
Offset 0 mV	Offset 0 mV	Clock
Phase 0.000 °	Phase 0.000 °	
		Addr
		Data
Digital I2C 10,000 Hz 8	Manual 10 bit DEC	Send Mode
126 56 141 36 5		Manual
		Send

Figure 4- 169 Set manual sending

#### Comprehensive example

First setup the instrument run in I2C mode, and then set address of the instrument to be 10-bit, value to be 65, I2C clock signal to be 500Hz, data to be decimal 17, 19, 23 29 or 31 and sending interval to be 5ms.

## The specific steps are as follows:

### 1) Use I2C function

Press DIGITAL, Type and I2C in sequence (press soft key "Type" to select ) to use I2C function.

					Digital
	HighZ BASE	CH2 OFF	HighZ BASE		1/2
OF	inghi base	OFF			Туре
Freq	1.000,000,000 kHz	Freq	1.000,000,0	0	, ≪ I2C
Amp	5.000 Vpp	Amp	5.000 Vpp	0: Uart 1: I2C	Clask
Offset	0 mV	Offset	0 mV	2: SPI	Clock
Phase	0.000 °	Phase	0.000 °	3: DArb	
					Addr
	~		_		Data
Digital	I2C 10,000 Hz 8	Manual 10 bit		DEC	Send Mode
126 56 1	41 36 5				Manual
					Send

Figure 4- 170 Select UART function

### 2) 65 Set 10-bit address of 65

Press the soft function key Addr Format to set address bit width in I2C mode. Press this key to switch between 7-bit and 10-bit address. Set the address to be 10-bit.



Figure 4- 171 Set 10-bit address

Press the soft function key Addr to set the address. Set address information with numeric keyboard after pressing this key to set address value to be 65.

				Digital
	CH2 OFF	HighZ BASE		
OFF	OFF	HIGHZ BASE		Ok
Freq 1.000,000,000 kHz	Freq	1.000,000,000	kHz	
Amp 5.000 Vpp	Amp	5.000 Vpp		
Offset 0 mV	Offset	0 mV		
Phase Please enter the Addr:				
65				
Range:0 ~1,023				
Digital I2C 10,000 Hz 8	Manual 10 bi	t	DEC	
126 56 141 36 5				
				Return

Figure 4- 172 Set address value

## 3) Set Clock

Press the soft function key Clock for data setting in I2C mode. You can set with multi-functional control and direction key. You can also press the corresponding soft function keys again and set corresponding data to be 500 with numeric keys.

			•	Digital
		HighZ BASE		1/2
CH1 OFF HighZ BASE	CH2 OFF	HIGHZ BASE		Hz
Freq 1.000,000,000 kHz	Freq	1.000,000,000 kH	z	
Amp 5.000 Vpp	Amp	5.000 Vpp		1.11-
Offset 0 mV	Offset	0 mV		kHz
Phase Please enter the Clock:				
500				MHz
Range:10,000 Hz~1,000,0	00 Hz	)		
Digital I2C 10,000 Hz 65	Manual 10 bit		DEC	
126 56 141 36 5				
				Return

Figure 4- 173 Set clock

#### 4) Set data sent

Press the soft function key Data for data setting in I2C mode. You can set with the multi-functional control and direction keys. You can also press the corresponding soft function keys again and set corresponding data with numeric keys.

													Key Board
			_						ON				1/1
CH1 OFF	HighZ	BAS	E					Hź	OF	F	ignz	BASE	Туре
Freq 1	00		intru	ut/De	ecima	al)•						)00,000 kHz	∢ Decimal
Amp 5	5.00				3 29							√рр	Greek
Offset 0	) m`												Space
Phase 0	0.00	1	2	3	4	5	6	7	8	9	0	·	
		Q	W	Е	R	т	Y	U	I	0	Р		Clear
	A S D F G H J K L							A/a					
Digital	12	Aa	Z	Х	С	V	В	Ν	М	$\overline{\times}$	ļ	DEC	
126 56 141	L 36	5											
													Ok

Figure 4- 174 Set data sent

## 5) Set send time

Press the soft function key Send Mode to set sending mode to be "AUTO" in I2C mode. Press the soft function key Send Time to set sending interval to be 5ms with numeric key.

		₽ ⊷	Digital
			1/2
CH1 OFF HighZ BASE	CH2 OFF HighZ BASE		ns
Freq 1.000,000,000 kHz	Freq 1.000,000,00	0 kHz	115
Amp 5.000 Vpp	Amp 5.000 Vpp		
Offset 0 mV	Offset 0 mV		us
Phase Please enter the Send Time	2:		
5		ms	
Range:1 ms~10.000 s		J	
			S
Digital I2C 10,000 Hz 65	AUTO 2 ms 10 bit	DEC	
17 19 23 29 31			ks
			Return

Figure 4- 175 Set send time

## 4.5.4 SPI Protocol

The function/arbitrary waveform generator can generate SPI protocol signal for parameters and output through the digital interface on the front panel in SPI protocol mode.

### Select SPI

Press DIGITAL, Type and SPI successively to use SPI function (if "Type" is not highlighted, press soft key Type to select). After SPI function is used, the function/arbitrary waveform generator will output protocol signal with the current SPI mode.

