11

PRODUCT SPECIFICATION

PS-7411

Rev. A1

ORIGINAL

Title: USB3.0 Connector Product Specification

Part Number: GSB3 series

Description: A type, Receptacle, Thru hole, PCB mount

Revisions Control

Rev.	ECN Number	Originator	Approval	Issue Date
F	NE-15055	Sondra Sang	Hank Hsu	05. 07. 2015
A1	NE-17063	Sondra Sang	Hank Hsu	04. 14. 2017
				AMPHENO,
	1	ı		PDF P

Product Specification Origination

Originator:	Date:	Checked by:	Date:	Approved by:	Date:
Sondra Sang	4/14/2017	Chenny Yeh	4/14/2017	Hank Hsu	4/14/2017

This document is the property of Amphenol Corporation and is delivered on the express condition that it is not to be disclosed, reproduced or used, in whole or in part, for manufacture or sale by anyone other than Amphenol Corporation without its prior consent, and that no right is granted to disclose or to use any information in this document.

of

PRODUCT SPECIFICATION

PS-7411

Rev. A1

1. Scope

This document defines the detailed requirements for the Amphenol USB3.0 Series A type connector to insure functionality and reliability.

2. Applicable document

2.1 EIA-364 Standard Test methods for electrical connectors

2.2 UL-STD-94 Tests for flammability of plastic materials for parts in devices

and appliances.

2.3 USB3.0 Standard Universal Serial Bus 3.0 Specification, Revision 1.0

3. Requirement

3.1 Design and construction

Product shall be of the design, construction and physical dimensions specified on the applicable product drawing.

3.2 Material and finish

- 3.2.1 Housing
 - High temperature thermoplastic, UL94V-0
 - Color: Blue
- 3.2.2 Contact
 - Copper Alloy
 - Contact area: Selective Gold plating
 - Solder area: Gold flash or matte tin plating
 - Under-plating: Nickel overall
- 3.2.3 Shell
 - Copper Alloy or Stainless steel
 - Solder area: Matte tin plating
 - Under-plating: Nickel overall

3.3 Rating

Voltage rating: 30 VAC

Operating temperature: -40°C~ 85°C

Storage temperature: -20°C~ 85°C

Ambient humidity: 85% R.H. maximum

Sheet 3

11

PRODUCT SPECIFICATION

PS-7411

Rev. A1

4. Performance and testing

4.1 Test requirements and procedures summary

Test	Test procedure	Condition of	Test criteria
		test specimens	
Visual & Dimensional inspection	EIA-364-18 Visual, dimensional and functional inspection.		Must meet the minimum requirements specified by product drawing.
Electrical:			
Low level contact resistance	EIA-364-23b Current: 100 mA maximum Voltage: 20 mV maximum	Mated	Initial: 30 Milliohm maximum for VBUS and GND contacts(Pin 1 & Pin 5) 50 milliohms maximum for all other contacts After test: ΔR=10 milliohms maximum
Insulation resistance	EIA-364-21 Apply a voltage between adjacent terminals. Voltage: 500 VDC	Mated	100 Megohm minimum
Dielectric withstanding voltage	EIA-364-20 Apply a voltage between adjacent terminals. Voltage: 100 VAC Duration: 1 minute	Mated	No breakdown Current leakage < 0.5 mA
Contact capacitance	EIA-364-30 Test between adjacent contact, unmated connector at 1KHz.		2pF maximum per contact. D+/D- contacts only
Propagation delay	EIA-364-103 The purpose of the test is to verify the end-to-end propagation of the D+/D- lines of the cable assembly 16ns maximum for cable assembly attached with one or two Micro connectors and 26ns maximum for a cable assembly attached with no Micro connector.	Mated	200ps rise time. D+/D- lines only.
Propagation delay intra-pair skew	EIA-364-103 The test ensures that the signal on both the D+ and D- lines of cable assembly arrive at the receiver at the same time.	Mated	Test condition: 200ps rise time. D+/D- lines:.100ps maximum.

