# 

## Description

The IDT P9221-R-EVK Mass-Market (MM) Evaluation Board demonstrates the features and performance of the P9221-R 15W Wireless Power Receiver (Rx). The P9221-R-EVK offers the flexibility to program parameters, such as the output voltage, overcurrent limit threshold, and external temperature sensing function. It also allows tuning the Foreign Object Detection (FOD) feature by varying values in the resistor divider connected to the VOSET/ Q-Fact pin.

The P9221-R-EVK MM Evaluation Board is designed to function as the receiver in a wireless power transfer system using IDT's P9242-R-EVK MM Evaluation Board as the power transmitter. The P9242-R-EVK is ordered separately. The P9221-R-EVK can also be used with the user's WPC-1.2 compliant transmitter.

The high-efficiency, turnkey reference design is supported by comprehensive online, digital resources to significantly expedite design-in effort and enable rapid prototyping. The printed circuit board (PCB) has four layers. The total active area is optimized to 28mm x 15mm.

## Features

- P9221-R-EVK MM Evaluation Board supports WPC-1.2
- Up to 15W output power
- Selectable output voltage: 12V or 9V
- Adjustable over-current limit
- External FOD tuning
- Power transfer LED indicator
- Alignment guide information using the PCB coils
- 4-layer PCB
- Total active area: 420mm<sup>2</sup>
- Fully assembled with test points and coil fixture

#### **P9221-R-EVK MM Evaluation Board**



## **Kit Contents**

P9221-R-EVK Mass-Market Evaluation Board

## Wireless Power Transfer System using the P9221-R-EVK and P9242-R-EVK



P9242-R-EVK MM Evaluation Board (Transmitter)

#### **Important Notes**

#### **Disclaimer**

Integrated Device Technology, Inc. and its affiliated companies (herein referred to as "IDT") shall not be liable for any damages arising out of defects resulting from

- (i) delivered hardware or software
- (ii) non-observance of instructions contained in this manual and in any other documentation provided to user, or
- (iii) misuse, abuse, use under abnormal conditions, or alteration by anyone other than IDT.

TO THE EXTENT PERMITTED BY LAW, IDT HEREBY EXPRESSLY DISCLAIMS AND USER EXPRESSLY WAIVES ANY AND ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE, STATUTORY WARRANTY OF NON-INFRINGEMENT, AND ANY OTHER WARRANTY THAT MAY ARISE BY REASON OF USAGE OF TRADE, CUSTOM, OR COURSE OF DEALING.

#### **Restrictions in Use**

IDT's P9221-R-EVK Mass Market Evaluation Board is designed for evaluation purposes only. It must not be used for module production or production test setups.

## Contents

| 1. | Setup                                                                          | 4  |  |  |  |  |  |
|----|--------------------------------------------------------------------------------|----|--|--|--|--|--|
|    | 1.1 Required or Recommended User Equipment                                     | 4  |  |  |  |  |  |
|    | 1.2 Kit Hardware Connections                                                   | 4  |  |  |  |  |  |
| 2. | Usage Guide                                                                    | 5  |  |  |  |  |  |
|    | 2.1 Overview of the P9221-R-EVK                                                | 5  |  |  |  |  |  |
|    | 2.2 Setting the Output Voltage and Reference Q-factor Value – VOSET/Q-Fact Pin | 6  |  |  |  |  |  |
|    | 2.3 Alignment Aid – ALIGNX and ALIGNY                                          | 7  |  |  |  |  |  |
|    | 2.4 Adjustment of Over-Current Limit                                           | 8  |  |  |  |  |  |
|    | 2.5 External Temperature Sensing and End of Charge – TS/EOC                    | 9  |  |  |  |  |  |
|    | 2.6 Receiver Coil                                                              | 10 |  |  |  |  |  |
| 3. | P9221-R-EVK MM Evaluation Board Schematics                                     | 11 |  |  |  |  |  |
| 4. | Bill of Materials (BOM)1                                                       |    |  |  |  |  |  |
| 5. | Board Layout                                                                   |    |  |  |  |  |  |
| 6. | Ordering Information                                                           | 17 |  |  |  |  |  |
| 7. | Revision History                                                               | 17 |  |  |  |  |  |