					Dig	ital
	HighZ BASE	CH2 OFF	HighZ BASE			/1
OFF		OFF			Iy	ре
Freq	1.000,000,000 kHz	Freq	1.000,000,00	<u>ا م</u>	,≼ S	PI
Amp	5.000 Vpp	Amp	5.000 Vpp	0: Uart 1: I2C		a al c
Offset	0 mV	Offset	0 mV	2: SPI		ock
Phase	0.000 °	Phase	0.000 °	3: DArb		
Freq Amp Offset Phase					Da	ata
Digital	SPI 1,000,000 Hz AUTO	0 ms		Char		
- grown					Send	Mode
					AU	JTO
					Send	Time
						inite

Figure 4- 176 Select SPI function

### Set SPI Clock

The sending clock of the SPI can be set as required by users. Press the function key Clock in SPI mode to set sending clock with the numeric keys in the range of 10kHz~40MHz.

				- ⊷	Digital
	ON Water Back				1/1
CH1	HighZ BASE OFF		HighZ BASE		Hz
Freq	1.000,000,000 kHz	Freq	1.000,000,000	kHz	
Amp	5.000 Vpp	Amp	5.000 Vpp		
Offset	0 mV	Offset	0 mV		kHz
Phase	Please enter the Clock:				
Freq Amp Offset Phase	2				MHz
	Range:10,000 Hz~40,000,0	000 Hz		)	
	$\frown$				
Digital	SPI 1,000,000 Hz AUTO	1 ms		Char	
					Return

Figure 4- 177 Set clock

#### Set data sent

Different bit number can be set as required. Set with the multi-functional control and direction keys after selecting protocol or by pressing soft function key Data and using the numeric keys. The data can be sent with multiple numerical systems, including decimal system, hexadecimal system and character, which is shown in the figure below.



### Figure 4- 178 Set data sent

Multibyte sending can be set. The number of bytes is 8. The numeric string should be divided into digital sections not more than 255 when setting value sent. Segments are separated with Space. Press Clear to clear errors and press A/a to switch between upper and lower case. Press Ok after setting is finished. See the figure below.

												<b>□</b> •<÷	Key Board
CH1 ^{ON} Highz BASE CH2 ^{ON} OF								~ h 7	BASE	1/1			
OF	F F	L BAS	-						OF	- "	ignz	BASE	Туре
Freq	1.00	,	inte	ut(De	acima	al)•		_		_		000,000 kHz	∢ Decimal
Amp	5.00			5 95			56					√рр	<b>C</b> ases
Offset	0 m۱)												Space
Phase	0.00	1	2	3	4	5	6	7	8	9	0	<b>`</b>	
		Q	W	Е	R	т	Y	U	I	0	Р		Clear
											-		A/a
Digital	SP	Aa	Ζ	Х	С	V	В	Ν	М	$\langle \times \rangle$	ļ	Char	
												J	
													Ok

Figure 4- 179 Set data sent

#### Set sending mode

Automatic and manual sending can be set. In automatic sending mode the instrument sends the set protocol coding in certain time. In manual mode, the instrument sends the set protocol signal when users press the send key.

### 1) Automatic sending mode

Press the soft function key <u>SendMode</u> to adjust to "AUTO" to set automatic sending mode of the instrument. You can set the send time. Press the soft function key <u>Send Time</u> to set the send time using the numeric keys.

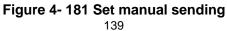

					Digital			
	ON USER BACK				1/1			
CH1	HighZ BASE OFF	CH2 OFF	HighZ BASE		ns			
Freq	1.000,000,000 kHz	Freq	1.000,000,000	kHz	115			
Amp	5.000 Vpp	Amp	5.000 Vpp					
Offset	0 mV	Offset	0 mV		us			
Phase	Please enter the Send Time	e:						
	5							
	Range:1 ms~10.000 s							
/	$\frown$				S			
Digital	SPI 10,000 Hz AUTO	1 ms		DEC				
156 95	123 56 66				ks			
					Return			

Figure 4- 180 Set automatic sending

#### 2) Manual sending mode

Press the soft function key SendMode to adjust to "Manual" to set manual sending mode of the instrument. Press the soft function key Send, the instrument will output the set waveform.

			<b>_</b> ⊷ -	Digital
	HighZ BASE	CH2 OFF	HighZ BASE	1/1
OFF	HIGHZ BASE	OFF OFF		Туре
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz	« SPI
Amp	5.000 Vpp	Amp	5.000 Vpp	Cleak
Offset	0 mV	Offset	0 mV	Clock
Phase	0.000 °	Phase	0.000 °	
	~			Data
Digital	SPI 10,000 Hz Manual		DEC	Send Mode
156 95 1	23 56 66			Manual
				Send



#### **Comprehensive example**

First setup the instrument run in SPI mode, and then set output data of the instrument to be decimal 13, 21, 34, 55 or 89, clock to be 15kHz and sending interval to be 5ms. The specific steps are as follows:

## 1) Use SPI function

Press DIGITAL, Type and SPI in sequence (press soft key "Type" to select ) to use SPI function.

