Notice for TAIYO YUDEN Products Please read this notice before using the TAIYO YUDEN products. ### /!\ REMINDERS Product information in this catalog is as of October 2017. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or use of our products. Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets. - Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. - Please conduct validation and verification of our products in actual condition of mounting and operating environment before using our products. - The products listed in this catalog are intended for use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and medical equipment classified as Class I or II by IMDRF. Please be sure to contact TAIYO YUDEN for further information before using the products for any equipment which may directly cause loss of human life or bodily injury (e.g., transportation equipment including, without limitation, automotive powertrain control system, train control system, and ship control system, traffic signal equipment, disaster prevention equipment, medical equipment classified as Class III by IMDRF, highly public information network equipment including, without limitation, telephone exchange, and base station). Please do not incorporate our products into any equipment requiring high levels of safety and/or reliability (e.g., aerospace equipment, aviation equipment*, medical equipment classified as Class IV by IMDRF, nuclear control equipment, undersea equipment, military equipment). *Note: There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment. When our products are used even for high safety and/or reliability-required devices or circuits of general electronic equipment, it is strongly recommended to perform a thorough safety evaluation prior to use of our products and to install a protection circuit as necessary. Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above. - Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights. - Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a fault or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement. - The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel. - Caution for Export Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff. # MULTILAYER CHIP BEAD INDUCTORS(BK SERIES) *Except for BK0402, BK0603, BK1005 ### PARTS NUMBER * Operating Temp.:-55~+125°C | В | K | Δ | 1 | 6 | 0 | 8 | Н | S | 1 | 2 | 1 | - | Т | Δ | |---|---|---|---|----|---|---|---|---|---|---|---|-----|---|---| | | 1 | | | (2 | 2 | | (| 3 | | 4 | | (5) | 6 | 7 | $\Delta =$ Blank space | A • • | | |--------------|------| | (1)Series | name | | | | | Code | Series name | | | | |------|-------------------------------|--|--|--| | BK△ | Multilayer chip bead inductor | | | | ### ②Dimensions (L × W) | Code | Type (inch) | Dimensions
(L×W)[mm] | |------|-------------|-------------------------| | 0402 | 0402(01005) | 0.4 × 0.2 | | 0603 | 0603(0201) | 0.6 × 0.3 | | 1005 | 1005 (0402) | 1.0 × 0.5 | | 1608 | 1608 (0603) | 1.6 × 0.8 | | 2125 | 2125(0805) | 2.0 × 1.25 | | Material | | |----------|--| | 3 Material | | |------------|---------------------------| | Code | Material | | HW | | | HS | | | HR | | | НМ | Refer to impedance curves | | LM | for material differences | | LL | | | TS | | | TM | | | | | ### Nominal impedance | Code
(example) | Nominal impedance[Ω] | |-------------------|-------------------------------| | 150 | 15 | | 101 | 100 | | 102 | 1000 | ### **⑤**Characteristics | Code | Characteristics | |------|-----------------| | _ | Standard | #### 6 Packaging | O Fackaging | | |-------------|-----------| | Code | Packaging | | Т | Taning | #### 7)Internal cod | Unternal code | | |---------------|---------------| | Code | Internal code | | Δ | Standard | ### ■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY | Туре | | w | т | | | d quantity[pcs] | | |---------|--------------------------|---------------------|---------------------|----------------------|------------|-----------------|--| | Туре | L | VV | ı ı | е | Paper tape | Embossed tape | | | BK 0402 | 0.40 ± 0.02 | 0.20 ± 0.02 | 0.20 ± 0.02 | 0.10+0.04/-0.03 | 20000 | | | | (01005) | (0.016 ± 0.001) | (0.008 ± 0.001) | (0.008 ± 0.001) | (0.004+0.002/-0.001) | 20000 | _ | | | BK 0603 | 0.60 ± 0.03 | 0.30 ± 0.03 | 0.30 ± 0.03 | 0.15 ± 0.05 | 15000 | | | | (0201) | (0.024 ± 0.001) | (0.012 ± 0.001) | (0.012 ± 0.001) | (0.006 ± 0.002) | 13000 | _ | | | BK 1005 | 1.00±0.05 | 0.50 ± 0.05 | 0.50 ± 0.05 | 0.25±0.10 | 10000 | _ | | | (0402) | (0.039 ± 0.002) | (0.020 ± 0.002) | (0.020 ± 0.002) | (0.010 ± 0.004) | 10000 | | | | BK 1608 | 1.6±0.15 | 0.8±0.15 | 0.8±0.15 | 0.3 ± 0.2 | 4000 | _ | | | (0603) | (0.063 ± 0.006) | (0.031 ± 0.006) | (0.031 ± 0.006) | (0.012 ± 0.008) | 4000 | _ | | | | 2.0+0.3/-0.1 | 1.25±0.2 | 0.85±0.2 | 0.5±0.3 | 4000 | _ | | | BK 2125 | (0.079 + 0.012 / -0.004) | (0.049 ± 0.008) | (0.033 ± 0.008) | (0.020 ± 0.012) | 4000 | _ | | | (0805) | 2.0+0.3/-0.1 | 1.25±0.2 | 1.25±0.2 | 0.5±0.3 | | 2000 | | | | (0.079 + 0.012 / -0.004) | (0.049 ± 0.008) | (0.049 ± 0.008) | (0.020 ± 0.012) | _ | 2000 | | | | | | • | | • | Unit:mm(inch) | | [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). ### BK 0402 | Parts number | EHS | Nominal impedance