## **List of Figures**

| Figure 1.  | Evaluation Kit Setup using the P9242-R-EVK MM Evaluation Board as the Transmitter | 4  |
|------------|-----------------------------------------------------------------------------------|----|
| Figure 2.  | P9221-R-EVK MM Evaluation Board V2.2 Features                                     | 5  |
| Figure 3.  | R33 and R34 Locations                                                             | 6  |
| Figure 4.  | Recommended Structure of the X-Y Alignment Coil                                   | 7  |
| Figure 5.  | R38 and R22 Location                                                              | 8  |
| Figure 6.  | Over-Current Limit vs. ILIM Pin Voltage                                           | 9  |
| Figure 7.  | Optional External Temperature Sensing by Connecting an RTS Thermistor             | 10 |
| Figure 8.  | Silkscreen – Top of Board                                                         | 14 |
| Figure 9.  | Silkscreen – Bottom of Board                                                      | 14 |
| Figure 10. | Top Copper Layer                                                                  | 15 |
| Figure 11. | L2 Copper Layer                                                                   | 15 |
| Figure 12. | L3 Copper Layer                                                                   | 16 |
| Figure 13. | Bottom Copper Layer                                                               | 16 |

## **List of Tables**

| Setting the Output Voltage and Reference Q-factor Value | 6                                                                                                                                                                     |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Setting the Over-Current Limit                          | 8                                                                                                                                                                     |
| Recommend Coil Manufacturers                            | 10                                                                                                                                                                    |
| P9221-R-EVK MM Evaluation Board BOM V2.2                | 12                                                                                                                                                                    |
|                                                         | Setting the Output Voltage and Reference Q-factor Value<br>Setting the Over-Current Limit<br>Recommend Coil Manufacturers<br>P9221-R-EVK MM Evaluation Board BOM V2.2 |

## 1. Setup

## **1.1 Required or Recommended User Equipment**

The following additional lab equipment is required for using the kit:

- P9242-R-EVK MM Evaluation Board or any WPC-1.2 compliant transmitter
- Power supply or 12V/2A AC adaptor

### **1.2 Kit Hardware Connections**

Follow these procedures to set up the kit as shown in Figure 1:

- 1. Set up the P9242-R-EVK Evaluation Board (or user transmitter) according to the board's user manual.
- 2. Place the P9221-R-EVK on the transmitter (TX) pad with the components facing up as shown in Figure 1.
- 3. Verify that the green LEDs on both boards are illuminated indicating that coupling has been established.
- 4. Connect wires to the VOUT and GND test points to measure the output voltage and apply a load.

#### Figure 1. Evaluation Kit Setup using the P9242-R-EVK MM Evaluation Board as the Transmitter



## 2. Usage Guide

#### 2.1 Overview of the P9221-R-EVK

#### Figure 2. P9221-R-EVK MM Evaluation Board V2.2 Features



#### 2.2 Setting the Output Voltage and Reference Q-factor Value – VOSET/Q-Fact Pin

The output voltage on the P9221-R is programmed by connecting the center tap of the divider network comprising external resistors R34 and R33 to the VOSET/Q-Fact pin as shown in the schematic in section 3. The output voltage can be set to 9V or 12V. The recommended settings for R33 and R34 are given in Table 1.

The default output voltage is set to 12V on the P9221-R-EVK MM Evaluation Board (R34 =  $10k\Omega$ ; R33 = open). For applications where the transmitter is capable of delivering only 5W, the P9221-R will automatically switch to 5V output to ensure 5W power delivery. The 5W option can be disabled by changing R33 as described in Table 1. In this case, if the receiver is placed on a 5W transmitter, the receiver output pin will be high impedance.

The VOSET/Q-Fact pin also allows setting the Q-factor value by adjusting R34 and R33 as shown in Table 1. The default value is set to 103 on the P9221-R-EVK MM Evaluation Board. For development purposes, the Q-factor should be set to 20 to avoid prematurely triggering the Q-factor.