					Digital
					1/1
CH1 OFF	HighZ BASE		HighZ BASE	]	Туре
Freq	1.000,000,000 kHz	Freq	1.000,000,000	[] []	≪ SPI
Amp	5.000 Vpp	Amp	5.000 Vpp	0: Uart	
Offset	0 mV	Offset	0 mV	1: I2C 2: SPI	Clock
Phase	0.000 °	Phase	0.000 °	3: DArb	
					Data
Digital	SPI 15,000 Hz Manual			DEC	Cand Mada
					Send Mode
156 95 12	23 56 66				Manual
					Send

Figure 4-182 Select SPI function

### 2) Set Clock

Press the soft function key Clock for data setting in SPI mode. You can set with the multi-functional control and direction keys. You can also press the corresponding soft function keys again and set corresponding data to be 15kHz with numeric key.

				₽ ⊷	Digital
	ON ULLE BACK				1/1
CH1	HighZ BASE OFF	CH2 OFF	HighZ BASE		Hz
Freq	1.000,000,000 kHz	Freq	1.000,000,000 k	Hz	ПZ
Amp	5.000 Vpp	Amp	5.000 Vpp		
Offset	0 mV	Offset	0 mV		kHz
Phase	Please enter the Clock:				
	15				MHz
	Range:10,000 Hz~40,000,	000 Hz			
/	$\frown$				
Digital	SPI 15,000 Hz Manual			DEC	
156 95	123 56 66				
					Return

Figure 4- 183 Set clock

#### 3) Set data sent

Press the soft function key Data for data setting in SPI mode. You can set with the multi-functional control and direction key. You can also press the corresponding soft function keys again to set corresponding data with numeric key.

											<b>_</b> ⊷	Key Board
		_						ON				1/1
			CH2 OFF HighZ BASE						Туре			
Freq 1.00		intru	ut/De	ecima	al)•						)00,000 kHz	<pre>« Decimal</pre>
Amp 5.00				4 55							√рр	Cross
Freq         1.00           Amp         5.00           Offset         0 m'           Phase         0.00												Space
Phase 0.00	1	2	3	4	5	6	7	8	9	0	, 	
	Q	W	Е	R	т	Y	U	I	0	Р		Clear
	A						⊢⊢			-		A/a
Digital SP	Aa	Z	Х	С	V	В	Ν	М	$\langle \times  $		DEC	
156 95 123 56	66											
												Ok

Figure 4- 184 Set data sent

#### 4) Set send time

Press soft function key Send Mode to set sending mode to be "AUTO" in SPI mode. Press the soft function key Send Time to set the sending interval to be 5ms. You can set with numeric keys.

				Digital
CH1 ^{ON} HighZ BASE	CH2 OFF	HighZ BASE		
OFF HIGHZ BASE	OFF OFF	HIGHZ BASE		ns
Freq 1.000,000,000 kHz	Freq	1.000,000,000	kHz	
Amp 5.000 Vpp	Amp	5.000 Vpp		
Offset 0 mV	Offset	0 mV		us
Phase Please enter the Send Time	e:			
5		ms		
Range:1 ms~10.000 s			J	
				S
Digital SPI 15,000 Hz AUTO	5 ms		DEC	
13 21 34 55 89				ks
				Return

Figure 4- 185 Set send time

# 4.6 Function of Digital Arbitrary Wave

The function /arbitrary waveform generator can generate any digital signal and corresponding clock signal for parameters and output through digital interface of front panel in mode of digital arbitrary wave

### Select digital arbitrary wave

Press DIGITAL, Type and DArb in sequence to use function of digital arbitrary wave (if "Type" is not highlighted, press soft key Type to select). After function of digital arbitrary wave is used, the function/arbitrary waveform generator will output signal of digital arbitrary wave with the current setting.

				<b>∂</b> •∻		Digital
						1/1
CH1 OFF	HighZ BASE		HighZ BASE			Туре
Freq	1.000,000,000 kHz	Freq	1.000,000,00		\$	DArb
Amp	5.000 Vpp	Amp	5.000 Vpp	0: Uart	$\square$	
Offset	0 mV	Offset	0 mV	1: I2C 2: SPI		Clock
Phase	0.000 °	Phase	0.000 °	3: DArb		
						Data
Digital	DArb 0 Hz AUTO			Char	Se	end Mode
1111111	125414521452145214	52145222	2222222222	222312451		AUTO

Figure 4- 186 Select function of digital arbitrary wave

### Set Clock

The sending clock of digital arbitrary wave can be set as required by users. Press function key Clock in mode of digital arbitrary wave and set the sending clock using numeric keys in the range of 1kHz~40MHz.

				Digital
	CH2 OFF			1/1
CH1 OFF HighZ BASE		HighZ BASE		Hz
Freq 1.000,000,000 kHz	Freq	1.000,000,000 k	Hz	112
Amp 5.000 Vpp	Amp	5.000 Vpp		
Offset 0 mV	Offset	0 mV		kHz
Phase Please enter the Clock:				
20				MHz
Range:1,000 Hz~40,000,0	00 Hz	)		
Digital DArb 20,000 Hz AUTO			Char	
1111111125414521452145214	152145222	22222222222222	31245	
				Return
				Recum

Figure 4- 187 Set clock

#### Set data sent

Different bit number can be set as required. Set with the multi-functional control and direction keys after selecting protocol or by pressing the soft function key Data and using the numeric keys. The data can be sent with multiple numerical systems, including decimal system, hexadecimal system and character, which is shown in the figure below.