[Ω] | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current [mA] (max.) | Thickness
[mm] | |----------------|------|--------------------------|---------------------|------------------------------|----------------------------|---------------------------|-------------------| | BK 0402HS100-T | RoHS | 10 | ±5Ω | 100 | 0.10 | 540 | 0.20 ±0.02 | | BK 0402HS700-T | RoHS | 70 | ±25% | 100 | 0.37 | 280 | 0.20 ±0.02 | | BK 0402HS121-T | RoHS | 120 | ±25% | 100 | 0.53 | 240 | 0.20 ±0.02 | | BK 0402HM100-T | RoHS | 10 | ±5Ω | 100 | 0.07 | 750 | 0.20 ±0.02 | | BK 0402HM750-T | RoHS | 75 | ±25% | 100 | 0.45 | 260 | 0.20 ±0.02 | | BK 0402HM121-T | RoHS | 120 | ±25% | 100 | 0.60 | 220 | 0.20 ±0.02 | | BK 0402HM151-T | RoHS | 150 | ±25% | 100 | 0.65 | 200 | 0.20 ±0.02 | | BK 0402HM181-T | RoHS | 180 | ±25% | 100 | 0.75 | 200 | 0.20 ±0.02 | | BK 0402HM241-T | RoHS | 240 | ±25% | 100 | 0.90 | 200 | 0.20 ±0.02 | | BK 0402HM331-T | RoHS | 330 | ±25% | 100 | 1.20 | 150 | 0.20 ±0.02 | | BK 0402LL220-T | RoHS | 22 | ±25% | 100 | 0.70 | 150 | 0.20 ±0.02 | | BK 0402LL470-T | RoHS | 47 | ±25% | 100 | 1.10 | 120 | 0.20 ±0.02 | | BK 0402LL101-T | RoHS | 100 | ±25% | 100 | 2.00 | 100 | 0.20 ± 0.02 | ### BK 0603 | Parts number | EHS | Nominal impedance
[Ω] | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance $[\Omega]$ (max.) | Rated current [mA] (max.) | Thickness
[mm] | |----------------|-------------------|--------------------------|---------------------|------------------------------|---------------------------------|---------------------------|-------------------| | BK 0603HS220-T | RoHS | 22 | ±25% | 100 | 0.065 | 500 | 0.30 ±0.03 | | BK 0603HS330-T | RoHS | 33 | ±25% | 100 | 0.070 | 500 | 0.30 ± 0.03 | | BK 0603HS800-T | RoHS | 80 | ±25% | 100 | 0.40 | 200 | 0.30 ± 0.03 | | BK 0603HS121-T | RoHS | 120 | ±25% | 100 | 0.45 | 200 | 0.30 ± 0.03 | | BK 0603HS241-T | RoHS | 240 | ±25% | 100 | 0.65 | 200 | $0.30 \pm
0.03$ | | BK 0603HS601-T | RoHS | 600 | ±25% | 100 | 1.20 | 150 | 0.30 ± 0.03 | | BK 0603HM600-T | R ₀ HS | 60 | ±25% | 100 | 0.25 | 200 | 0.30 ±0.03 | | BK 0603HM121-T | R ₀ HS | 120 | ±25% | 100 | 0.40 | 200 | 0.30 ±0.03 | | BK 0603HM241-T | R ₀ HS | 240 | ±25% | 100 | 0.80 | 200 | 0.30 ±0.03 | | BK 0603HM471-T | RoHS | 470 | ±25% | 100 | 1.05 | 100 | 0.30 ±0.03 | | BK 0603HM601-T | RoHS | 600 | ±25% | 100 | 1.20 | 100 | 0.30 ±0.03 | | BK 0603HR121-T | RoHS | 120 | ±25% | 100 | 0.23 | 450 | 0.30 ±0.03 | | BK 0603HR241-T | RoHS | 240 | ±25% | 100 | 0.38 | 350 | 0.30 ±0.03 | | BK 0603HR601-T | RoHS | 600 | ±25% | 100 | 0.80 | 250 | 0.30 ±0.03 | | BK 0603HR102-T | RoHS | 1000 | ±25% | 100 | 1.15 | 220 | 0.30 ±0.03 | | BK 0603HR122-T | RoHS | 1200 | ±25% | 100 | 1.30 | 200 | 0.30 ±0.03 | | BK 0603LL100-T | RoHS | 10 | ±25% | 100 | 0.25 | 200 | 0.30 ± 0.03 | | BK 0603LL220-T | RoHS | 22 | ±25% | 100 | 0.45 | 200 | 0.30 ± 0.03 | | BK 0603LL330-T | RoHS | 33 | ±25% | 100 | 0.55 | 150 | 0.30 ± 0.03 | | BK 0603LL470-T | RoHS | 47 | ±25% | 100 | 0.70 | 150 | 0.30 ± 0.03 | | BK 0603LL560-T | RoHS | 56 | ±25% | 100 | 1.00 | 100 | 0.30 ±0.03 | | BK 0603LL800-T | RoHS | 80 | ±25% | 100 | 1.30 | 100 | 0.30 ±0.03 | | BK 0603LL121-T | RoHS | 120 | ±25% | 100 | 1.50 | 100 | 0.30 ±0.03 | | BK 0603TS800-T | RoHS | 80 | ±25% | 100 | 0.18 | 500 | 0.30 ±0.03 | | BK 0603TS121-T | RoHS | 120 | ±25% | 100 | 0.23 | 450 | 0.30 ±0.03 | | BK 0603TS241-T | RoHS | 240 | ±25% | 100 | 0.32 | 400 | 0.30 ±0.03 | | BK 0603TS601-T | RoHS | 600 | ±25% | 100 | 0.75 | 270 | 0.30 ±0.03 | | BK 0603TM800-T | RoHS | 80 | ±25% | 100 | 0.18 | 450 | 0.30 ±0.03 | | BK 0603TM121-T | RoHS | 120 | ±25% | 100 | 0.23 | 400 | 0.30 ±0.03 | | BK 0603TM241-T | RoHS | 240 | ±25% | 100 | 0.38 | 300 | 0.30 ±0.03 | | BK 0603TM601-T | R₀HS | 600 | ±25% | 100 | 0.85 | 250 | 0.30 ±0.03 | ### ●BK 1005 | Parts number | EHS | Nominal impedance
[Ω] | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current [mA] (max.) | Thickness
[mm] | |----------------|-------------------|--------------------------|---------------------|------------------------------|----------------------------|---------------------------|-------------------| | BK 1005HW680-T | RoHS | 68 | ±25% | 100 | 0.17 | 500 | 0.50 ±0.05 | | BK 1005HW121-T | R ₀ HS | 120 | ±25% | 100 | 0.24 | 450 | 0.50 ±0.05 | | BK 1005HW241-T | R₀HS | 240 | ±25% | 100 | 0.31 | 400 | 0.50 ±0.05 | | BK 1005HW431-T | R₀HS | 430 | ±25% | 100 | 0.50 | 350 | 0.50 ±0.05 | | BK 1005HW601-T | R₀HS | 600 | ±25% | 100 | 0.60 | 300 | 0.50 ±0.05 | | BK 1005HS100-T | R₀HS | 10 | ±25% | 100 | 0.03 | 1,000 | 0.50 ±0.05 | | BK 1005HS330-T | R₀HS | 33 | ±25% | 100 | 0.06 | 700 | 0.50 ±0.05 | | BK 1005HS680-T | R₀HS | 68 | ±25% | 100 | 0.10 | 700 | 0.50 ±0.05 | | BK 1005HS800-T | R₀HS | 80 | ±25% | 100 | 0.10 | 700 | 0.50 ±0.05 | | BK 1005HS121-T | R₀HS | 120 | ±25% | 100 | 0.20 | 500 | 0.50 ±0.05 | | BK 1005HS241-T | R₀HS | 240 | ±25% | 100 | 0.30 | 400 | 0.50 ±0.05 | | BK 1005HS431-T | R₀HS | 430 | ±25% | 100 | 0.45 | 350 | 0.50 ±0.05 | | BK 1005HS601-T | R₀HS | 600 | ±25% | 100 | 0.55 | 300 | 0.50 ±0.05 | | BK 1005HS102-T | R ₀ HS | 1000 | ±25% | 100 | 0.58 | 300 | 0.50 ±0.05 | | BK 1005HR601-T | R ₀ HS | 600 | ±25% | 100 | 0.60 | 300 | 0.50 ±0.05 | | BK 1005HM750-T | R ₀ HS | 75 | ±25% | 100 | 0.18 | 350 | 0.50 ±0.05 | | BK 1005HM121-T | R ₀ HS | 120 | ±25% | 100 | 0.18 | 300 | 0.50 ±0.05 | | BK 1005HM241-T | R ₀ HS | 240 | ±25% | 100 | 0.30 | 300 | 0.50 ±0.05 | | BK 1005HM471-T | R ₀ HS | 470 | ±25% | 100 | 0.45 | 250 | 0.50 ±0.05 | | BK 1005HM601-T | R ₀ HS | 600 | ±25% | 100 | 0.50 | 250 | 0.50 ±0.05 | | BK 1005HM102-T | R ₀ HS | 1000 | ±25% | 100 | 0.70 | 150 | 0.50 ±0.05 | | BK 1005LL100-T | R ₀ HS | 10 | ±25% | 100 | 0.11 | 500 | 0.50 ±0.05 | | BK 1005LL220-T | R ₀ HS | 22 | ±25% | 100 | 0.18 | 400 | 0.50 ±0.05 | | BK 1005LL330-T | R ₀ HS | 33 | ±25% | 100 | 0.25 | 400 | 0.50 ±0.05 | | BK 1005LL470-T | R ₀ HS | 47 | ±25% | 100 | 0.33 | 350 | 0.50 ±0.05 | | BK 1005LL680-T | RoHS | 68 | ±25% | 100 | 0.31 | 400 | 0.50 ±0.05 | | BK 1005LL121-T | RoHS | 120 | ±25% | 100 | 0.45 | 350 | 0.50 ±0.05 | | BK 1005LL181-T | RoHS | 180 | ±25% | 100 | 0.50 | 300 | 0.50 ±0.05 | | BK 1005LL241-T | RoHS | 240 | ±25% | 100 | 0.70 | 250 | 0.50 ±0.05 | | BK 1005LM182-T | RoHS | 1800 | ±25% | 100 | 0.90 | 120 | 0.50 ±0.05 | [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). ### **BK** 1608 | BK 1608 | | | | | | | | |----------------|------|--------------------------|---------------------|------------------------------|----------------------------|---------------------------|-------------------| | Parts number | EHS | Nominal impedance
[Ω] | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current [mA] (max.) | Thickness
[mm] | | BK 1608HW121-T | R₀HS | 120 | ±25% | 100 | 0.15 | 600 | 0.80 ±0.15 | | BK 1608HW241-T | R₀HS | 240 | ±25% | 100 | 0.25 | 450 | 0.80 ±0.15 | | BK 1608HW431-T | R₀HS | 430 | ±25% | 100 | 0.30 | 400 | 0.80 ±0.15 | | BK 1608HW601-T | R₀HS | 600 | ±25% | 100 | 0.40 | 300 | 0.80 ±0.15 | | BK 1608HS220-T | R₀HS | 22 | ±25% | 100 | 0.05 | 1,500 | 0.80 ±0.15 | | BK 1608HS330-T | R₀HS | 33 | ±25% | 100 | 0.08 | 1,200 | 0.80 ±0.15 | | BK 1608HS470-T | RoHS | 47 | ±25% | 100 | 0.10 | 900 | 0.80 ±0.15 | | BK 1608HS600-T | RoHS | 60 | ±25% | 100 | 0.10 | 800 | 0.80 ±0.15 | | BK 1608HS800-T | RoHS | 80 | ±25% | 100 | 0.10 | 600 | 0.80 ±0.15 | | BK 1608HS121-T | RoHS | 120 | ±25% | 100 | 0.18 | 500 | 0.80 ±0.15 | | BK 1608HS241-T | RoHS | 240 | ±25% | 100 | 0.25 | 400 | 0.80 ±0.15 | | BK 1608HS601-T | RoHS | 600 | ±25% | 100 | 0.45 | 350 | 0.80 ±0.15 | | BK 1608HS102-T | RoHS | 1000 | ±25% | 100 | 0.60 | 300 | 0.80 ±0.15 | | BK 1608HM121-T | RoHS | 120 | ±25% | 100 | 0.20 | 350 | 0.80 ±0.15 | | BK 1608HM241-T | RoHS | 240 | ±25% | 100 | 0.35 | 300 | 0.80 ±0.15 | | BK 1608HM471-T | RoHS | 470 | ±25% | 100 | 0.45 | 250 | 0.80 ±0.15 | | BK 1608HM601-T | RoHS | 600 | ±25% | 100 | 0.60 | 250 | 0.80 ±0.15 | | BK 1608HM102-T | RoHS | 1000 | ±25% | 100 | 0.70 | 200 | 0.80 ±0.15 | | BK 1608LL300-T | RoHS | 30 | ±25% | 100 | 0.20 | 500 | 0.80 ±0.15 | | BK 1608LL470-T | RoHS | 47 | ±25% | 100 | 0.30 | 400 | 0.80 ±0.15 | | BK 1608LL560-T | RoHS | 56 | ±25% | 100 | 0.30 | 400 | 0.80 ±0.15 | | BK 1608LL680-T | RoHS | 68 | ±25% | 100 | 0.35 | 300 | 0.80 ±0.15 | | BK 1608LL121-T | RoHS | 120 | ±25% | 100 | 0.50 | 300 | 0.80 ±0.15 | | BK 1608LL181-T | R₀HS | 180 | ±25% | 100 | 0.65 | 250 | 0.80 ±0.15 | | BK 1608LL241-T | R₀HS | 240 | ±25% | 100 | 0.80 | 250 | 0.80 ±0.15 | | BK 1608LL331-T | R₀HS | 330 | ±25% | 100 | 0.85 | 200 | 0.80 ±0.15 | | BK 1608LL431-T | R₀HS | 430 | ±25% | 100 | 0.85 | 200 | 0.80 ±0.15 | | BK 1608LL511-T | R₀HS | 510 | ±25% | 100 | 0.90 | 200 | 0.80 ±0.15 | | BK 1608LL681-T | R₀HS | 680 | ±25% | 100 | 1.00 | 150 | 0.80 ±0.15 | | BK 1608LM751-T | R₀HS | 750 | ±25% | 100 | 0.60 | 300 | 0.80 ±0.15 | | BK 1608LM152-T | R₀HS | 1500 | ±25% | 100 | 0.75 | 250 | 0.80 ±0.15 | | BK 1608LM182-T | R₀HS | 1800 | ±25% | 100 | 0.85 | 200 | 0.80 ±0.15 | | BK 1608LM252-T | RoHS | 2500 | ±25% | 100 | 1.10 | 200 | 0.80 ±0.15 | | BK 1608TS431-T | RoHS | 430 | ±25% | 100 | $0.21 \pm 30\%$ | 400 | 0.80 ±0.15 | | BK 1608TS601-T | RoHS | 600 | ±25% | 100 | 0.27±30% | 350 | 0.80 ±0.15 | | BK 1608TS102-T | RoHS | 1000 | ±25% | 100 | 0.30±30% | 300 | 0.80 ±0.15 | ### BK 2125 | Parts number | EHS | Nominal impedance
[Ω] | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance $[\Omega]$ (max.) | Rated current [mA] (max.) | Thickness