Sheet

L

of

11

PRODUCT SPECIFICATION

PS-7411

Rev. A1

This test ensure the D+/D- pair of a cable assembly can provide adequate signal strength to the receiver in order to maintain a low error rate. Contact current rating EIA-364-70 Measure the temperature rise at the rated current. Ambient temperature: 25°C 1.8A for VBUS & GND(Pin 1 & Pin 5) 0.25A for all other contacts Super Speed Electrical Requirements: Mated connection impedance Differential insertion loss of SS pairs So SS pairs Differential insertion loss of a mated cable assembly must not exceed the differential insertion loss of inmeter the differential insertion loss limit. EIA-364-90 The differential pairs. Since the Tx pair is right next to the Rx pair for super speed. BIA-364-90 The differential pairs. Since the Tx pair is right next to the Rx pair for super speed. BIA-364-90 The differential crosstalk near-end crosstalk pairs. Since the Tx pair is right next to the Rx pair for super speed.	D+/D- pair	EIA-634-101	Mated	-0.67dB max. @12 MHz
of a cable assembly can provide adequate signal strength to the receiver in order to maintain a low error rate. Contact current rating ElA-364-70 Measure the temperature rise at the rated current. Ambient temperature: 25°C 1.8A for VBUS & GND(Pin 1 & Pin 5) 0.25A for all other contacts Super Speed Electrical Requirements: Mated connection impedance Differential insertion loss of SS pairs ElA-364-101 The measured differential mold using a 50ps(20-80%)rise time. Differential insertion loss of a mated cable assembly must not exceed the differential insertion loss imit. Differential pairs. Since the differential insertion loss limit. ElA-364-90 The differential constalk between Super Speed Pairs ElA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated ### Auted ### Au	-		Matcu	_
provide adequate signal strength to the receiver in order to maintain a low error rate.	atteridation			
Strength to the receiver in order to maintain a low error rate.		•		_
to maintain a low error rate. Contact current rating EIA-364-70 Measure the temperature rise at the rated current. Ambient temperature: 25°C 1.8A for VBUS & GND(Pin 1 & Pin 5) 0.25A for all other contacts Super Speed Electrical Requirements: Mated connection impedance It should be measured with a TDR in a differential mold using a 50ps(20-80%)rise time. Differential insertion loss of a mated cable assembly must not exceed the differential insertion loss imit. EIA-364-101 The measured differential insertion loss is a mated cable assembly must not exceed the differential insertion loss limit. Differential ear-end crosstalk between Super Speed Pairs Differential ear-end crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential insertion loss, SDD12, measures the differential insertion loss, SDD12, measures the differential insertion loss limit. Mated The differential insertion loss limit. Mated The differential insertion loss limit insertion loss limit. Mated The differential insertion loss limit. The differential insertion loss limit. Mated The differential insertion loss limit. The differential insertion loss limit which is normalized with 90-0-ddifferential impedance and defined by the following vertices: (100MHz,-1.5dB), (1.25GHz,-5.0dB), (2.5GHz,-5.0dB), (2.		,		_
EIA-364-70 Measure the temperature rise at the rated current. Ambient temperature: 25°C 1.8A for VBUS & GND(Pin 1 & Pin 5) 0.25A for all other contacts Super Speed Electrical Requirements: Mated connection impedance It should be measured with a TDR in a differential mold using a 50ps(20-80%) rise time. EIA-364-101 The measured differential insertion loss of a mated cable assembly must not exceed the differential insertion loss of a mated cable assembly Figure 5.1.1 show the differential insertion loss limit. White the differential insertion loss of a mated cable assembly Figure 5.1.1 show the differential insertion loss limit which is normalized with 90-Qdifferential impedance and defined by the following vertices: (100MHz,-1.5dB), (1.256Hz,-5dB), (2.5GHz,-7.5dB), and (7.5GHz,-25dB). (2.5GHz,-7.5dB), and (7.5GHz,-25dB). (2.5GHz,-7.5dB), and (7.5GHz,-25dB). (3.5GHz,-7.5dB), and (7.5GHz,-25dB). (3.5GHz,-7.5dB), and (7.5GHz,-7.5dB),		_		_
Measure the temperature rise at the rated current. Ambient temperature: 25°C 1.8A for VBUS & GND(Pin 1 & Pin 5) 0.25A for all other contacts Mated connection impedance It should be measured with a TDR in a differential mold using a 50ps(20-80%) rise time. Differential insertion loss of SS pairs EIA-364-101 The measured differential insertion loss of a mated cable assembly must not exceed the differential insertion loss limit. Mated The differential insertion loss of a mated cable assembly must not exceed the differential insertion loss limit. South the mated cable assembly Figure 5.1.1 Show the differential insertion loss limit. South the mated cable assembly Figure 5.1.1 Show the differential insertion loss limit. South the mated cable assembly Figure 5.1.1 Show the differential insertion loss limit. South the mated cable assembly Figure 5.1.1 Show the differential insertion loss limit. South the mated cable assembly Figure 5.1.1 Show the differential insertion loss limit. South the mated cable assembly Figure 5.1.1 Show the differential insertion loss limit. South the mated cable assembly Figure 5.1.1 Show the differential insertion loss limit. South the differential insertion loss limit. South the mated cable assembly Figure 5.1.1 Show the differential insertion loss limit. South the figure 5.1.1 Show the differential insertion loss limit. South the figure 5.1.2 South the figure 5.				