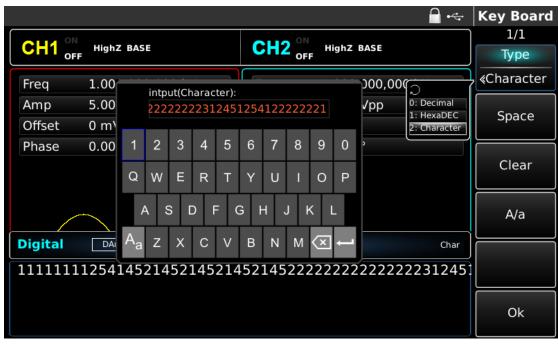



Figure 4- 188 Set data sent

Multibyte sending can be set. The number of bytes is 8. The numeric string should be divided into digital sections not more than 255 when setting value sent. Segments are separated by Space. Press Clear to erase incorrect input and press A/a to switch between upper and lower case. Press Ok after setting is finished. See the figure below.

												<b>∂</b> • <del>≪</del>	Key Board
	High2	Z BAS	E				C	H	ON OF	F H	ighZ	BASE	1/1 Type
Freq	1.00		 inte	 t/D/	ecima							000,000 kHz	« Decimal
Amp	5.00					42 6	5					√pp	Space
Offset	0 m\			-		_	_	_					Space
Phase	0.00	1	2	3	4	5	6	7	8	9	0	·	Clear
		Q	W	Е	R	Т	Y	U	Ι	0	Ρ		Clear
			۹ S	5 [		= (	G I	Η,	J	< 1	-		A/a
Digital	DAi	Aa	Ζ	Х	С	V	В	Ν	М	$\overline{\times}$	1	Char	
1111111	1254	145	214	52	145	214	152	145	222	222	222	222222231245	
													Ok

Figure 4- 189 Set data sent

#### Set sending mode

Automatic and manual sending can be set. In the automatic sending mode, the instrument sends the set protocol coding in certain time. In manual mode, the instrument sends the set protocol signal when users press the send key.

#### 1) Automatic sending mode

Press the soft function key SendMode to adjust to "AUTO" to set automatic sending mode of the instrument.



Figure 4- 190 Set automatic sending

#### 2) Manual sending mode

Press the soft function key SendMode and set to "Manual" to set manual sending mode of the instrument. Press the soft function key Send, the instrument will output the set waveform.

			<b>-</b> •	÷.	Digital
CH1 OFF	HighZ BASE	CH2 OFF	HighZ BASE		1/1 Type
Freq	1.000,000,000 kHz	Freq	1.000,000,000 kHz		∉ DArb
Amp	5.000 Vpp	Amp	5.000 Vpp		
Offset	0 mV	Offset	0 mV		Clock
Phase	0.000 °	Phase	0.000 °		
					Data
Digital	DArb 40,000,000 Hz Manual		DE	c ]	Send Mode
156 89 23	35 42 6				Manual
					Send

Figure 4- 191 Set manual sending

#### **Comprehensive example**

First make the instrument run in mode of digital arbitrary wave, and then set output data of the instrument to be decimal 27, 131, 9 or 31. *The specific steps are as follows:* 

#### 1) Use function of digital arbitrary wave

Press DIGITAL, Type and DArb in sequence (press the soft key "Type" to select ) to use function of digital arbitrary wave.

				₽ ⊷	Digital
					1/1
CH1 ^{ON} OFF	HighZ BASE CH2 OF HighZ BASE				Туре
Freq	1.000,000,000 kHz	Freq	1.000,000,00		≪ DArb
Amp	5.000 Vpp	Amp	5.000 Vpp	0: Uart 1: I2C	Clask
Offset	0 mV	Offset	0 mV	2: SPI	Clock
Phase	0.000 °	Phase	0.000 °	3: DArb	
					Data
Digital	DArb 40,000,000 Hz Manual			DEC	Send Mode
156 89 2	35 42 6				Manual
					Send

Figure 4- 192 Select function of digital arbitrary wave

#### 2) Set Clock

Press the soft function key Clock for data setting in mode of digital arbitrary wave. You can set with the multi-functional control and direction key. You can also press the corresponding soft function keys again and set the corresponding data to be 200kHZ with the numeric keys.

			- ←	Digital
				1/1
CH1 OFF HighZ BASE		HighZ BASE		Hz
Freq 1.000,000,000 kHz	Freq	1.000,000,000 k	Hz	
Amp 5.000 Vpp	Amp	5.000 Vpp		
Offset 0 mV	Offset	0 mV		kHz
Phase Please enter the Clock:				
200				MHz
Range:1,000 Hz~40,000,0	00 Hz	J		
Digital DArb 40,000,000 Hz Manual			DEC	
156 89 235 42 6				
				Return

Figure 4- 193 Set clock 145

#### 3) Set data sent

Press the soft function key Data for data setting in mode of digital arbitrary wave. You can set with the multi-functional control and direction keys. You can also press the corresponding soft function keys again and set corresponding data with numeric keys.