[mm] | |----------------|-------------------|--------------------------|---------------------|------------------------------|---------------------------------|---------------------------|-------------------| | BK 2125HS150-T | RoHS | 15 | ±25% | 100 | 0.05 | 1,200 | 0.85 ±0.2 | | BK 2125HS220-T | RoHS | 22 | ±25% | 100 | 0.05 | 1,200 | 0.85 ±0.2 | | BK 2125HS330-T | RoHS | 33 | ±25% | 100 | 0.05 | 1,200 | 0.85 ±0.2 | | BK 2125HS470-T | RoHS | 47 | ±25% | 100 | 0.05 | 1,000 | 0.85 ±0.2 | | BK 2125HS750-T | RoHS | 75 | ±25% | 100 | 0.10 | 1,000 | 0.85 ±0.2 | | BK 2125HS101-T | RoHS | 100 | ±25% | 100 | 0.10 | 900 | 0.85 ±0.2 | | BK 2125HS121-T | RoHS | 120 | ±25% | 100 | 0.15 | 800 | 0.85 ±0.2 | | BK 2125HS241-T | RoHS | 240 | ±25% | 100 | 0.20 | 600 | 0.85 ±0.2 | | BK 2125HS431-T | RoHS | 430 | ±25% | 100 | 0.25 | 500 | 0.85 ±0.2 | | BK 2125HS601-T | RoHS | 600 | ±25% | 100 | 0.30 | 500 | 0.85 ±0.2 | | BK 2125HS102-T | RoHS | 1000 | ±25% | 100 | 0.40 | 300 | 0.85 ±0.2 | | BK 2125HM121-T | RoHS | 120 | ±25% | 100 | 0.15 | 800 | 0.85 ±0.2 | | BK 2125HM241-T | RoHS | 240 | ±25% | 100 | 0.20 | 600 | 0.85 ±0.2 | | BK 2125HM471-T | RoHS | 470 | ±25% | 100 | 0.25 | 500 | 0.85 ±0.2 | | BK 2125HM601-T | R ₀ HS | 600 | ±25% | 100 | 0.25 | 500 | 0.85 ±0.2 | | BK 2125HM102-T | R ₀ HS | 1000 | ±25% | 100 | 0.35 | 400 | 0.85 ±0.2 | | BK 2125LL560-T | R ₀ HS | 56 | ±25% | 100 | 0.20 | 600 | 0.85 ±0.2 | | BK 2125LL121-T | R ₀ HS | 120 | ±25% | 100 | 0.30 | 400 | 0.85 ±0.2 | | BK 2125LL241-T | R ₀ HS | 240 | ±25% | 100 | 0.35 | 300 | 0.85 ±0.2 | | BK 2125LM751-T | RoHS | 750 | ±25% | 100 | 0.30 | 400 | 0.85 ±0.2 | | BK 2125LM152-T | RoHS | 1500 | ±25% | 100 | 0.35 | 400 | 0.85 ±0.2 | | BK 2125LM182-T | RoHS | 1800 | ±25% | 100 | 0.45 | 300 | 1.25 ±0.2 | | BK 2125LM252-T | RoHS | 2500 | ±25% | 100 | 0.75 | 200 | 1.25 ±0.2 | [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph,
reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). # MULTILAYER CHIP BEAD INDUCTORS(BK SERIES H TYPE) ■PARTS NUMBER 1005 * Operating Temp.:-55~+125°C △=Blank space 1.0×0.5 ①Series name Code Series name ВКН Multilayer chip bead inductor H type 1005(0402) ②Dimensions (L × W) Dimensions Type (inch) $(L \times W) [mm]$ 0603 0603(0201) 0.6×0.3 3Material Code Material LM Refer to impedance curves НІ for material differences 4 Nominal impedance | Code
(example) | Nominal impedance[Ω] | |-------------------|-------------------------------| | 250 | 25 | | 221 | 220 | | 102 | 1000 | **⑤**Characteristics Code Characteristics Standard | 6 Packaging | | |-------------|-----------| | Code | Packaging | | Т | Taping | | | | | 7Internal code | | |----------------|---------------| | Code | Internal code | | Δ | Standard | #### ■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY | Tumo | Type L W | | т | | Standard quantity[pcs] | | |---------|---------------------|---------------------|-------------------|---------------------|------------------------|---------------| | туре | L | VV | • | е | Paper tape | Embossed tape | | BKH0603 | 0.60 ± 0.03 | 0.30 ± 0.03 | 0.30 ± 0.03 | 0.15±0.05 | 15000 | | | (0201) | (0.024 ± 0.001) | (0.012 ± 0.001) | (0.012 ± 0.001) | (0.006 ± 0.002) | 15000 | _ | | BKH1005 | 1.00±0.05 | 0.50 ± 0.05 | 0.50 ± 0.05 | 0.25±0.10 | 10000 | _ | | (0402) | (0.039 ± 0.002) | (0.020 ± 0.002) | (0.020 ± 0.002) | (0.010 ± 0.004) | 10000 | - | Unit:mm(inch) #### PARTS NUMBER ### BKH0603 | ■ BKH0003 | | | | | | | | | |----------------|-------------------|-----------------------|------------------------|-----------------------|------------------------|---------------------------------|---------------------------|-------------------| | Parts number E | | | | | frequency
iHz | | B | | | | EHS | Nominal impedance [Ω] | Impedance
tolerance | Nominal impedance [Ω] | Impedance
tolerance | DC Resistance $[\Omega]$ (max.) | Rated current [mA] (max.) | Thickness
[mm] | | BKH0603LM601-T | RoHS | 600 | ±25% | 1250 | ±40% | 1.50 | 160 | 0.30 ±0.03 | | BKH0603LM102-T | RoHS | 1000 | ±25% | 1900 | ±40% | 2.50 | 130 | 0.30 ±0.03 | | BKH0603LM152-T | RoHS | 1500 | ±25% | 2700 | ±40% | 3.20 | 115 | 0.30 ± 0.03 | | BKH0603HL250-T | RoHS | 25 | ±25% | 135 | ±40% | 0.26 | 450 | 0.30 ±0.03 | | BKH0603HL500-T | R ₀ HS | 50 | ±25% | 255 | ±40% | 0.58 | 300 | 0.30 ± 0.03 | | BKH0603HL221-T | RoHS | 220 | ±25% | 1200 | ±40% | 2.00 | 150 | 0.30 ±0.03 | ### BKH1005 | | | Measuring frequency
100MHz | | Measuring frequency
1GHz | | DO D | D | | |----------------|-------------------|-------------------------------|------------------------|-----------------------------|------------------------|---------------------------------|------------------------------|-------------------| | Parts number | EHS | Nominal impedance [Ω] | Impedance
tolerance | Nominal impedance [Ω] | Impedance
tolerance | DC Resistance $[\Omega]$ (max.) | Rated current
[mA] (max.) | Thickness