at the rated current. Ambient temperature: 25°C 1.8A for VBUS & GND(Pin 1 & Pin 5) 0.25A for all other contacts Mated connection impedance It should be measured with a TDR in a differential mold using a 50ps(20-80%)rise time. Differential insertion loss of SS pairs EIA-364-101 The measured differential insertion loss of a mated cable assembly must not exceed the differential insertion loss limit. Differential insertion loss of a mated cable assembly must not exceed the differential insertion loss limit. Mated The differential insertion loss in the mated cable assembly Figure 5.1.1 show the differential insertion loss limit. Wated Special Policy (100MHz,-1.5dB), (1.25GHz,-5.0dB), (2.5GHz,-5.0dB), (2.5GHz,			Mated	ΔT=30℃ maximum
Ambient temperature: 25°C 1.8 λ for VBUS & GND(Pin 1 & Pin 5) 0.25A for all other contacts	rating			
1.8A for VBUS & GND(Pin 1 & Pin 5) 0.25A for all other contacts				
Pin 5 0.25A for all other contacts		Ambient temperature: 25°C		
Pin 5 0.25A for all other contacts		1.8A for VBUS & GND(Pin 1 &		
Mated connection impedance It should be measured with a TDR in a differential mold using a 50ps(20-80%)rise time. Mated 90Ω±15Ω (85Ω~~105Ω)		Pin 5)		
Mated connection impedance It should be measured with a TDR in a differential mold using a 50ps(20-80%)rise time. Mated 90Ω±15Ω (85Ω~~105Ω)		0.25A for all other contacts		
Mated connection impedance It should be measured with a TDR in a differential mold using a 50ps(20-80%)rise time. Mated 90Ω±15Ω (85Ω~~105Ω) Differential insertion loss of SS pairs EIA-364-101 The measured differential insertion loss of a mated cable assembly must not exceed the differential insertion loss limit. Mated The differential insertion loss, SDD12, measures the differential signal energy transmitted through the mated cable assembly Figure 5.1.1 show the differential insertion loss limit. which is normalized with 90-Ωdifferential insertion loss limit. which is normalized with 90-Ωdifferential insertion loss limit. which is normalized with 90-Ωdifferential mipedance and defined by the following vertices: (100MHz,-1.5dB), (1.25GHz,-5.0dB), (2.5GHz,-7.5dB), and (7.5GHz,-25dB). Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,	Super Speed Electr			
TDR in a differential mold using a 50ps(20-80%)rise time.			Mated	000+150 (850~~1050)
Using a 50ps(20-80%)rise time.			ivialed	902211322 (0322 ** 10322)
Differential insertion Insertion Insertion EIA-364-101 Mated The differential insertion loss, SDD12, measures the differential signal energy transmitted through the mated cable assembly must not exceed the differential insertion loss limit. Differential insertion loss of a mated cable assembly must not exceed the differential insertion loss limit. Water of the differential energy transmitted through the mated cable assembly Figure 5.1.1 show the differential insertion loss limit. which is normalized with 90-Ωdifferential insertion loss limit. which is normalized with 90-Ωdifferential insertion loss limit. Which is normalized with 90-Ωdifferential insertion loss limit. The differential insertion loss limit. Differential EIA-364-90 Mated The differential crosstalk measures the unwanted coupling between differential pairs. Since the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,	impedance			
Differential insertion In				
insertion The measured differential insertion loss of a mated cable assembly must not exceed the differential insertion loss limit. loss, SDD12, measures the differential signal energy transmitted through the mated cable assembly Figure 5.1.1 show the differential insertion loss limit. which is normalized with 90-Ωdifferential impedance and defined by the following vertices: (100MHz,-1.5dB), (1.25GHz,-5.0dB), (2.5GHz-7.5dB), and (7.5GHz,-25dB). Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,	Differential		Motod	The differential incoming
insertion loss of a mated cable assembly must not exceed the differential insertion loss limit. In the differential signal energy transmitted through the mated cable assembly Figure 5.1.1 show the differential insertion loss limit. which is normalized with 90-Ωdifferential insertion loss limit. Differential paration loss of a mated cable assembly Figure 5.1.1 show the differential insertion loss limit. Bilanding in the differential insertion loss limit. Which is normalized with 90-Ωdifferential energy transmitted through the normalized with 90-Ωdifferential insertion loss limit. Which is normalized with 90-Ωdifferential energy transmitted through the normalized with 90-Ωdifferential insertion loss limit. Which is normalized with 90-Ωdifferential insertion loss limits in produced with 90-Ωdifferent			ivialed	