												<b>∂</b> • <del>&lt;</del>	Key Board
CH1 ^{ON} OFF	Minds 7	DAG	-					Hź	ON			BACE	1/1
	HighZ	BAS	E						OF	F	ignz	BASE	Туре
Freq	1.00		inte	ut/De	ecima	al):						000,000 kHz	∢ Decimal
Amp	5.00				9 31							√рр	
Amp Offset Phase	0 m`												Space
Phase	0.00	1	2	3	4	5	6	7	8	9	0	·	
		Q	w	Е	R	т	Y	U	I	0	Р		Clear
	$\overline{}$	4							┍┶				A/a
Digital		Aa	Z	Х	С	V	В	Ν	М	×	ļ	DEC	
156 89 2	35 42	6											
156 89 2													Ok

Figure 4- 194 Set data sent

#### 4) Set sending mode

Press the soft function key Send Mode in DArb mode to set sending mode to be "AUTO".

	<u></u> ⊷~-	Digital
CH1 ^{ON} HighZ BASE	CH2 ^{ON} HighZ BASE	1/1
	CH2 OFF HighZ BASE	Туре
Freq 1.000,000,000 kHz	Freq 1.000,000,000 kHz	≰ DArb
Amp 5.000 Vpp	Amp 5.000 Vpp	Clash
Offset 0 mV	Offset 0 mV	Clock
Phase 0.000 °	Phase 0.000 °	
		Data
Digital DArb 200,000 Hz AUTO	DEC	Send Mode
27 131 9 31		AUTO

Figure 4- 195 Set sending mode

### **Chapter 5 Fault Handling**

Possible faults in the use of the function/arbitrary waveform generator and troubleshooting methods are listed below. If these faults occur, please follow the corresponding steps. If they cannot be corrected, please contact the supplier, and provide the information about your machine (method: press Utility and System in sequence).

#### 5.1 No Display on Screen (Blank Screen)

If the signal generator still does not display after pressing power switch on front panel

- 1) Check that the mains lead is connected and mains power is turned on.
- 2) Check the fuse in the mains plug.
- 3) Check whether the power switch on back panel is in the ON position.
- 4) Check that the power switch on front panel is in the ON position.
- 5) If the product still cannot be used normally, please contact the supplier you purchased it from.

#### 5.2 No Waveform Output

Setting is correct but no waveform is output

- 1) Check whether the BNC cable and channel output terminal are connected correctly.
- 2) Check that either CH1 or CH2 is turned on.
- 3) If the product still cannot be used normally, please contact the supplier you purchased it from.

#### 5.3 Fails to Correctly Recognize U Disk

- 1) Check whether U disk works normally.
- 2) Check that only Flash U disk is used. The instrument does not support hard disk.
- 3) The U disk must be formatted Fat 16 or Fat 32.
- 4) Restart the instrument, and insert U disk again to see whether it works normally.
- 5) If the U disk still cannot be used normally, please contact the supplier you purchased it from.

### **Chapter 6 Service and Support**

#### 6.1 Program Upgrade of Product

Users may upgrade the current firmware available from the support department or website of UNI-T to ensure that the latest revision released by UNI-T is used.

# Appendix A: Factory Reset State

Parameter	Factory default
Channel parameter	
Current carrier wave	Sine wave
Output load	50Ω
Sync output	Channel 1
Channel output	Off
Channel output opposition	Off
Amplitude limit	Off
Upper amplitude limit	+5V
Lower amplitude limit	-5V
Fundamental wave	
Frequency	1kHz
Amplitude	100mVpp
DC offset	OmV
nitial phase	0°
Duty ratio of square wave	50%
Degree of symmetry of sawtooth wave	100%
Duty ratio of pulse wave	50%
Rising edge of pulse wave	1µs
Falling edge of pulse wave	1µs
Arbitrary wave	
Built-in arbitrary wave	Sinc
Play mode	No
AM modulation	
Modulation source	Internal
Modulation wave	Sine wave
Modulation frequency	100Hz
Modulation depth	100%

FM modulation	
Modulation source	Internal
Modulation wave	Sine wave
Modulation frequency	100Hz
Frequency deviation	1kHz
PM modulation	
Modulation source	Internal
Modulation wave	Sine wave
Modulation frequency	100Hz
Phase deviation	180°
PWM modulation	
Modulation source	Internal
Modulation wave	Pulse wave
Modulation frequency	100Hz
Deviation of duty ratio	20%
ASK modulation	
Modulation source	Internal
ASK rate	100Hz
FSK modulation	
Modulation source	Internal
FSK rate	100Hz
Hopping frequency	10kHz
PSK modulation	
Modulation source	Internal
PSK rate	100Hz
PSK phase	180°