[mm] | | BKH1005LM601-T | RoHS | 600 | ±25% | 1300 | ±40% | 0.85 | 300 | 0.50 ±0.05 | | BKH1005LM102-T | RoHS | 1000 | ±25% | 1700 | ±40% | 1.25 | 250 | 0.50 ±0.05 | | BKH1005LM152-T | R ₀ HS | 1500 | ±25% | 2300 | ±40% | 1.50 | 200 | 0.50 ±0.05 | | BKH1005LM182-T | RoHS | 1800 | ±25% | 2700 | ±40% | 2.00 | 200 | 0.50 ±0.05 | [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). # MULTILAYER CHIP BEAD INDUCTORS (BK ARRAY SERIES) ### ■PARTS NUMBER * Operating Temp.:-55~+125°C Δ =Blank space 4 Nominal impedance (example) 601 102 | 1 | _ | | | | |-----|-----|-----|-----|----| | (1) | Ser | ıes | nar | ne | | Code | Series name | |------|-------------------------------| | BK△ | Multilayer chip bead inductor | ### ②Dimensions (L × W) | Code | Type (inch) | Dimensions
(L×W)[mm] | |------|-------------|-------------------------| | 2010 | 2010 (0804) | 2.0 × 1.0 | | 3216 | 3216(1206) | 3.2 × 1.6 | | 5 Packaging | | |-------------|-----------| | Code | Packaging | | _T | Taping | Nominal impedance [Ω] 600 1000 ### 3Material | Code | Material | |------|---------------------------| | 4W | | | 4S | Refer to impedance curves | | 4M | for material differences | | 4L | | ### 6 Internal code | _ | | |------|---------------| | Code | Internal code | | Δ | Standard | ### ■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY | | | | | | | | Standard qua | antity [pcs] | |---------|---------------------|---------------------|---------------------|--------------------------|-------------------|---------------------|--------------|--------------| | Type | L | W | Т | E ₁ | E ₂ | Р | Paper tape | Embossed | | | | | | | | | raper tape | tape | | BK 2010 | 2.0±0.15 | 1.0±0.15 | 0.45±0.05 | 0.25+0.15/-0.1 | 0.25 ± 0.15 | 0.5 ± 0.1 | 4000 | | | (0804) | (0.079 ± 0.006) | (0.039 ± 0.006) | (0.018 ± 0.002) | (0.010 + 0.006 / -0.004) | (0.010 ± 0.006) | (0.020 ± 0.004) | 4000 | _ | | BK 3216 | 3.2±0.2 | 1.6±0.2 | 0.8±0.1 | 0.35±0.2 | 0.3 ± 0.2 | 0.8±0.1 | | 4000 | | (1206) | (0.126 ± 0.008) | (0.063 ± 0.008) | (0.031 ± 0.004) | (0.014 ± 0.008) | (0.012±0.008) | (0.031 ± 0.004) | _ | 4000 | | | | | | | | | | /ı \ | Unit:mm(inch) [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). ### BK 2010 | Parts number | EHS | Nominal impedance
[Ω] | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance $[\Omega]$ (max.) | Rated current [mA] (max.) | |----------------|------|--------------------------|---------------------|------------------------------|---------------------------------|---------------------------| | BK 20104W680-T | RoHS | 68 | ±25% | 100 | 0.35 | 100 | | BK 20104W121-T | RoHS | 120 | ±25% | 100 | 0.40 | 100 | | BK 20104W241-T | RoHS | 240 | ±25% | 100 | 0.50 | 100 | | BK 20104S121-T | RoHS | 120 | ±25% | 100 | 0.30 | 100 | | BK 20104S241-T | RoHS | 240 | ±25% | 100 | 0.45 | 100 | | BK 20104S431-T | RoHS | 430 | ±25% | 100 | 0.55 | 100 | | BK 20104S601-T | RoHS | 600 | ±25% | 100 | 0.70 | 100 | | BK 20104M121-T | RoHS | 120 | ±25% | 100 | 0.30 | 100 | | BK 20104M241-T | RoHS | 240 | ±25% | 100 | 0.45 | 100 | | BK 20104M431-T | RoHS | 430 | ±25% | 100 | 0.55 | 100 | | BK 20104M601-T | RoHS | 600 | ±25% | 100 | 0.70 | 100 | | BK 20104M102-T | RoHS | 1000 | ±25% | 100 | 0.80 | 100 | | BK 20104L050-T | RoHS | 5 | ±25% | 100 | 0.10 | 100 | | BK 20104L100-T | RoHS | 10 | ±25% | 100 | 0.15 | 100 | | BK 20104L220-T | RoHS | 22 | ±25% | 100 | 0.20 | 100 | | BK 20104L330-T | RoHS | 33 | ±25% | 100 | 0.30 | 100 | | BK 20104L470-T | RoHS | 47 | ±25% | 100 | 0.40 | 100 | | BK 20104L680-T | RoHS | 68 | ±25% | 100 | 0.50 | 100 | | BK 20104L121-T | RoHS | 120 | ±25% | 100 | 0.70 | 100 | | BK 20104L181-T | RoHS | 180 | ±25% | 100 | 0.90 | 100 | ### BK 3216 | Parts number | EHS | Nominal impedance $\left[\Omega ight]$ | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current [mA] (max.) |
----------------|------|--|---------------------|------------------------------|----------------------------|---------------------------| | BK 32164W121-T | RoHS | 120 | ±25% | 100 | 0.15 | 100 | | BK 32164W241-T | RoHS | 240 | ±25% | 100 | 0.25 | 100 | | BK 32164W431-T | RoHS | 430 | ±25% | 100 | 0.35 | 100 | | BK 32164W601-T | RoHS | 600 | ±25% | 100 | 0.40 | 100 | | BK 32164S600-T | RoHS | 60 | ±25% | 100 | 0.18 | 200 | | BK 32164S121-T | RoHS | 120 | ±25% | 100 | 0.18 | 200 | | BK 32164S241-T | RoHS | 240 | ±25% | 100 | 0.30 | 200 | | BK 32164S301-T | RoHS | 300 | ±25% | 100 | 0.40 | 200 | | BK 32164S471-T | RoHS | 470 | ±25% | 100 | 0.40 | 200 | | BK 32164S601-T | RoHS | 600 | ±25% | 100 | 0.45 | 200 | | BK 32164S102-T | RoHS | 1000 | ±25% | 100 | 0.68 | 100 | | BK 32164M121-T | RoHS | 120 | ±25% | 100 | 0.20 | 150 | | BK 32164M241-T | RoHS | 240 | ±25% | 100 | 0.35 | 150 | | BK 32164M301-T | RoHS | 300 | ±25% | 100 | 0.45 | 150 | | BK 32164M471-T | RoHS | 470 | ±25% | 100 | 0.50 | 150 | | BK 32164M601-T | RoHS | 600 | ±25% | 100 | 0.60 | 100 | | BK 32164M102-T | RoHS | 1000 | ±25% | 100 | 0.80 | 100 | | BK 32164L680-T | RoHS | 68 | ±25% | 100 | 0.35 | 200 | | BK 32164L121-T | RoHS | 120 | ±25% | 100 | 0.55 | 200 | | BK 32164L181-T | RoHS | 180 | ±25% | 100 | 0.65 | 150 | | BK 32164L241-T | RoHS | 240 | ±25% | 100 | 0.75 | 150 | [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). Frequency (MHz) [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). # MULTILAYER CHIP BEAD INDUCTORS FOR POWER LINES(BK SERIES P TYPE) *Except for BKP0603, BKP1005 PARTS NUMBER * Operating Temp.:-55~+85°C △=Blank space | В | K | Р | 1 | 6 | 0 | 8 | Н | S | 1 | 8 | 1 | _ | Т | Δ | |---|---|---|---|----|---|---|----|----|---|---|---|---|---|---| | | 1 | | | (2 | 2 | | (3 | 3) | | 4 | | 5 | 6 | 7 | | ①Series name | | |--------------|--| | Code | Series name | | BKP | Multilayer chip bead inductor for power line | | ②Dimensions (L×W) | | | | | | |-------------------|--------------|--------------------------|--|--|--| | Code | Type(inch) | Dimensions
