MAX77324 Evaluation Kit

General Description

The MAX77324 evaluation kit (EV kit) provides a proven design to evaluate a high-efficiency synchronous stepdown DC-DC converter with integrated MOSFETs that operate over a 2.5V to 4.8V input voltage range, 0.6V to 2V output voltage range, and supports up to 1.5A of load current. The device automatically transitions between PWM and SKIP modes of operation when the load condition changes.

Benefits and Features

- Proven PCB Reference Design and Layout
- Fully Assembled and Tested
- Sense Points for High-Accuracy Measurements

Evaluates: MAX77324

Test Point and Jumper for Enable

Ordering Information appears at end of data sheet.

Figure 1. MAX77324 EV Kit Photo

Quick Start

Required Equipment

- MAX77324 EV kit
- Power supply with 6V and 1A capability
- Two digital voltmeter (DVM)
- Ammeter

Procedure

The EV kit is fully assembled and tested. Follow these steps to verify board operation:

- 1) Install J1 as recommended in Table 1.
- 2) Connect a disabled 3.8V bench power supply through an ammeter to the V_{IN} and PGND inputs. Set the input current limit of the bench power supply to 100mA. Set the ammeter range to its 10mA setting. **Do not** enable the output of the bench supply until prompted.
- 3) Connect a voltmeter to the VINS and GNDS terminals to measure input voltage.
- Connect a voltmeter to the VOUTS and GNDS terminals to measure output voltage.
- 5) Enable the output of the bench power supply.
- 6) At this point, your setup is complete and the device under test (DUT) is Enabled. Confirm that your input current ammeter has ~45µA.
- 7) If the input current in the above step is correct, increase the input current limit of the bench supply to 1A. Also, increase the input ammeter range to 3A.
- 8) Observe the output voltage on the voltmeter between VOUTS and GNDS. Confirm that the output voltage matches the expected output voltage (refer to the *Setting the Output Voltage* section of the data sheet).
 - At higher load/input currents, the input current ammeter must either be set to a higher range or bypassed, so as not to drop the input voltage (measured at VINS) below operating voltages.

Detailed Description

Enabling and Disabling the Regulator

Turn on the device by installing a jumper between positions 1-2 on J1. The jumper connects the EN pin to V_{IN} , enabling the regulator with soft-start. Remove jumper J1 to disable the regulator. EN has an internal pulldown resistor to ground.

Evaluates: MAX77324

Table 1. Default Shunt Positions and Jumper Descriptions

REFERENCE DESIGNATOR	DEFAULT POSITION	FUNCTION	
J1	1-2	1-2: Connects EN to V _{IN} to enable the regulator. Open: Disconnect EN from V _{IN} to disable the regulator. EN has an internal pulldown resistor to ground.	

Table 2. Setting the Output Voltage

V _{OUT} (V)	R _{TOP} (kΩ)	R _{BOT} (kΩ)	C _{TOP} (pF)
0.6	Short	Open	Open
0.85	12.4	30.1	220
0.9	15	30.1	220
0.95	17.8	30.1	220
1.0	20	30.1	220
1.1	24.8	30.1	220
1.2	30.1	30.1	220
1.35	37.4	30.1	220
1.5	45.3	30.1	220
1.8	60.4	30.1	220
2.0	69.8	30.1	220

www.maximintegrated.com Maxim Integrated | 2

Evaluates: MAX77324

Setting the Output Voltage

The device uses resistors to set the output voltage between 0.6V and 2V. Connect a resistor divider between $V_{OUT},\ FB,\ and\ AGND$ as shown in Figure 2. Choose R_{BOT} (FB to AGND) to be less than or equal to $30.1k\Omega.$ One percent accuracy resistors are highly recommended to keep the accuracy of $V_{OUT}.$ Calculate the value of R_{TOP} (V_{OUT} to FB) for a desired output voltage with Equation 1.

Equation 1:

$$R_{TOP} = R_{BOT} \times \left[\frac{V_{OUT}}{V_{FB}} - 1 \right]$$

Where V_{FB} is 0.6V and V_{OUT} is the desired output voltage.

CTOP is to maintain the stability of the device. Suggest CTOP to be 220pF for the full operation range of the device.

Ordering Information

PART	TYPE	
MAX77324EVKIT#	EV Kit	

#Denotes RoHS compliant.

On the MAX77324 evaluation board, default V_{OUT} is set to 1.2V by choosing the value of both R_{BOT} and R_{TOP} to be equal (30.1k Ω).