BPSK modulation	
Carrier wave	Sine
Modulation source	Internal
Phase	0°
Phase 1	90°
Coding mode	PN15
BPSK rate	10kHz
QPSK modulation	
Carrier wave	Sine
Modulation source	Internal
Coding mode	PN15
QPSK rate	10kHz
Phase	0°
Phase 1	90°
Phase 2	180°
OSK modulation	
Modulation source	Internal
Oscillation time	1ms
OSK rate	500Hz
	I
QAM modulation	
Constellation	4QAM
Coding mode	PN15
QAM rate	500Hz
SUM modulation	
Modulation source	Internal
Modulation wave	Sine
Modulation frequency	500Hz

Type of frequency sweep	Linear	
Initial frequency	1kHz	
Stop frequency	2kHz	
Frequency sweep time	1s	
Trigger source	Internal	
Trigger output	Off	
Trigger edge	Rising edge	
Pulse train		
Mode of pulse train	N cycle	
Initial phase	0°	
Burst period (period of pulse train)	10ms	
Recurring number	1	
Gated polarity	Positive polarity	
Trigger source	Internal	
Trigger output	Off	
Trigger edge	Rising edge	
UART protocol		
Baud rate	9600bps	
Data bit width	4bits	
Data	None	
Sending mode	Automatic	
Interval of send time	1ms	
Stop bit	1bit	
Check bit	None	

I2C protocol	
Clock	100Hz
Address	0
Data	None
Sending mode	Automatic
Send time	1ms
Address bit width	7bits
SPI protocol	
Clock	1MHz
Data	None
Sending mode	Automatic
Send time	1ms
DARB	
Clock	1KHz
Data	None
Sending mode	Automatic
System parameter	
IP type	DHCP
Clock source	Internal
Clock output	Off
Sound of buzzer	On
Separator of numbers	,
Backlight	100%
Language *	Depends on factory setting

# Appendix B: Performance Index

			1						
Model	72-14120	72-14122	72-14126						
Basic characteristic									
Number of channels	Channels A/B with equivalent	performance							
Waveform characteristic	7 types of standard waveform, not less than 160 types of built-in arbitrary waveform								
	Sine( sine wave), Square( squ	uare wave), Ramp(ramp wave),	, Harmonic(harmonic),						
Output waveform	Pulse( pulse wave), Noise( no	bise), DC(DC), Arb( arbitrary wa	ave), multiple modulation AM,						
	FM, ASK, FSK, PSK	M, ASK, FSK, PSK							
LCD	8" TFT LCD, WVGA(800×480	)							
Frequency characteristic	2								
Sine wave	1µHz ~ 80MHz	1µHz ~ 120MHz	1µHz ~ 160MHz						
Square wave	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz						
Pulse	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz						
Sawtooth wave	1µHz ~ 2MHz	1µHz ~ 3MHz	1µHz ~ 4MHz						
16-order harmonic	1µHz ~ 30MHz	1µHz ~ 50MHz	1µHz ~ 80MHz						
	80MHz bandwidth (-3dB)	120MHz bandwidth (-3dB)	160MHz bandwidth (-3dB)						
White noise	(typical value)	(typical value)	(typical value)						
Resolution	1 µHz		1						
	Within 90 days ±50 ppm								
Accuracy	Within 1 year±100 ppm								
	18°C~28°C								
Temperature coefficient	< 2 ppm/°C								
Sine spectrum purity									
	Typical value (0dBm)								
	DC ~ 1MHz -60dBc								
Harmonic distortion	1MHz ~ 10MHz -55dBc								
	10MHz ~ 100MHz -50dBc								
	100MHz ~ 160MHz - 40dBc								
Total harmonic distortion	<0.2%(DC ~ 20kHz,1Vpp)								
	Typical value (0dBm)								
Spurious signal	≤10MHz < -65 dBc								
(anharmonic)	> 10MHz <-65dBc+6dB/ octave								
Phase noise (10kHz									
deviation)	10 MHz: ≤-115 dBc/Hz								
Characteristic of square	signal								
Rising/falling time	< 7ns	< 6ns	< 5ns						
Overshoot		< 2% (typical value)	1						
Symmetry (duty ratio of									
50%)		1% of period + 4ns							
Shake		1ns + 100ppm of period							
Sawtooth wave									
Linearity	< 1% of peak output (typical	value, 1kHz, 1Vpp , symme	try 100%)						
Symmetry	0.0% ~ 100.0%								