(L×W) [mm] | | | | | 0402 | 0402 (01005) | 0.4 × 0.2 | | | | | 0603 | 0603(0201) | 0.6×0.3 | | | | | 1005 | 1005 (0402) | 1.0 × 0.5 | | | | | 1608 | 1608 (0603) | 1.6 × 0.8 | | | | | 2125 | 2125 (0805) | 2.0 × 1.25 | | | | | 3Material | | |-----------|---| | Code | Material | | HS | | | НМ | D. C | | TS | Refer to impedance curves
for material differences | | TM | for material differences | | EM | | | - | | ### 4 Nominal impedance | | Code
(example) | Nominal impedance[Ω] | |---|-------------------|-------------------------------| | ľ | 330 | 33 | | | 101 | 100 | | | 391 | 390 | ### (5)Characteristics | © Onal docorlocio | | |-------------------|-----------------| | Code | Characteristics | | _ | Standard | ### **6**Packaging | © i donaging | | |--------------|-----------| | Code | Packaging | | Т | Taping | ### 7)Internal code | - | | |------|---------------| | Code | Internal code | | Δ | Standard | | | | ### ■ STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY | Type | L | W | т | | Standard quantity[pcs] | | |---------|--------------------------|---------------------|---------------------|----------------------|------------------------|---------------| | туре | | ٧٧ | 1 | е | Paper tape | Embossed tape | | BKP0402 | 0.40 ± 0.02 | 0.20 ± 0.02 | 0.20 ± 0.02 | 0.10 + 0.04 / -0.03 | 20000 | | | (01005) | (0.016 ± 0.001) | (0.008 ± 0.001) | (0.008 ± 0.001) | (0.004+0.002/-0.001) | 20000 | _ | | BKP0603 | 0.6 ± 0.03 | 0.3 ± 0.03 | 0.3±0.03 | 0.15±0.05 | 15000 | | | (0201) | (0.024 ± 0.001) | (0.012 ± 0.001) | (0.012 ± 0.001) | (0.006 ± 0.002) | 15000 | _ | | BKP1005 | 1.0±0.05 | 0.5±0.05 | 0.5±0.05 | 0.25±0.1 | 10000 | | | (0402) | (0.039 ± 0.002) | (0.020 ± 0.002) | (0.020 ± 0.002) | (0.010 ± 0.004) | 10000 | _ | | BKP1608 | 1.6±0.15 | 0.8±0.15 | 0.8±0.15 | 0.3±0.2 | 4000 | | | (0603) | (0.063 ± 0.006) | (0.031 ± 0.006) | (0.031 ± 0.006) | (0.012 ± 0.008) | 4000 | _ | | BKP2125 | 2.0+0.3/-0.1 | 1.25±0.2 | 0.85±0.2 | 0.5±0.3 | 4000 | | | (0805) | (0.079 + 0.012 / -0.004) | (0.049 ± 0.008) | (0.033 ± 0.008) | (0.020 ± 0.012) | 4000 | _ | Unit:mm(inch) [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). ### BKP0402 | Parts number | EHS | Nominal impedance $[\Omega]$ | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[mΩ] (max.) | Rated current
[A] (max.) | Thickness
[mm] | |----------------|------|------------------------------|---------------------|------------------------------|------------------------------|-----------------------------|-------------------| | BKP0402HM100-T | RoHS | 10 | ±5Ω | 100 | 50 | 1.1 | 0.20 ±0.02 | | BKP0402HM220-T | RoHS | 22 | ±25% | 100 | 110 | 0.75 | 0.20 ±0.02 | | BKP0402HM330-T | RoHS | 33 | ±25% | 100 | 150 | 0.55 | 0.20 ±0.02 | ### BKP0603 | Parts number | EHS | Nominal impedance
[Ω] | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[mΩ] (max.) | Rated current
[A] (max.) | Thickness
[mm] | |----------------|------|--------------------------|---------------------|------------------------------|------------------------------|-----------------------------|-------------------| | BKP0603HS100-T | RoHS | 10 | ±5Ω | 100 | 30 | 1.3 | 0.30 ±0.03 | | BKP0603HS220-T | RoHS | 22 | ±25% | 100 | 65 | 1.0 | 0.30 ±0.03 | | BKP0603HS330-T | RoHS | 33 | ±25% | 100 | 70 | 1.0 | 0.30 ±0.03 | | BKP0603HS800-T | RoHS | 80 | ±25% | 100 | 120 | 1.0 | 0.30 ±0.03 | | BKP0603HS121-T | RoHS | 120 | ±25% | 100 | 150 | 0.85 | 0.30 ±0.03 | | BKP0603HM100-T | RoHS | 10 | ±5Ω | 100 | 30 | 1.3 | 0.30 ±0.03 | | BKP0603HM220-T | RoHS | 22 | ±25% | 100 | 70 | 1.0 | 0.30 ±0.03 | | BKP0603HM330-T | RoHS | 33 | ±25% | 100 | 70 | 1.0 | 0.30 ±0.03 | | BKP0603HM800-T | RoHS | 80 | ±25% | 100 | 120 | 1.0 | 0.30 ±0.03 | | BKP0603HM121-T | RoHS | 120 | ±25% | 100 | 180 | 0.80 | 0.30 ±0.03 | | BKP0603TS220-T | RoHS | 22 | ±25% | 100 | 40 | 1.8 | 0.30 ±0.03 | | BKP0603TS330-T | RoHS | 33 | ±25% | 100 | 55 | 1.5 | 0.30 ±0.03 | | BKP0603TM220-T | R₀HS | 22 | ±25% | 100 | 40 | 1.8 | 0.30 ±0.03 | | BKP0603TM330-T | RoHS | 33 | ±25% | 100 | 55 | 1.5 | 0.30 ±0.03 | ### BKP1005 | EHS | Nominal impedance $[\Omega]$ | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[mΩ] (max.) | Rated current [A] (max.) | Thickness
[mm] | |------|---|--|------------------------------
