Multi- Aperture cores (2843006802)

Part Number: 2843006802

43 MULTI- APERTURE CORE

Explanation of Part Numbers:
- Digits 1 & 2 = Product Class
- Digits 3 & 4 = Material Grade
- Last digit 2 = Burnished

Multi- aperture cores are used in suppression applications and in balun (balance- unbalance) and other broadband transformers. They are also employed in airbag designs to prevent accidental activation.

- All multi- aperture cores are supplied burnished.
- Our “Multi- Aperture Core Kit” (part number 0199000036) is available for prototype evaluation.

For any multi- aperture requirement not listed here, feel free to contact our customer service group for availability and pricing.

Weight: 7 (g)

<table>
<thead>
<tr>
<th>Dim</th>
<th>mm</th>
<th>mm tol</th>
<th>nominal inch</th>
<th>inch misc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13.3</td>
<td>±0.60</td>
<td>0.525</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>27</td>
<td>±0.75</td>
<td>1.062</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>7.5</td>
<td>±0.35</td>
<td>0.295</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>5.7</td>
<td>±0.25</td>
<td>0.225</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>3.8</td>
<td>±0.25</td>
<td>0.15</td>
<td>-</td>
</tr>
</tbody>
</table>

Chart Legend
+ Test frequency

Typical Impedance (Ω)
25 MHz 219
100 MHz 300

Multi- aperture cores in 73 and 43 materials are controlled for impedance only. The 61 NiZn material is controlled for both impedance and A_L value. The high frequency 67 material is controlled for A_L value. Minimum impedance values are specified for the + marked frequencies. The minimum impedance is typically the listed impedance less 20%.

- Multi- aperture cores in 73 and 43 material are measured for impedance on the 4193A Vector Impedance Analyzer. The 61 and 67 multi- aperture cores are tested on the 4291A Impedance Analyzer. All impedance measurements are performed with a single turn to both holes, using the shortest practical wire length.

- The 61 and 67 material multi- hole beads are tested for A_L value. The test frequency is 10 kHz at < 10 gauss. The test winding is five turns wound through both holes.
Impedance, reactance, and resistance vs. frequency.