Polymer Lithium-ion Battery

Product Specification

Model: **503562 1200mAh**

Hunan Sounddon New Energy Co., Ltd
Address: No. 98, Fuzhou Road, Jinhua Demonstration Area, Xiangtan City, Hunan Province, China.
http://www.soundnewenergy.com
Tel: (86) 731 - 5856 7126
Fax: (86) 731 - 5823 6346
E-mail: linda.ding@soundnewenergy.com

Prepared by: Sunping
Checked by: Zhu Qi
Approve by: Jin Gang

All 10 pages
1、Scope

This product specification describes polymer lithium-ion battery. Please using the test methods that recommend in this specification. If you have any opinions or advices about the test items and methods, please contact us. Please read the cautions recommended in the specifications first, take the credibility measure of the cell’s using.

If the cells should be using at the environment that not preferred in this document, please connect with our first and get our authorization. For the reason of stable performance and better safety, battery pack with more than 2 cells connected in serial way should be charged with a balance charger.

It is claimed that we should have no any responsibility with the contingency and loss due to the cells’ wrong usage (not preferred in the product specification).

2、Product Type, Model and Dimension
2.1 Type: Polymer lithium-ion battery
2.2 Model: 503562(Cell adding Ni Tabs)
2.3 Cell Dimension(Max, Thickness × Width × Length, mm): 5.0 × 35 × 62
 Pack Dimension(Max, Thickness × Width × Length, mm): 5.2*35.5*62.5(with pcm)

3、Specification

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Capacity</td>
<td>1200mAh</td>
<td>0.2C5A discharge, 25℃</td>
</tr>
<tr>
<td>Nominal Voltage</td>
<td>3.75V</td>
<td>Average Voltage at 0.2C5A discharge</td>
</tr>
<tr>
<td>Standard Charge Current</td>
<td>0.2 C5A</td>
<td>Working temperature: 0~40℃</td>
</tr>
<tr>
<td>Max Charge Current</td>
<td>1C5A</td>
<td>Working temperature: 0~40℃</td>
</tr>
<tr>
<td>Charge cut-off Voltage</td>
<td>4.2V</td>
<td>CC/CV</td>
</tr>
<tr>
<td>Standard Discharge Current</td>
<td>0.5C5A</td>
<td>Working temperature: 25℃</td>
</tr>
<tr>
<td>Discharge cut-off Voltage</td>
<td>2.75V</td>
<td></td>
</tr>
<tr>
<td>Cell Voltage</td>
<td>3.7-3.9V</td>
<td>When leave factory</td>
</tr>
<tr>
<td>Impedance</td>
<td>≤50mΩ</td>
<td>AC 1KHz after 50% charge, 25℃</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx:22g</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>≤1month</td>
<td>-10~45℃</td>
</tr>
<tr>
<td></td>
<td>≤3month</td>
<td>0~30℃</td>
</tr>
<tr>
<td></td>
<td>≤6month</td>
<td>20±5℃</td>
</tr>
<tr>
<td>Storage humidity</td>
<td>65±20% RH</td>
<td>Best 20±5℃ for long-time storage</td>
</tr>
</tbody>
</table>

4. General Performance

Definition of Standard charging method: At 20±5℃, charging the cell initially with constant current 0.2C5A till voltage 4.2V, then with constant voltage 4.2 till current declines to 0.05C5A.
4. Product Specification

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Methods</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 0.2C Capacity</td>
<td>After standard charging, laying the battery 0.5h, discharging at 0.2A to voltage 2.75V, recording discharging time.</td>
<td>then (\geq 300 \text{min})</td>
</tr>
<tr>
<td>4.2 1C Capacity</td>
<td>After standard charging, laying the battery 0.5h, discharging at 1C(\text{S}) to voltage 2.75V, recording the discharging time.</td>
<td>then (\geq 54 \text{min})</td>
</tr>
<tr>
<td>4.3 Cycle Life</td>
<td>Constant current 0.5C(\text{S})A charge to 4.2V, then constant voltage charge to current declines to 0.45C(\text{S})A, stay 5min. Constant current 0.5C(\text{S})A discharge to 2.75V, stay 5min. Repeat above steps till continuously discharging time less than 36min.</td>
<td>(\geq 400 \text{times})</td>
</tr>
<tr>
<td>4.4 Capability of keeping electricity</td>
<td>20±5℃. After standard charging, laying the battery 28days, discharging at 0.2A to voltage 2.75V, recording discharging time.</td>
<td>the (\geq 240 \text{min})</td>
</tr>
</tbody>
</table>