assembly must not exceed the differential insertion loss limit. assembly must not exceed the differential insertion loss limit. between Super Speed Pairs EIA-364-90 The differential crosstalk between Super Speed loupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. BIA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. BIA-364-90 The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,				
differential insertion loss limit. differential insertion loss limit. by through the mated cable assembly Figure 5.1.1 show the differential insertion loss limit, which is normalized with 90-Ωdifferential impedance and defined by the following vertices: (100MHz,-1.5dB), (1.25GHz,-5.0dB), (2.5GHz,-5.0dB), (2.5GHz,-25dB). Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,	loss of SS pairs			
assembly Figure 5.1.1 show the differential insertion loss limit. which is normalized with 90-Ωdifferential impedance and defined by the following vertices: (100MHz,-1.5dB), (1.25GHz,-5.0dB), (2.5GHz,-5.0dB), (2.5GHz,-5.0dB), (2.5GHz,-2.5dB). Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,				0,
Show the differential insertion loss limit. which is normalized with 90-Ωdifferential impedance and defined by the following vertices: (100MHz,-1.5dB), (1.25GHz,-5.0dB), (2.5GHz,-5.0dB), (2.5GHz,-5.0dB), (2.5GHz,-25dB). Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,		differential insertion loss limit.		
insertion loss limit. which is normalized with 90-Ωdifferential impedance and defined by the following vertices: (100MHz,-1.5dB), (1.25GHz,-5.0dB), (2.5GHz,-7.5dB), and (7.5GHz,-25dB). Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,				
is normalized with 90-Ωdifferential impedance and defined by the following vertices: (100MHz,-1.5dB), (1.25GHz,-5.0dB), (2.5GHz,-5.0dB), (2.5GHz,-25dB). Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Bia-364-90 The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,				show the differential
90-Ωdifferential impedance and defined by the following vertices: (100MHz,-1.5dB), (1.25GHz,-5.0dB), (2.5GHz,-5.0dB), (2.5GHz,-2.5dB). Differential near-end crosstalk between Super Speed Pairs				insertion loss limit. which
impedance and defined by the following vertices: (100MHz,-1.5dB), (1.25GHz,-5.0dB), (2.5GHz,-7.5dB), and (7.5GHz,-25dB). Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,				is normalized with
by the following vertices: (100MHz,-1.5dB), (1.25GHz,-5.0dB), (2.5GHz,-5.0dB), (2.5GHz,-25dB). Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,				90-Ωdifferential
by the following vertices: (100MHz,-1.5dB), (1.25GHz,-5.0dB), (2.5GHz,-5.0dB), (2.5GHz,-25dB). Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,				impedance and defined
Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,				· ·
Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,				
Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,				
Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,				
Differential near-end crosstalk between Super Speed Pairs EIA-364-90 The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. Mated The differential crosstalk measure the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a 90-Ω differential impedance,				
near-end crosstalk between Super Speed Pairs The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a $90-\Omega$ differential impedance,	Differential	FIΔ-364-90	Mated	, , , , , , , , , , , , , , , , , , , ,
between Super Speed Pairs measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed.			Maleu	
Speed Pairs coupling between differential pairs. Since the Tx pair is right next to the Rx pair for super speed. differential pairs. Since the Tx pair is right next to the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure $5.1.2$ referencing to a $90-\Omega$ differential impedance,				
pairs. Since the Tx pair is right next to the Rx pair for super speed.	•			
next to the Rx pair for super speed. the Rx pair for Super Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a $90-\Omega$ differential impedance,	Speed Pairs			
speed. Speed, only the differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a $90-\Omega$ differential impedance,		,		
differential near-end crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a $90-\Omega$ differential impedance,		· · · · · · · · · · · · · · · · · · ·		
crosstalk (DDNEXT) is specified, as shown in Figure 5.1.2 referencing to a $90-\Omega$ differential impedance,		speed.		
specified, as shown in Figure 5.1.2 referencing to a 90- Ω differential impedance,				
Figure 5.1.2 referencing to a 90- Ω differential impedance,				
referencing to a 90- Ω differential impedance,				
differential impedance,				
differential impedance,				referencing to a 90-Ω
i i i i i i i i i i i i i i i i i i i				The mated cable

