DOWSIL™ SE 4485 Thermally Conductive Adhesive

FEATURES & BENEFITS
- One part material
- Semi flowable
- Fast tack-free time
- Good adhesion
- Thermally conductive
- UL 94 V-0 recognized

One-part, white, moisture cure, thermal conductivity silicone adhesive.

APPLICATIONS
- DOWSIL™ SE 4485 Thermally Conductive Adhesive is designed to provide efficient thermal transfer for the cooling of modules, including lamp, telecom, and power supply devices.

COMPOSITION
- Thermally conductive filler
- Polydimethylsiloxane adhesive

TYPICAL PROPERTIES
Specification Writers: These values are not intended for use in preparing specifications.

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>One part or two part</td>
<td>-</td>
<td>One</td>
</tr>
<tr>
<td>Color</td>
<td>-</td>
<td>White</td>
</tr>
<tr>
<td>Fluidity</td>
<td>mm</td>
<td>54</td>
</tr>
<tr>
<td>Fluidity</td>
<td>inches</td>
<td>2.1</td>
</tr>
<tr>
<td>Specific gravity (cured)</td>
<td>-</td>
<td>2.9</td>
</tr>
<tr>
<td>NVC (Non volatile content)</td>
<td>%</td>
<td>99.2</td>
</tr>
<tr>
<td>Tack-Free time at 25°C</td>
<td>minutes</td>
<td>10</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>psi</td>
<td>492</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>MPa</td>
<td>3.4</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>kg/cm²</td>
<td>34.6</td>
</tr>
<tr>
<td>Durometer Shore A (JIS*)</td>
<td>-</td>
<td>90</td>
</tr>
<tr>
<td>Unprimed adhesion - Lap shear, glass to glass</td>
<td>psi</td>
<td>168</td>
</tr>
<tr>
<td>Unprimed adhesion - Lap shear, glass to glass</td>
<td>MPa</td>
<td>1.2</td>
</tr>
<tr>
<td>Unprimed adhesion - Lap shear, glass to glass</td>
<td>N/cm²</td>
<td>120</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>volts/mil</td>
<td>483</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>kV/mm</td>
<td>19</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>W/mK</td>
<td>2.8</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>BTU/hr-ft-°F</td>
<td>1.62</td>
</tr>
<tr>
<td>Agency listing</td>
<td>-</td>
<td>UL 94 V-0</td>
</tr>
</tbody>
</table>

*JIS: Japanese Industrial Standard.
assemblies are continually designed to deliver higher performance. Especially in the area of consumer devices, there is also a continual trend towards smaller, more compact designs. In combination these factors typically mean that more heat is generated in the device. Thermal management of PCB system assemblies is a primary concern of design engineers. A cooler PCB system assemblies is a primary concern of design engineers. A cooler device allows for more efficient operation and better reliability over the life of the device. As such, thermally conductive compounds play an integral role here. Thermally conductive materials act as a thermal “bridge” to remove heat from a heat source (device) to the ambient via a heat transfer media (i.e. heat sink). These materials have properties such as low thermal resistance, high thermal conductivity, and can achieve thin Bond Line Thicknesses (BLTs) which can help to improve the transfer of heat away from the device.

APPLICATION METHODS
- Manual or automated dispense

SUBSTRATE TESTING
To ensure maximum bond strength for adhesives on a particular substrate, 100 percent cohesive failure of the adhesive in a lap shear or similar adhesive strength test is needed. This ensures compatibility of the adhesive with the substrate being considered. Also, this test can be used to determine minimum cure time or to detect the presence of surface contaminants such as mold release agents, oils, greases and oxide films.

DESCRIPTION
One-part RTV-cure thermally conductive materials cure with moisture exposure to produce durable, relatively low-stress elastomer with a noncorrosive by-product. PCB system assemblies are continually designed to deliver higher performance. Especially in the area of consumer devices, there is also a continual trend towards smaller, more compact designs. In combination these factors typically mean that more heat is generated in the device. Thermal management of PCB system assemblies is a primary concern of design engineers. A cooler device allows for more efficient operation and better reliability over the life of the device. As such, thermally conductive compounds play an integral role here. Thermally conductive materials act as a thermal “bridge” to remove heat from a heat source (device) to the ambient via a heat transfer media (i.e. heat sink). These materials have properties such as low thermal resistance, high thermal conductivity, and can achieve thin Bond Line Thicknesses (BLTs) which can help to improve the transfer of heat away from the device.