5. Environment Performance

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Methods</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 High temperature</td>
<td>After standard charging, laying the battery 4h at 60℃, then discharging at 0.2C(\text{S})A to voltage 2.75V, recording the discharging time.</td>
<td>(\geq 270 \text{min})</td>
</tr>
<tr>
<td>5.2 Low temperature</td>
<td>After standard charging, laying the battery 4h at -10℃, then discharging at 0.2C(\text{S})A to voltage 2.75V, recording the discharging time.</td>
<td>(\geq 210 \text{min})</td>
</tr>
<tr>
<td>5.3 Constant humidity and temperature</td>
<td>After standard charging, laying the battery 48h at 40±2℃, RH 93±2%. Recording 0.2C(\text{S})A discharging time</td>
<td>No distortion, No electrolytes leakage (\geq 270 \text{min})</td>
</tr>
<tr>
<td>5.4 Temperature shock</td>
<td>After standard charging, battery stored at -20℃ for 2 hours, then stored at 50℃ for 2 hours. Repeat 10 times.</td>
<td>No electrolytes leakage</td>
</tr>
</tbody>
</table>

6. Mechanical Performance
7. Safety Test

Test conditions: The following tests must be measured at flowing air and safety protection conditions. All batteries must standard charge and lay 24h.

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Methods</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Over charge</td>
<td>No explosion or fire</td>
</tr>
<tr>
<td>7.2</td>
<td>Over discharge</td>
<td>No explosion or fire</td>
</tr>
<tr>
<td>7.3</td>
<td>Short-circuit</td>
<td>No explosion or fire</td>
</tr>
<tr>
<td>7.4</td>
<td>Extrusion</td>
<td>No explosion or fire</td>
</tr>
<tr>
<td>7.5</td>
<td>Thermal shock</td>
<td>No explosion or fire</td>
</tr>
</tbody>
</table>

8. Cautions

8.1 Cautions of batteries’ operation
Polymer Lithium-ion battery

Product Specification

The batteries must be careful of proceed the operation for its soft package.

8.1.1 Aluminum packing materials
The aluminum packing material was easily damaged by the sharp edge part, such as nickel-tabs.
(1) forbid to use the sharp part touching the battery;
(2) should cleaning working condition, avoiding the sharp edge part existence;
(3) forbid to pierce the battery with nail and other sharp items;
(4) the battery was forbidden with metal, such as necklace, hairpin etc in transportation and storage.

8.1.2 Sealed edge
Sealing edge is very easily damaged and don’t bend it.
The Al interlayer of package has good electric performance. It’s forbidden to connect with exterior component for preventing short-circuits.

edge Folding edge

Fig.1. Exterior schematic of polymer lithium-ion cells

8.1.3 Folding edge
The folding edge is formed in batteries’ processes and passed all hermetic tests, don’t open or deform it. The Al interlayer of package has good electric performance. It’s forbidden to connect with exterior component for preventing short-circuits.
Polymer Lithium-ion battery

Product Specification

Fig.2. Single folding edge schematic of PL cells

Fig.3. Reverse folding edge schematic of PL cells

8.1.4 Tabs
(1) The batteries’ tabs are not so stubborn especially for aluminum tabs. Don’t bend tabs.
(2) The tab-tapes are used to isolate the anode/cathode tabs from aluminum packing materials to prevent short-circuit, so prohibit manicuring of the tab-tapes.

8.1.5 Mechanical shock
(1) Don’t fall, hit, bent the batteries’ body.
(2) Don’t knock on by sinker or trample the batteries.
(3) Don’t sling the batteries.

8.1.6 Short-circuit
Short-circuit is strictly prohibited. It should damage batteries badly.
(1) Don’t connect the anode and cathode of the batteries to avoid short-circuit.
(2) Prohibit short-circuit of the anode (or cathode) and aluminum layer of Aluminum packing materials.

8.2 Standard Test Environment for polymer lithium-ion batteries
Environment temperature: 20 ± 5°C Humidity: 45-85%

8.3 Cautions of charge & discharge
8.3.1 charge
Charging current should be lower than values that recommend below. Higher current and voltage charging may cause damage to cell electrical, mechanical, safety performance and could lead heat generation or leakage.
(2) Batteries charger should charging with constant current and constant voltage mode;
(2) Charging current should be lower than (or equal to) 16A;
Polymer Lithium-ion battery

Product Specification

(3) Temperature 0~40°C is preferred when charging;
(4) Charging voltage must be lower than 4.25V.