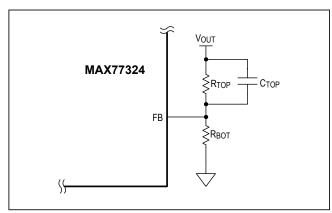
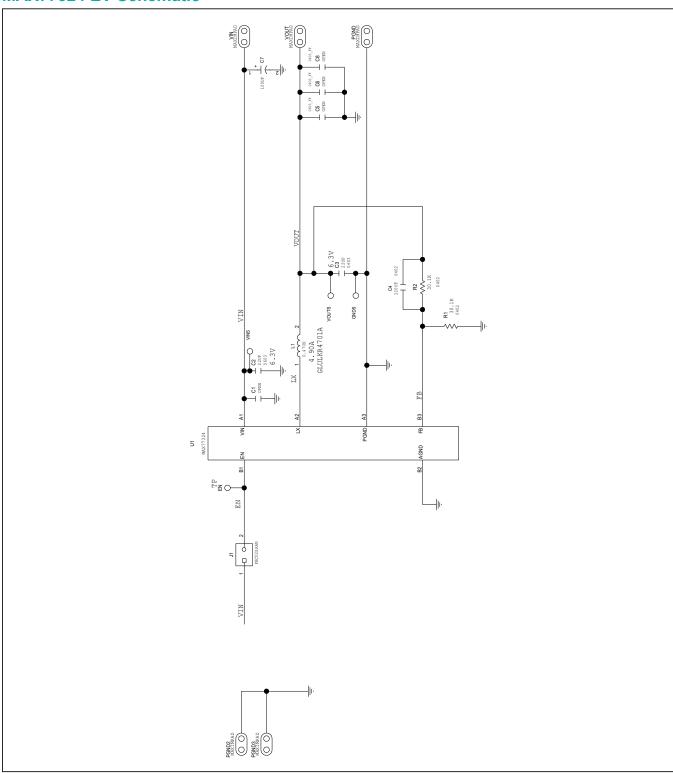


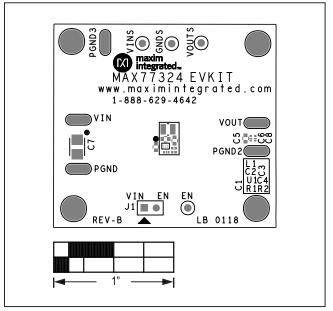
Figure 2. Setting the Output Voltage for MAX77324

MAX77324 EV Kit Bill of Materials

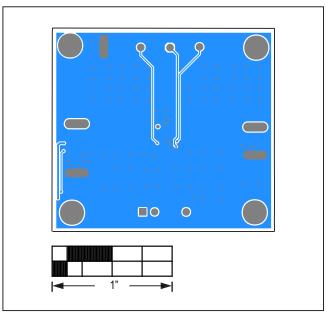

PART	QTY	DESCRIPTION
C2, C3	2	22μF ±20%, 6.3V, X5R ceramic capacitor (0603) C1608X5R0J226M080AC
C4	1	220pF ±10%, 50V, X7R ceramic capacitor (0402) GRM155R71H221KA01
C7	1	100μF ±20%, 6.3V, tantalum capacitor (3528) TCJB107M006R0070
J1	1	2-Pin header
L1	1	0.47μH ±20%, 4.90A inductor (2520) GLULKR4701A
R1, R2	2	30.1kΩ ±1% resistor (0402)
U1	1	MAX77324EWTAD+ (6 WLP)
C1, C5	0	Not installed, capacitor (0603)
C6, C8	0	Not installed, capacitor (0402)
_	1	Shunt
_	1	PCB: MAX77324 EV Kit

Evaluates: MAX77324

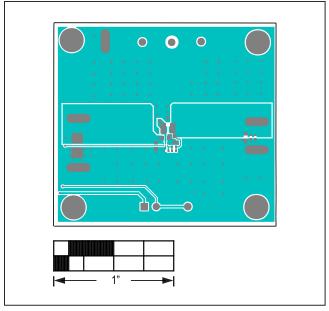
www.maximintegrated.com Maxim Integrated | 4

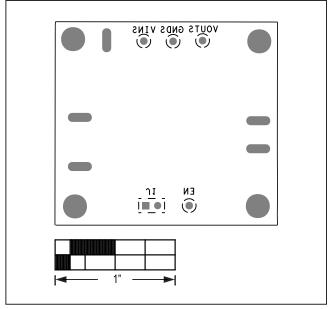

Evaluates: MAX77324

MAX77324 EV Schematic



Evaluates: MAX77324


MAX77324 EV PCB Layout


MAX77324 EV Kit Component Placement Guide—Top Silkscreen

MAX77324 EV Kit PCB Layout—Bottom

MAX77324 EV Kit PCB Layout—Top

MAX77324 EV Kit Component Placement Guide—Bottom Silkscreen

www.maximintegrated.com Maxim Integrated | 6

MAX77324 Evaluation Kit

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	5/18	Initial release	_

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.

Evaluates: MAX77324