PROCESSING/CURING
The one-part moisture-cure adhesives are generally cured at room temperature and in a range of 0 to 80 percent relative humidity. Greater than 90 percent of their full physical properties should be attained within 4 to 7 hours depending on the product chosen. These materials are not typically used for highly confined or deep section cures. Materials will generally cure about 0.25 inch (6.35 mm) per 7 days.

ADHESION
Dow silicone adhesives are specially formulated to provide unprimed adhesion to many reactive metals, ceramics and glass, as well as to selected laminates, resins and plastics. However, good adhesion cannot be expected on non-reactive metal substrates or non-reactive plastic surfaces such as Teflon®, polyethylene or polypropylene. Special surface treatments such as chemical etching or plasma treatment can sometimes provide a reactive surface and promote adhesion to these types of substrates. Dow primers can be used to increase the chemical activity on difficult substrates. For best results, the primer should be applied in a very thin, uniform coating and then wiped off after application. After application, primers should be thoroughly air dried prior to application of the silicone elastomer. Alternatively, use a low-viscosity primerless adhesive to pot your components. Poor adhesion can be experienced on plastic or rubber substrates that are highly plasticized, since the mobile plasticizers act as release agents. Small-scale laboratory evaluation of all substrates is recommended before production trials are made. In general, increasing the cure temperature and/or cure time will improve the ultimate adhesion.

USEFUL TEMPERATURE RANGES
For most uses, silicone adhesives should be operational over a temperature range of -45 to 200°C (-49 to 392°F) for long periods of time. However, at both the low and high temperature ends of the spectrum, behavior of the materials and performance in particular applications can become more complex and require additional considerations. For low-temperature performance, thermal cycling to conditions such as -55°C (-67°F) may be possible for most products, but performance should be verified for your parts or assemblies. Factors that may influence performance are configuration and stress sensitivity of components, cooling rates and hold times, and prior temperature history. At the high-temperature end, the durability of the cured silicones is time and temperature dependent. As expected, the higher the temperature, the shorter the time the material will remain useable.

SOLVENT EXPOSURE
In general, the product is resistance to minimal or intermittent solvent exposure, however best practice is to avoid solvent exposure altogether.

USABLE LIFE AND STORAGE
The product should be stored in its original packaging with the cover tightly attached to avoid any contamination. Store in accordance with any special instructions listed on the product label. The product should be used by the indicated Expiration Date found on the label.
HANDLING
PRECAUTIONS
PRODUCT SAFETY
INFORMATION REQUIRED FOR SAFE USE IS NOT INCLUDED IN THIS DOCUMENT. BEFORE HANDLING, READ PRODUCT AND SAFETY DATA SHEETS AND CONTAINER LABELS FOR SAFE USE, PHYSICAL AND HEALTH HAZARD INFORMATION. THE SAFETY DATA SHEET IS AVAILABLE ON THE DOW WEBSITE AT WWW.CONSUMER.DOW.COM, OR FROM YOUR DOW SALES APPLICATION ENGINEER, OR DISTRIBUTOR, OR BY CALLING DOW CUSTOMER SERVICE.

LIMITATIONS
This product is neither tested nor represented as suitable for medical or pharmaceutical uses.

HEALTH AND ENVIRONMENTAL INFORMATION
To support customers in their product safety needs, Dow has an extensive Product Stewardship organization and a team of product safety and regulatory compliance specialists available in each area.

For further information, please see our website, www.consumer.dow.com or consult your local Dow representative.

LIMITED WARRANTY INFORMATION – PLEASE READ CAREFULLY
The information contained herein is offered in good faith and is believed to be accurate. However, because conditions and methods of use of our products are beyond our control, this information should not be used in substitution for customer’s tests to ensure that our products are safe, effective, and fully satisfactory for the intended end use. Suggestions of use shall not be taken as inducements to infringe any patent.

Dow’s sole warranty is that our products will meet the sales specifications in effect at the time of shipment.

Your exclusive remedy for breach of such warranty is limited to refund of purchase price or replacement of any product shown to be other than as warranted.

TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, DOW SPECIFICALLY DISCLAIMS ANY OTHER EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY.

DOW DISCLAIMS LIABILITY FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES.

HOW CAN WE HELP YOU TODAY?
Tell us about your performance, design, and manufacturing challenges. Let us put our silicon-based materials expertise, application knowledge, and processing experience to work for you.

For more information about our materials and capabilities, visit www.consumer.dow.com.

To discuss how we could work together to meet your specific needs, go to www.consumer.dow.com for a contact close to your location. Dow has customer service teams, science and technology centers, application support teams, sales offices, and manufacturing sites around the globe.

www.consumer.dow.com