Frequency range	1µHz ~ 30MHz	1µHz ~ 40MHz	1µHz ~ 50MHz				
Pulse width	Maximum period 2000s: minimum 10ns						
Variable edge	7ns~10s 6ns~10s 5ns~10s						
Overshoot	< 2%						
Shake		1ns + 100ppm of period					
Characteristic of arbitra	ry wave						
Frequency range	1µHz~20MHz	1 $\mu$ Hz $\sim$ 30MHz	1µHz∼40MHz				
Waveform length		$8{\sim}32M$ points					
Vertical resolution		16 bits (including symbols)					
Sampling rate		500MS/s					
Typical value of							
minimum rising/falling	< 7ns	< 6ns	< 5ns				
time (1Vpp)							
Shake (RMS)		6ns + 30ppm					
Nonvolatile storage		7GB					
Output of harmonic	I						
Harmonic number		≤16					
Harmonic type	Even harmon	ic, odd harmonic, all harmonics	, user-defined				
Harmonic amplitude	Am	plitude of each harmonic can be	e set				
Harmonic phase	Pł	hase of each harmonic can be s	set				
Output characteristic	I						
	≤20MHz:1mVpp~10Vpp	≤20MHz:1mVpp~10Vpp	≤20MHz:1mVpp~10Vpp				
	≤80MHz:1mVpp~5Vpp	≤80MHz:1mVpp~5Vpp	≤80MHz:1mVpp~5Vpp				
Amplitude (50 $\Omega$ load)		≤120MHz:1mVpp~2.5Vpp	≤120MHz:1mVpp~2.5Vpp				
			≤160MHz:1mVpp~1Vpp				
Accuracy		± (1% of set v					
,	≤10MHz: ±0.1dB	≤10MHz: ±0.1dB	≤10MHz: ±0.1dB				
	≤80MHz: ±0.2dB	≤80MHz: ±0.2dB	≤80MHz: ±0.2dB				
Amplitude flatness		≤120MHz: ±0.4dB	≤120MHz: ±0.4dB				
			≤160MHz: ±0.8dB				
DC offset							
	±5V (50Ω)						
Range (peak AC+DC)	±10V (high resistance)						
Offset accuracy	$\pm$ (2% of  offset setting + 0.5%	% of amplitude+2mV)					
Waveform output		· · · · · · · · · · · · · · · · · · ·					
Impedance	50Ω typical value						
Insulation	Maximum 42Vpk to ground wi	re					
Protection		orm output is forbidden automa	tically in case of overload				
AM modulation							
Carrier wave	Sine wave square wave saw	tooth wave arbitrary wave					
Source	Sine wave, square wave, sawtooth wave, arbitrary wave Internal/external						
Modulation wave		tooth wave, noise, arbitrary way	ve (111Hz~200kHz)				
modulation wave	I GILLE WAVE, SUUALE WAVE, SAW	Ways, HUBS, ADDILLARY WAY	VU VINIZ ZUUNIZ/				

FM modulation			
Carrier wave	Sine wave, square wave, sawtooth wave, arbitrary wave		
Source	Internal/external		
Modulation wave	Sine wave, square wave, sawtooth wave, noise, arbitrary wave $(1\mu Hz \sim 200 kHz)$		
Frequency deviation	DC ~ 40MHz         DC ~ 60MHz         DC ~ 80MHz		
PM modulation			
Carrier wave	Sine wave, square wave, sawtooth wave, arbitrary wave		
Source	Internal/external		
Modulation wave	Sine wave, square wave, sawtooth wave, noise, arbitrary wave $(1\mu Hz \sim 200 kHz)$		
Phase deviation	0 ~ 360°		
ASK modulation			
Carrier wave	Sine wave, square wave, sawtooth wave, arbitrary wave		
Source	Internal/external		
Modulation wave	Square wave with duty ratio of 50% (2mHz~1MHz)		
FSK modulation			
Carrier wave	Sine wave, square wave, sawtooth wave, arbitrary wave		
Source	Internal/external		
Modulation wave	Square wave with duty ratio of 50% (2mHz~1MHz)		
PSK modulation			
Carrier wave	Sine wave, square wave, sawtooth wave, arbitrary wave		
Source	Internal/external		
Modulation wave	Square wave with duty ratio of 50% (2mHz~1MHz)		
BPSK modulation			
Carrier wave	Sine wave, square wave, sawtooth wave, arbitrary wave		
Source	Internal PN code		
Modulation wave	Square wave with duty ratio of 50% (2mHz~1MHz)		
QPSK modulation			
Carrier wave	Sine wave, square wave, sawtooth wave, arbitrary wave		
Source	Internal PN code		
Modulation wave	Square wave with duty ratio of 50% (2mHz~1MHz)		
OSK modulation			
Carrier wave	Sine wave		
Source	Internal/external		
Oscillation time	8ns~200s		
Keying frequency	2mHz~1MHz		
PWM modulation			
Carrier wave	Pulse		
Source	Internal/external		
Modulation wave	Sine wave, square wave, sawtooth wave, noise, arbitrary wave (2mHz~50kHz)		
Range of pulse width			
modulation	0%~100%		
SUM modulation			
Carrier wave	Sine wave, square wave, ramp wave, pulse wave, noise, arbitrary, harmonic wave		
Source	Internal/external		