--|---|---| | RoHS | 10 | ±5Ω | 100 | 30 | 2.4 | 0.50 ±0.05 | | RoHS | 30 | ±25% | 100 | 35 | 2.2 | 0.50 ±0.05 | | RoHS | 60 | ±25% | 100 | 60 | 1.7 | 0.50 ±0.05 | | RoHS | 120 | ±25% | 100 | 85 | 1.55 | 0.50 ±0.05 | | RoHS | 220 | ±25% | 100 | 150 | 1.00 | 0.50 ±0.05 | | RoHS | 330 | ±25% | 100 | 220 | 0.80 | 0.50 ±0.05 | | RoHS | 10 | ±25% | 100 | 30 | 2.0 | 0.50 ±0.05 | | RoHS | 33 | ±25% | 100 | 50 | 1.7 | 0.50 ±0.05 | | RoHS | 68 | ±25% | 100 | 75 | 1.5 | 0.50 ±0.05 | | RoHS | 120 | ±25% | 100 | 140 | 1.0 | 0.50 ±0.05 | | RoHS | 220 | ±25% | 100 | 200 | 0.80 | 0.50 ±0.05 | | RoHS | 120 | ±25% | 100 | 120 | 1.1 | 0.50 ±0.05 | | RoHS | 220 | ±25% | 100 | 180 | 0.90 | 0.50 ±0.05 | | RoHS | 33 | ±25% | 100 | 39±30% | 1.7 | 0.50 ±0.05 | | RoHS | 68 | ±25% | 100 | 55±30% | 1.5 | 0.50 ±0.05 | | RoHS | 120 | ±25% | 100 | 70±30% | 1.3 | 0.50 ±0.05 | | RoHS | 120 | ±25% | 100 | 100 | 1.3 | 0.50 ±0.05 | | | RoHS RO | RoHS 10 RoHS 30 RoHS 60 RoHS 120 RoHS 220 RoHS 330 ROHS 330 ROHS 10 ROHS 10 ROHS 120 ROHS 33 ROHS 10 ROHS 68 ROHS 120 ROHS 220 ROHS 220 ROHS 220 ROHS 220 ROHS 220 ROHS 120 ROHS 220 ROHS 120 33 ROHS 68 ROHS 120 | RoHS | RoHS 10 ±5Ω 100 RoHS 100 ±25% 100 RoHS 100 ±25% 100 RoHS 120 ±25% 100 RoHS 120 ±25% 100 RoHS 120 ±25% 100 RoHS 100 RoHS 100 ±25% 100 RoHS 100 ±25% 100 RoHS 100 ±25% 100 RoHS 330 ±25% 100 RoHS 330 ±25% 100 RoHS 68 ±25% 100 RoHS 68 ±25% 100 RoHS 68 ±25% 100 RoHS 120 120 ±25% 120 ±25% 120 ±25% 120 ±25% 120 ±25% 120 ±25% 120 ±25% 120 ±25% 120 ±25% | EHS [Ω] Impedance tolerance [MHz] [mΩ] (max.) RoHS 10 ±5Ω 100 30 RoHS 30 ±25% 100 35 RoHS 60 ±25% 100 60 RoHS 120 ±25% 100 85 RoHS 220 ±25% 100 150 RoHS 330 ±25% 100 220 RoHS 10 ±25% 100 30 RoHS 33 ±25% 100 50 RoHS 68 ±25% 100 75 RoHS 120 ±25% 100 140 RoHS 120 ±25% 100 200 RoHS 120 ±25% 100 120 RoHS 33 ±25% 100 39±30% RoHS 33 ±25% 100 55±30% RoHS 33 ±25% 100 55±30% | EHS [Ω] Impedance tolerance [MHz] [mΩ] (max.) [A] (max.) RoHS 10 ±5Ω 100 30 2.4 RoHS 30 ±25% 100 35 2.2 RoHS 60 ±25% 100 60 1.7 RoHS 120 ±25% 100 85 1.55 RoHS 220 ±25% 100 150 1.00 RoHS 330 ±25% 100 220 0.80 RoHS 10 ±25% 100 30 2.0 RoHS 33 ±25% 100 50 1.7 RoHS 68 ±25% 100 75 1.5 RoHS 120 ±25% 100 140 1.0 RoHS 120 ±25% 100 200 0.80 RoHS 120 ±25% 100 120 1.1 RoHS 220 ±25% 100 39±3 | ### BKP1608 | Parts number | EHS | Nominal impedance
[Ω] | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[mΩ] (max.) | Rated current
[A] (max.) | Thickness
[mm] | |----------------|------|----------------------------|---------------------|------------------------------|------------------------------|-----------------------------|-------------------| | BKP1608HS330-T | RoHS | 33 | ±25% | 100 | 25 | 3.0 | 0.80 ±0.15 | | BKP1608HS600-T | RoHS | 60 | ±25% | 100 | 40 | 2.5 | 0.80 ±0.15 | | BKP1608HS101-T | RoHS | 100 | ±25% | 100 | 50 | 1.7 | 0.80 ±0.15 | | BKP1608HS121-T | RoHS | 120 | ±25% | 100 | 35 | 2.7 | 0.80 ±0.15 | | BKP1608HS181-T | RoHS | 180 | ±25% | 100 | 75 | 1.5 | 0.80 ±0.15 | | BKP1608HS271-T | RoHS | 270 | ±25% | 100 | 110 | 1.2 | 0.80 ±0.15 | | BKP1608HS391-T | RoHS | 390 | ±25% | 100 | 140 | 1.0 | 0.80 ±0.15 | | BKP1608HS471-T | RoHS | 470 | ±25% | 100 | 180 | 1.0 | 0.80 ±0.15 | ### BKP2125 | Parts number | EHS | Nominal impedance
[Ω] | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[mΩ] (max.) | Rated current
[A] (max.) | Thickness
[mm] | |----------------|------|----------------------------|---------------------|------------------------------|------------------------------|-----------------------------|-------------------| | BKP2125HS330-T | RoHS | 33 | ±25% | 100 | 20 | 4.0 | 0.85 ±0.2 | | BKP2125HS600-T | RoHS | 60 | ±25% | 100 | 25 | 3.0 | 0.85 ±0.2 | | BKP2125HS101-T | RoHS | 100 | ±25% | 100 | 40 | 2.5 | 0.85 ±0.2 | | BKP2125HS221-T | RoHS | 220 | ±25% | 100 | 50 | 2.0 | 0.85 ±0.2 | | BKP2125HS331-T | RoHS | 330 | ±25% | 100 | 75 | 1.5 | 0.85 ±0.2 | [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). # Multilayer chip inductors Multilayer chip inductors for high frequency, Multilayer chip bead inductors Multilayer common mode choke coils (MC series F type) Metal Multilayer Chip Power Inductors (MCOIL™ MC series) ### PACKAGING ### 1 Minimum Quantity Tape & Reel Packaging | Tape & Reel Packaging | | T | | |-----------------------|----------------------------|------------|---------------| | Type | Thickness | | uantity [pcs] | | | mm(inch) | Paper Tape | Embossed Tape | | CK1608(0603) | 0.8 (0.031) | 4000 | _ | | CK2125 (0805) | 0.85(0.033) | 4000 | - | | | 1.25(0.049) | _ | 2000 | | CKS2125 (0805) | 0.85 (0.033) | 4000 | _ | | | 1.25(0.049) | _ | 2000 | | CKP1608 (0603) | 0.8 (0.031) | 4000 | _ | | CKP2012 (0805) | 0.9 (0.035) | _ | 3000 | | CKP2016 (0806) | 0.9 (0.035) | _ | 3000 | | | 0.7 (0.028) | _ | 3000 | | CKP2520 (1008) | 0.9 (0.035) | _ | 3000 | | | 1.1 (0.043) | _ | 2000 | | NM2012 (0805) | 0.9 (0.035) | - | 3000 | |