#### Table 1. Setting the Output Voltage and Reference Q-factor Value

|               | VOUT Setting (R34/R33 Values) |        |            |         |                |        |             |        |  |
|---------------|-------------------------------|--------|------------|---------|----------------|--------|-------------|--------|--|
| Q Factor      | 9V without 5V                 |        | 9V with 5V |         | 12V without 5V |        | 12V with 5V |        |  |
| Value Setting | R34                           | R33    | R34        | R33     | R34            | R33    | R34         | R33    |  |
| 103           | 10kΩ                          | 4.87kΩ | Open       | 10kΩ    | 10kΩ           | 21kΩ   | 10kΩ        | Open   |  |
| 80            | 10kΩ                          | 4.32kΩ | 10kΩ       | 0.31kΩ  | 10kΩ           | 22.6kΩ | 10kΩ        | 324kΩ  |  |
| 60            | 10kΩ                          | 3.65kΩ | 10kΩ       | 0.681kΩ | 10kΩ           | 27.4kΩ | 10kΩ        | 147kΩ  |  |
| 40            | 10kΩ                          | 3.09kΩ | 10kΩ       | 1.1kΩ   | 10kΩ           | 32.4kΩ | 10kΩ        | 90.9kΩ |  |
| 20            | 10kΩ                          | 2.55kΩ | 10kΩ       | 1.54kΩ  | 10kΩ           | 39.2kΩ | 10kΩ        | 64.9kΩ |  |

Note: The default values on the P9221-R-EVK are indicated with blue shading.

#### Figure 3. R33 and R34 Locations



## 2.3 Alignment Aid – ALIGNX and ALIGNY

The signal magnitude on the P9221-R's ALIGNX and ALIGNY pins provides directional alignment information by measuring the phase between the input power AC signal and the horizontal (ALIGNX) and vertical (ALIGNY) alignment signals. After the signal is measured by the analog-todigital converter, the alignment information is represented by two 8-bit signed numbers, which can be read via the I2C interface from the *Align\_X* and *Align\_Y* registers (see the *P9221-R Datasheet*).

The difference in the electromotive force (EMF) voltage of the two coils can be represented by the amount of magnetic flux, which depends on the misalignment position of the receiver coil relative to the transmitter coil. With the combination of two symmetrical coils on the vertical (Y) axis and horizontal (X) axis, it is possible to sense alignment in two dimensions as shown in Figure 4. The trace length and width were designed with 452.12mm and 0.254mm respectively for each segment coil on the P9221-R-EVK MM Evaluation Board, which was assembled with the AMOTECH ASC-504060E00-S00 coil as shown in Figure 4.





## 2.4 Adjustment of Over-Current Limit

The P9221-R has a programmable current limit function for protecting the device in the event of an over-current or short-circuit fault condition. If the output current exceeds the programed threshold, the P9221-R will limit the load current by reducing the output voltage. The recommended current limit setting is 120% of the maximum output current. The default value for the over-current limit is set to 1.6A. The ILIM pin allows changing the over-current limit value without modification of the firmware by selecting the values of R38 and R22 as shown in Table 2. R38 and R22 form a divider network from the 1.8V supply to ground with the center tap connected to the ILIM pin as shown in the schematic in section 3. The voltage at the ILIM pin sets the over-current limit. See Figure 6 for the relationship between the current limit and the voltage on the ILIM pin.

#### Table 2. Setting the Over-Current Limit

| Voltage on ILIM Pin [V] | R38 [kΩ] | R22 [kΩ] | Maximum Output<br>Current [A] | Over-Current Limit [A] |
|-------------------------|----------|----------|-------------------------------|------------------------|
| Pull-up                 | 10       | Open     | 1.25                          | 1.6                    |
| 0.60                    | 10       | 5.1      | 0.80                          | 1                      |
| 0.45                    | 10       | 3.3      | 0.64                          | 0.8                    |
| 0.25                    | 10       | 1.6      | 0.40                          | 0.5                    |

Note: The default values on the P9221-R-EVK are indicated with blue shading.





#### © 2017 Integrated Device Technology, Inc.

## () IDT.



#### Figure 6. Over-Current Limit vs. ILIM Pin Voltage

## 2.5 External Temperature Sensing and End of Charge – TS/EOC

The P9221-R has a temperature sense input pin, TS, which can be used to monitor a remote temperature, such as a thermistor reading for a coil or a battery charger. The built-in comparator's reference voltage is 0.6V and 0.1V in the P9221-R, and it is used for monitoring the voltage level on the TS/EOC pin as described by Equation 1.

$$V_{TS} = V_{VDD18} * \frac{NTC}{R19 + NTC}$$
 Equation 1

Where NTC is the thermistor's resistance and R19 is the pull-up resistor connected to the 1.8V supply voltage on the P9221-R-EVK MM Evaluation Board. The over-temperature shutdown is triggered when the TS pin voltage is between 0.6V and 0.1V. The RTS is not populated on the P9221-R MM Evaluation Board.