Sheet 5

of

11

PRODUCT SPECIFICATION

PS-7411

Rev. A1

			assembly meets the DDNEXT requirement if its DDENXT does not exceed the limit shown in Figure 5.1.2; the vertices that defines the DDNEXT limits are: (100MHz,-32dB), (2.5GHz,-32dB), (3GHz;-23dB) and (7.5GHz,-23dB)
Differential crosstalk between D+/D- (USB2.0) and Super Speed Pairs (USB3.0)	EIA-364-90 The differential near-end and far-end crosstalk between the D+/D- pairs and the SuperSpeed pairs.	Mated	The differential near-end and far-end crosstalk between the USB2.0 pairs (D+/D-) and the USB3.0 pairs (SSTX+/SSTX-or SSRX+/SSRX-) shall be managed not exceed the limits shown in Figure 5.1.3; the vertices that defines the DNETX and DDFEXT limits are: (100MHz,-12dB),(2.5GHz,-21dB),(3.0GHz,-15dB) and (7.5GHz,-15dB). The reference differential impedance shall de 90Ω
Differential-to-common-mode conversion Mechanical:	This is a differential mode to common mode conversion requirement for SS signal pairs	Mated	Since the common mode current is directly responsible for EMI, limiting the differential -to-common- mode conversion. SCD12. will limit EMI generation within the connector and cable assembly. Figure 5.1.4 illustrates the SCD12 requirement; a mated cable assembly passes the SCD12 requirement if its SCD12 is less than or equal to -20dB across the frequency range shown in Figure 5.1.4 -20dB max Up to 7.5GHz