8.3.2 discharge
(1) Discharging current must be lower than (or equal to) 2CA;
(2) Temperature 0~60°C is preferred when discharging;
(3) Discharging voltage must not be lower than 2.75V.

8.3.3 over-discharge
It should be noted that the cell would be at an over-discharge state by its self-discharge.
In order to prevent over-discharge, the cell shall be charged periodically to keeping voltage between 3.7-3.9V. Over-discharge may cause loss of cell performance. It should be noted that the cell would not discharge till voltage lower than 2.75V.

8.4 Storage of polymer lithium-ion batteries
The environment of long-time storage:
Temperature: 20±5°C;
Humidity: 45-85%;
Batteries were 40~60% charged.

In case of over-discharge, batteries should be charged for one time every 3 months while storing. Batteries should be discharged and charged after being stored more than a year in order to activate it and restore energy. Please charge the battery with constant current 0.5C3A for 1 hour so that it has some storage of charge for properly using.

Charge and discharge afresh to active and renew battery energy after storage above 1 year.

8.5. Transportation of polymer lithium-ion batteries
The batteries should transportation with 10~50% charged states.

8.6. Others
Please note cautions below to prevent cells’ leakage, heat generation and explosion.
Prohibition of disassembly cells;
Prohibition of cells immersion into liquid such as water or seawater;
Prohibition of dumping cells into fire;
Prohibition of using damaged cells. The cells with a smell of electrolyte or leakage must be placed away from fire to avoid firing.

In case of electrolyte leakage contact with skin, eye, physicians shall flush the electrolyte immediately with fresh water and medical advise is to be sought.

9. Notice of Designing Battery Pack
9.1 Pack design
Battery pack should have sufficient strength and battery should be protected from mechanical shock. No sharp edge components should be inside the pack contains the battery.

9.2 PCM design
The overcharge threshold voltage should not be exceeding 3.95V.
The over-discharge threshold voltage should not be lower than 2.3V.
The PCM should have short protection function built inside.

9.3 Tab connection
Ultrasonic welding or spot welding is recommended to connect battery with PCM or other parts.

If apply manual solder method to connect tab with PCM, the notice below is very important to ensure battery performance.

(1) The electric iron should be temperature controlled and ESD safe;
(2) Soldering temperature should not exceed 350°C;
(3) Soldering time should not be longer than 3s, keep battery tab cold down before next soldering;
(4) Soldering times should not exceed 5 times;
(5) Directly heat cell body is strictly prohibited, battery may be damaged by heat above approx. 100°C.

9.4 Cell fixing
The battery should be fixed to the battery pack by its large surface area. No cell movement in the battery pack should be allowed.

9.5 Cells replacement
The cell replacement should be done by professional people.
Prohibit short-circuit between cells’ Al package and exterior component.
10. Schematic of Battery:

Fig.4. Schematic of wrong assembly

- ✔ Cell or adding Ni tabs
- □ Cell adding wire
Parameter: \(\checkmark\)

<table>
<thead>
<tr>
<th>Sign</th>
<th>Item</th>
<th>Max (mm)</th>
<th>Remak</th>
<th>Sign</th>
<th>Item</th>
<th>Max (mm)</th>
<th>Remak</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Length</td>
<td>62.2</td>
<td></td>
<td>L</td>
<td>Space between Tabs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Width</td>
<td>35.5</td>
<td></td>
<td>E</td>
<td>PP membrane Length</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Thickness</td>
<td>5.2</td>
<td></td>
<td>b</td>
<td>Tab Width</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wire Standard</td>
<td>/</td>
<td></td>
<td></td>
<td>Plug Standard</td>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Battery cell</td>
<td>LP503562-1200mAh</td>
</tr>
<tr>
<td>2</td>
<td>Protection Board</td>
<td>IC: S-8261AAJMD, MOSFET 8814</td>
</tr>
<tr>
<td>3</td>
<td>Red wire (+)</td>
<td>UL 26AWG</td>
</tr>
<tr>
<td>4</td>
<td>Black wire (-)</td>
<td>UL 26AWG</td>
</tr>
<tr>
<td>5</td>
<td>Connectors</td>
<td>JST-PHR-2</td>
</tr>
</tbody>
</table>