When the TS/EOC pin is less than 0.1V, the End-of-Charge (EOC) function is activated, and the P9221-R will send the End-Power-Transfer (EPT) packet to the transmitter terminating the power delivery.



Figure 7. Optional External Temperature Sensing by Connecting an RTS Thermistor

## 2.6 Receiver Coil

The ASC-504060E00-S00 coil is used in the kit. The following alternative coils are recommended for the P9221-R receiver for 15W applications for optimum performance. The recommended vendor coils have been tested and verified as shown in Table 3.

| Output Power    | Output Power Vendor Part Number Ir |                   | Inductance at 100kHz | ACR at 20°C | Series Resonant Capacitance |
|-----------------|------------------------------------|-------------------|----------------------|-------------|-----------------------------|
| 15W             | AMOTECH                            | ASC-504060E00-S00 | 8.2µH                | 220mΩ       | 400nF                       |
| 15W             | TDK                                | WR424245-13K2-G   | 11.2µH               | 170mΩ       | 300nF                       |
| 15W             | SUNLORD                            | SWA50R40H06C02B   | 8.4µH                | 150mΩ       | 400nF                       |
| 15W WURTH 76030 |                                    | 760308102207      | 8.0µH                | 80mΩ        | 400nF                       |

Table 3. Recommend Coil Manufacturers



## 3. P9221-R-EVK MM Evaluation Board Schematics

() IDT.

## 4. Bill of Materials (BOM)

#### Table 4. P9221-R-EVK MM Evaluation Board BOM V2.2

| ltem | Reference                                                                                               | Quantity | Value            | Description                         | Part number         | PCB Footprint                 |  |
|------|---------------------------------------------------------------------------------------------------------|----------|------------------|-------------------------------------|---------------------|-------------------------------|--|
| 1    | AC2T, VDD5V,<br>VPP18, VOSET, TS,<br>SDA, SCL, RPO,<br>RPG, INT, ILIM,<br>GCOM, DEN, ALGY,<br>ALGX, /EN | 16       | PTH_TP           | Test Pad                            |                     | 10MIL_35PAD                   |  |
| 2    | AC2, LC                                                                                                 | 2        | NP               | TEST POINT                          |                     | test_pt_sm_135x70             |  |
| 3    | C1, C2, C3, C5                                                                                          | 4        | 100nF            | CAP CER 0.1µF 50V X5R 0402          | GRM155R61H104KE19D  | 0402                          |  |
| 4    | C6, C14                                                                                                 | 2        | 47nF             | CAP CER 0.047µF 50V X7R 0402        | C1005X7R1H473K050BB | 0402                          |  |
| 5    | C7, C15                                                                                                 | 2        | NP               | CAP CER 0.047µF 50V X7R 0402        | C1005X7R1H473K050BB | 0402                          |  |
| 6    | C8, C16                                                                                                 | 2        | 15nF             | CAP CER 0.015µF 50V X7R 0402        | GRM155R71H153KA12J  | 0402                          |  |
| 7    | C9                                                                                                      | 1        | 3.3nF            | CAP CER 3300PF 50V X7R 0402         | CL05B332KB5NNNC     | 0402                          |  |
| 8    | C10, C11, C21, C22,<br>C33                                                                              | 5        | 10µF             | CAP CER 10µF 25V X5R 0603           | CL10A106MA8NRNC     | 0603                          |  |
| 9    | C12                                                                                                     | 1        | NP               | CAP CER 10µF 25V X5R 0603           | CL10A106MA8NRNC     | 0603                          |  |
| 10   | C18,C20                                                                                                 | 2        | 1µF              | CAP CER 1µF 10V X5R 0402            | GRM155R61A105KE15D  | 0402                          |  |
| 11   | C19,C31                                                                                                 | 2        | 0.1µF            | CAP CER 0.1µF 10V X5R 0201          | C0603X5R1A104K030BC | 0201                          |  |
| 12   | C23                                                                                                     | 1        | 0.1µF            | CAP CER 0.1µF 25V X5R 0201          | CL03A104KA3NNNC     | 0201                          |  |
| 13   | C25                                                                                                     | 1        | NP               | CAP CER 0.1µF 10V X5R 0201          | C0603X5R1A104K030BC | 0201                          |  |
| 14   | D1                                                                                                      | 1        | LED              | LED GREEN CLEAR 0603 SMD            | 150 060 GS7 500 0   | 0603_diode                    |  |
| 15   | D6,D7                                                                                                   | 2        | 5.1V             | DIODE ZENER 5.1V 100MW 0201         | CZRZ5V1B-HF         | 0201                          |  |
| 16   | GND1, VRECT,<br>VOUT, VOSNS,<br>GND                                                                     | 5        | Test<br>Point    | TEST POINT PC MINIATURE SMT         | 5015 test_pt_sm_1   |                               |  |
| 17   | J1                                                                                                      | 1        | I <sup>2</sup> C | HEADER_1X5_0P1PITCH60P42D           | 68002-205HLF        | header_1x5_0p1Pit<br>ch60p42d |  |
| 18   | L1                                                                                                      | 1        | 8.2µH            | Wireless power receiver coil        | ASC-504060E00-S00   | sm_135x70                     |  |
| 19   | RTS                                                                                                     | 1        | NP               |                                     |                     | NTC2                          |  |
| 20   | R1, R13, R14                                                                                            | 3        | 5.1kΩ            | RES SMD 5.1K OHM 5% 1/16W<br>0402   | MCR01MRTJ512 0402   |                               |  |
| 21   | R2                                                                                                      | 1        | 36Ω              | RES SMD 36 OHM 5% 1/2W 0805         | ERJ-P06J360V        | 0805                          |  |
| 22   | R6                                                                                                      | 1        | NP               | RES SMD 0.00HM JUMPER               | ERJ-2GE0R00X        | 0402                          |  |
| 23   | R8                                                                                                      | 1        | 0Ω               | RES SMD 0.00HM JUMPER 1/10W<br>0402 | / ERJ-2GE0R00X 0402 |                               |  |
| 24   | R15, R16                                                                                                | 2        | 10KΩ             | RES SMD 10K OHM 1% 1/10W<br>0603    | RC0603FR-0710KL     | 0603                          |  |