Sheet

6

11

PRODUCT SPECIFICATION

PS-7411

Rev. A1

of

Insertion force	EIA-364-13 Rate: 12.5 mm/minute		35 N maximum
Extraction force	EIA-364-13 Rate: 12.5 mm/minute		Initial: 10N min After test: 8N min.
Connector insert force (into PCB)	Connector have to insert into PCB as perpendicular as possible.		3 Kg maximum
Durability (preconditioning)	EIA-364-09 (perform 5 unplug/plug cycles if the application requires up to 25 over the life of the connector or socket; 20 cycles if the application requires 26-200; or, 50 cycles if the application requires 201 or greater)		No evidence of physical damage
Reseating	Manually unplug/plug the connector or socket. Perform 3 such cycles.		No evidence of physical damage
Durability	EIA-364-09 Cycle rate: 500 maximum per hour Number of cycles: 5,000 minimum		No evidence of physical damage - Insertion force (35N max.) - Extraction force (8N min.)
Vibration	EIA-364-28, Test condition VII, Test letter D 15 minutes in each of 3 mutually perpendicular directions. Overall rms: 3.10 g Electrical load: 100 milliamp maximum	Mated	No evidence of physical damage No discontinuities > 1 microsecond
Mechanical Shock	EIA-364-28, Test condition H 3 shocks in each direction shall be applied along the 3 mutually perpendicular axes of the test specimen(18 shocks). Shock pulse: Half-sine Peak acceleration: 294m/s², 30g's Normal duration: 11ms Electrical load: 100 milliamp	Mated	No evidence of physical damage No discontinuities > 1 microsecond

Sheet

7

f

11

PRODUCT SPECIFICATION

PS-7411

Rev. A1

	maximum		
Environmental:			
Temperature life (preconditioning)	EIA-364-17, Test condition 4, Method A Temperature: 105°C Duration: 72 hours	Mated	No evidence of physical damage
Temperature life	EIA-364-17, Test condition 4, Method A Temperature: 105°C Duration: 120 hours	Mated	No evidence of physical damage
Cyclic temp and humidity	EIA-364-31, Test condition A, Method III Number of cycles: 24 cycles Duration: 168 hours	Mated	No evidence of physical damage
Thermal shock	EIA-364-32, test condition I Number of cycles: 10 <1 cycle> Step1: -55 +0/-3 °C 30 minutes Step2: +25 +10/-5 °C 5 minutes maximum Step3: +85 +3/-0 °C 30 minutes Step4: +25 +10/-5 °C 5 minutes maximum	Mated	No evidence of physical damage
Thermal cycling	EIA-364-110 Cycle the connector or socket between 15 °C ± 3°C. and 85 °C ± 3 °C, as measured on the part. Ramps should be a minimum of 2 °C per minute, and dwell times should insure that the contacts reach the temperature extremes (a minimum of 5 minutes). Humidity is not controlled. Number of cycles: 500 cycles	Mated	No evidence of physical damage
Thermal disturbance	EIA-364-32 Cycle the connector or socket between 15 °C ± 3 °C and 85 °C ± 3 °C, as measured on the part. Ramps should be a minimum of 2 °C per minute, and dwell times should insure that the contacts reach the	Mated	No evidence of physical damage

Sheet

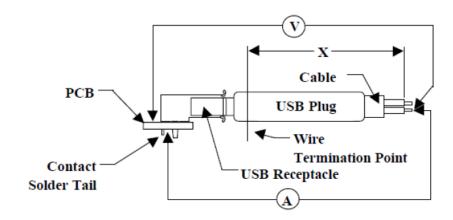
.