Modulation wave	Sine wave, square wave, upper ramp wave, lower ramp wave, noise, arbitrary wave		
Modulation frequency	2mHz ~ 100kHz (internal); DC ~ 20kHz (external)		
SUM depth	0%~100%		
QAM	1		
QAM mode	QAM4, QAM8, QAM16, QAM32, QAM64, QAM128, QAM256 (built-in constellation modulation)		
Modulation source	Built-in PNcode, PN7, PN9, PN11, PN15, PN17, PN21, PN23, PN25		
Chip rate	2mHz~100kHz		
Amplitude	10mVpp~10Vpp(50Ω)		
Frequency sweep			
Carrier wave	Sine wave, square wave, sawtooth wave, arbitrary wave		
Туре	Linear or logarithmic		
Frequency sweep time	1ms ~ 500s ± 0.1%		
Trigger source	Manual, external or internal		
Burst	1		
Waveform	Sine wave, square wave, sawtooth wave, pulse, noise and arbitrary wave		
Туре	Count (1~50,000 periods), infinite, gated		
Initial and stop phase	-360°∼ +360°		
Internal cycle	$1\mu s \sim 500 s \pm 1\%$		
Gated source	External trigger		
Trigger source	Manual, external or internal		
Protocol Output			
SPI			
Waveform length	1~512 bytes		
Clock frequency	10kHz~40MHz		
Sending mode	Single manual trigger, continuous trigger		
Continuous trigger time interval	1ms~10s		
Output level	TTL level output		
I2C			
SPI waveform length	1~512 bytes		
Clock frequency	10kHz~1MHz		
Sending mode	Single manual trigger, continuous trigger		
Continuous trigger time	1ms~10s		
interval			
Address	Send 7-bit/10-bit I2C address		
Output level	TTL level output		
UART			
SPI waveform length	1~1K bytes		
Baud rate	110, 300, 1200, 2400, 4800, 9600, 19200, 38400, 56700, 115200, 230400, 460800 921600, user-defined		
Data bit	4 bits, 5 bits, 6 bits, 7 bits, 8 bits		
Sending mode	Single manual trigger, continuous trigger		
Continuous trigger time	1ms~10s		

interval			
Stop bit	1 bit, 2 bits		
Check bit	No check bit, odd, even		
Output level	TTL level output		
DARB			
Waveform length	1~1K bytes		
Sampling rate	1S/s ~ 40MS/s		
Sending mode	Single manual trigger, continuous trigger (no time interval)		
Waveform resolution	Maximum 16 bits		
Output level	TTL level output		
Modulation input			
External analog modulation	<20kHz (input frequency)		
	± 5Vpk = 100% modulation		
	$5k\Omega$ (input impedance)		
Clock input/output			
Range of input/output			
frequency	10MHz±500Hz		
Range of input/output			
level	TTL compatible		
Input/output impedance	10kΩ/50Ω(typical value, AC coupling)		
Locking time	<1s		
Trigger input			
Input level	TTL compatible		
Slope	Rising or falling, optional		
Pulse width	> 100 ns		
Input impedance	> 10kΩ, DC coupling		
	Frequency sweep: < 500µs, typical value		
Response time	Pulse train: < 500ns, typical value		
Trigger output			
Level	TTL compatible, access >1kΩW		
Pulse width	> 400ns, typical value		
Output impedance	50Ω, typical value		
Maximum frequency	1 MHz		
Sync output			
Level	TTL compatible		
Output impedance	50Ω, typical value		
Frequency meter			
Input level	TTL compatible (200mVpp ~ 9Vpp)		
Range of input			
frequency	100mHz~800MHz		
Trigger level	0~±2.5Vdc		
Accuracy	±51ppm		
Frequency resolution	7 bits/s		

High frequency	High frequency noise suppression is turned on or off			
suppression				
Adjustable trigger	0% ~ 100.0%			
sensitivity	0%~100.0%			
Coupled mode	DC, AC			
Interface				
Standard configuration	USB Host(maximum 32G), USB Device, LAN,			
	10MHz clock source input, 10MHz clock source output			
Power source				
Supply voltage	100~240VACrms, 45~440Hz, CAT II 300V			
Power consumption	Less than 50W			
Fuse	2A, level T, 250V			
Environment				
Tomporaturo rango	Operating: +10°C $\sim$ +40°C			
Temperature range	Non-operating: -20°C $\sim$ +60°C			
Cooling method	Forced fan cooling			
Humidity range	Below +35°C: ≤90% relative humidity			
	+35°C $\sim$ +40°C: ≤60% relative humidity			
Altitudo	Operating below 3,000m			
Altitude	Non-operating below 15,000m			
Mechanical specificatio	n			
Dimensions	Width		336 mm	
	Height		174 mm	
	Depth		112 mm	
Weight	Excluding package		3.5 Kg	
IP protection				
Protection level	IP2X			

Model	AWG series (dual channel)	
	Mains power lead for country supplied	
	USB data line	
Standard configuration	Two BNC cables (1m)	
	CD for users	
	LAN port	
Optional components	Digital interface, digital cable	

# Appendix C: List of Accessories

### **Appendix D: Maintenance and Cleaning**

#### Cleaning

- Clean the meter with a clean, soft cloth.
- Do not use any chemicals, abrasives or solvents that could damage the meter.
- Take great care when cleaning the screen to avoid scratches and use only a damp cloth to remove dirt.

**Warning:** please confirm that the instrument is completely dry before powering on to prevent electrical short circuit and even personal injury due to moisture.

# INFORMATION ON WASTE DISPOSAL FOR CONSUMERS OF ELECTRICAL & ELECTRONIC EQUIPMENT.



When this product has reached the end of its life it must be treated as Waste Electrical & Electronics Equipment (WEEE). Any WEEE marked products must not be mixed with general household waste, but kept separate for the treatment, recovery and recycling of the materials used. Contact your local authority for details of recycling schemes in your area.

Made in China http://uk.farnell.com Man Rev 1.0