| Item | Reference                                 | Quantity | Value   | Description                       | Part number        | PCB Footprint             |
|------|-------------------------------------------|----------|---------|-----------------------------------|--------------------|---------------------------|
| 25   | R17, R19, R23, R27,<br>R29, R34, R38, R39 | 8        | 10kΩ    | RES SMD 10K OHM 5% 1/16W<br>0402  | CRCW040210K0JNEDIF | 0402                      |
| 26   | R18, R22, R28, R30,<br>R33, R41, R42      | 7        | NP      | RES SMD 10K OHM 5% 1/16W<br>0402  | CRCW040210K0JNEDIF | 0402                      |
| 27   | R35                                       | 1        | 0Ω      | RES SMD 0.00HM 1/10W 0603         | MCR03EZPJ000       | 0603                      |
| 28   | U1                                        | 1        | P9221-R | MP Wireless power receiver        | P9221-R            | csp52_2p64x3p94_<br>0p4mm |
| 29   | U2                                        | 1        | NP      | IC EEPROM 128KBIT 400KHZ<br>8TDFN | 24AA128T-I/MNY     | TDFN08                    |

## 5. Board Layout





#### Figure 9. Silkscreen – Bottom of Board



Figure 10. Top Copper Layer



Figure 11. L2 Copper Layer



#### Figure 12. L3 Copper Layer



#### Figure 13. Bottom Copper Layer



## 6. Ordering Information

| Orderable Part Number | Description                     |
|-----------------------|---------------------------------|
| P9221-R-EVK           | P9221-R-EVK MM Evaluation Board |

### 7. Revision History

| Revision Date     | Description of Change                                                       |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|
| December 18, 2017 | <ul><li>Updates for V2.2 of the P9221-R-EVK.</li><li>Minor edits.</li></ul> |  |  |  |  |  |  |
| December 19, 2016 | Initial release of document.                                                |  |  |  |  |  |  |



Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 www.IDT.com

#### Sales

1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales

#### **Tech Support**

www.IDT.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of a ny kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit <u>www.idt.com/go/glossary</u>. All contents of this document are copyright of Integrated Device Technology, Inc. All rights reserved.