11

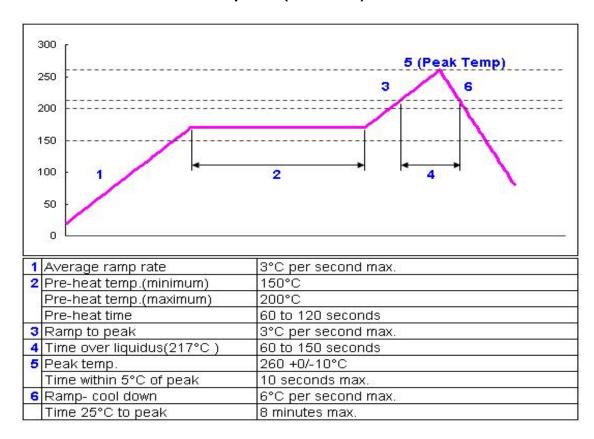
PRODUCT SPECIFICATION

PS-7411

 $\hbox{Rev.} \ A1$


	temperature extremes (a minimum of 5 minutes). Humidity is not controlled. Number of cycles: 10 cycles		
Mixed flowing gas (MFG)	EIA-364-65, class IIA RH: 70±2% Temperature: 30±1°C Cl ₂ : 10±3 ppb NO ₂ : 200±50 ppb H ₂ S: 10±5 ppb SO2: 100±20 ppb Duration: 7 days		No evidence of physical damage
Solderability	EIA-364-52 The surfaces to be tested shall be immersed in the flux for a minimum of 5 to 10 seconds. Any droplets of flux that may form shall be removed by blotting, taking care not to remove the flux coating from the surfaces to be tested. The test samples being tested shall be allowed to dry in ambient air for 5 to 20 seconds prior to solder immersion. The test sample termination shall be immersed to a depth equal to a length from its tip to a location normally not less than 0.5 mm below the connector seating plane. Temperature: 255±5°C Duration: 5 seconds	Unmated	95% of immersed area must show no volids or pin holes.
Resistance to soldering heat (Infrared reflow)	EIA-364-29 Average ramp rate: 1~4°C per second Temperature(board surface): 250 +10°C/-0°C Duration:30~35 seconds	Unmated	No evidence of physical damage

PRODUCT SPECIFICATION


PS-7411

Rev. A1

4.2 Typical contact resistance measurement

4.3 Recommended IR reflow profile(Lead-free)

PRODUCT SPECIFICATION

PS-7411

 $\hbox{Rev.} \ A1$

5.0 Test sequence

Test or					Test groups					
examination	A-1	A-2	A-3	A-4	A-5	A-7	B-2	B-3	B-4	B-5
Low level contact	1,4,6	1,4,6,8	1,4,7	1,4,6,8	1,4,6,8	2,8				
resistance	, ,	, , ,	, ,	,10	, , ,	,				
Insulation resistance							2			
Dielectric withstanding						1,9				
voltage										
Contact current rating										
Contact Capacitance							1			
D+/D- pair attenuation									1	
Propagation delay									2	
Propagation delay									3	
intra-pair skew										
Mated connection						10			4	
impedance										
Differential insertion									5	
loss of SS pairs									0	
Differential-to-									6	
common-mode conversion										
Differential near-end									7	
crosstalk									,	
between Super Speed										
Pairs										
Differential crosstalk									8	
between										
D+/D- (USB2.0)										
and Super Speed										
Pairs (USB3.0) Insertion force						2.6				
						3,6				
Extraction force	0			-	0	4,7				
Durability	2	2	2	2	2					
(preconditioning) Reseating	5	7		9	7					
Durability	J	'		3	1	5				
Vibration			F			<u> </u>				
			5	-			-			
Mechanical Shock			6							
Temperature life			3	3	3					
(preconditioning)										
Temperature life	3									
Cyclic temp and		5								
humidity										
Thermal shock		3								

Rev. A1

11

PRODUCT SPECIFICATION

D	7	7 4	1	1
P:	\ -	74	1	

Test or	Test groups									
examination	A-1	A-2	A-3	A-4	A-5	A-7	B-2	B-3	B-4	B-5
Thermal cycling					5					
Thermal disturbance				7						
Mixed flowing gas (MFG)				5						
Solderability								1		
Resistance to soldering heat (Infrared reflow)										
General examination	7	9	8	11	9	11	3	2		
Critical dimensions										1
Plating thickness										2

Note:

1. Test specimen:

Test group A1~A7: 10 pcs/group

All other groups: **B-2:** 3 pcs; **B-3:** 5 pcs; **B-4:** 3 pcs; **B-5:** 3 pcs;

2. Test specimen shall be sure to meet the drawing before the testing.