NM2520(1008) | 0.9 (0.035) | _ | 3000 | | | 1.1 (0.043) | _ | 2000 | | LK1005(0402) | 0.5 (0.020) | 10000 | _ | | LK1608 (0603) | 0.8 (0.031) | 4000 | _ | | LK2125 (0805) | 0.85 (0.033) | 4000 | _ | | LN2123 (0603) | 1.25(0.049) | _ | 2000 | | HK0603(0201) | 0.3 (0.012) | 15000 | _ | | HK1005(0402) | 0.5 (0.020) | 10000 | _ | | HK1608(0603) | 0.8 (0.031) | 4000 | _ | | | 0.85 (0.033) | _ | 4000 | | HK2125 (0805) | 1.0 (0.039) | _ | 3000 | | HKQ0402(01005) | 0.2 (0.008) | 20000 | 40000 | | HKQ0603W(0201) | 0.3 (0.012) | 15000 | _ | | HKQ0603S (0201) | 0.3 (0.012) | 15000 | _ | | HKQ0603U(0201) | 0.3 (0.012) | 15000 | _ | | AQ105(0402) | 0.5 (0.020) | 10000 | _ | | BK0402(01005) | 0.2 (0.008) | 20000 | _ | | BK0603(0201) | 0.3 (0.012) | 15000 | _ | | BK1005(0402) | 0.5 (0.020) | 10000 | _ | | BKH0603(0201) | 0.3 (0.012) | 15000 | _ | | BKH1005 (0402) | 0.5 (0.020) | 10000 | _ | | BK1608 (0603) | 0.8 (0.031) | 4000 | _ | | | 0.85 (0.033) | 4000 | _ | | BK2125 (0805) | 1.25 (0.049) | _ | 2000 | | BK2010(0804) | 0.45 (0.018) | 4000 | _ | | BK3216(1206) | 0.8 (0.031) | _ | 4000 | | BKP0402 (01005) | 0.2 (0.008) | 20000 | - | | BKP0603 (0201) | 0.3 (0.012) | 15000 | _ | | BKP1005 (0402) | 0.5 (0.020) | 10000 | _ | | BKP1608 (0603) | 0.8 (0.031) | 4000 | _ | | BKP2125 (0805) | 0.8 (0.031) | 4000 | _ | | | | 15000 | - | | MCF0605 (0202) | 0.3 (0.012)
0.4 (0.016) | 15000
— | 10000 | | MCF0806 (0302) | | | 10000 | | MCF1210 (0504) | 0.55(0.022) | | 5000 | | MCF2010(0804) | 0.45 (0.018) | 4000 | 4000 | | MCFK1608(0603) | 0.6 (0.024) | 4000 | - | | MCFE1608 (0603) | 0.65(0.026) | 4000 | | | MCKK1608 (0603) | 1.0(0.039) | 4000 | 3000 | | MCHK2012(0806) | 0.8 (0.031) | 4000 | - | | MCKK2012 (0805) | 1.0(0.039) | _ | 3000 | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). ### **2**Taping material | BK | 0402 | | |-----|------|--| | BK | 0603 | | | вк | 1005 | | | BK | 1608 | | | BK | 2125 | | | BK | 2010 | | | BKP | 0402 | | | BKP | 0603 | | | BKP | 1005 | | | BKP | 1608 | | | BKP | 2125 | | | BKH | 0603 | | | BKH | 1005 | | | MCF | 0605 | | | MC | 1608 | | | MC | 2012 | | | CK | 2125 | | |-----|------|--| | CKS | 2125 | | | CKP | 2012 | | | CKP | 2016 | | | CKP | 2520 | | | NM | 2012 | | | NM | 2520 | | | LK | 2125 | | | HKQ | 0402 | | | HK | 2125 | | | | | | | BK | 2125 | | |-----|------|--| | BK | 3216 | | | MCF | 0806 | | | MCF | 1210 | | | MCF | 2010 | | | MC | 1608 | | | MC | 2012 | | | | | | ### **3**Taping Dimensions This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | _ Thickness | | Chip | cavity | Insertion Pitch | Tape Thickness | |------------------|--------------|-----------------------------|----------------------------|---------------------------|-----------------------| | Туре | mm(inch) | А | В | F | Т | | CK1608(0603) | 0.8 (0.031) | 1.0±0.2 | 1.8±0.2 | 4.0±0.1 | 1.1max | | | 0.0 (0.001) | (0.039 ± 0.008) | (0.071 ± 0.008) | (0.157 ± 0.004) | (0.043max) | | CK2125(0805) | 0.85(0.033) | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | 1.1max | | | | (0.059±0.008) | (0.091 ± 0.008) | (0.157±0.004) | (0.043max) | | CKS2125(0805) | 0.85(0.033) | 1.5±0.2
(0.059±0.008) | 2.3±0.2
(0.091±0.008) | 4.0±0.1
(0.157±0.004) | 1.1max
(0.043max) | | | | 1.0±0.2 | 1.8±0.2 | 4.0±0.1 | 1.1max | | CKP1608 (0603) | 0.8 (0.031) | (0.039 ± 0.008) | (0.071 ± 0.008) | (0.157 ± 0.004) | (0.043max) | | L K100E (0400) | 0.5 (0.000) | 0.65±0.1 | 1.15±0.1 | 2.0±0.05 | 0.8max | | LK1005 (0402) | 0.5 (0.020) | (0.026 ± 0.004) | (0.045 ± 0.004) | (0.079 ± 0.002) | (0.031max) | | LK1608(0603) | 0.8 (0.031) | 1.0±0.2 | 1.8±0.2 | 4.0±0.1 | 1.1max | | | 0.0 (0.001) | (0.039 ± 0.008) | (0.071 ± 0.008) | (0.157±0.004) | (0.043max) | | LK2125(0805) | 0.85(0.033) | 1.5±0.2
(0.059±0.008) | 2.3±0.2 | 4.0±0.1
(0.157±0.004) | 1.1max
(0.043max) | | | | 0.40±0.06 | (0.091±0.008)
0.70±0.06 | 2.0±0.05 | 0.45max | | HK0603(0201) | 0.3 (0.012) | (0.016±0.002) | (0.028 ± 0.002) | (0.079 ± 0.002) | (0.018max) | | | /> | 0.65±0.1 | 1.15±0.1 | 2.0±0.05 | 0.8max | | HK1005(0402) | 0.5 (0.020) | (0.026 ± 0.004) | (0.045 ± 0.004) | (0.079 ± 0.002) | (0.031max) | | HK1608(0603) | 0.8 (0.031) | 1.0±0.2 | 1.8±0.2 | 4.0±0.1 | 1.1max | | HK1006(0003) | 0.6 (0.031) | (0.039 ± 0.008) | (0.071 ± 0.008) | (0.157 ± 0.004) | (0.043max) | | HKQ0402(01005) | 0.2 (0.008) | 0.25±0.04 | 0.45±0.04 | 2.0±0.05 | 0.36max | | | 0.2 (0.000) | (0.010±0.002) | (0.018±0.002) | (0.079 ± 0.002) | (0.014max) | | HKQ0603W(0201) | 0.3 (0.012) | 0.40±0.06 | 0.70±0.06 | 2.0±0.05 | 0.45max | | | | (0.016±0.002) | (0.028±0.002) | (0.079±0.002) | (0.018max) | | HKQ0603S(0201) | 0.3 (0.012) | 0.40±0.06
(0.016±0.002) | 0.70±0.06
(0.028±0.002) | 2.0±0.05
(0.079±0.002) | 0.45max
(0.018max) | | | | 0.40±0.06 | 0.70±0.06 | 2.0±0.05 | 0.45max | | HKQ0603U(0201) | 0.3 (0.012) | (0.016±0.002) | (0.028 ± 0.002) | (0.079 ± 0.002) | (0.018max) | | | () | 0.75±0.1 | 1.15±0.1 | 2.0±0.05 | 0.8max | | AQ105(0402) | 0.5 (0.020) | (0.030 ± 0.004) | (0.045 ± 0.004) | (0.079 ± 0.002) | (0.031max) | | BK0402(01005) | 0.2 (0.008) | 0.25±0.04 | 0.45±0.04 | 2.0±0.05 | 0.36max | | BR0402 (01003) | 0.2 (0.006) | (0.010±0.002) | (0.018±0.002) | (0.079 ± 0.002) | (0.014max) | | BK0603(0201) | 0.3 (0.012) | 0.40 ± 0.06 | 0.70±0.06 | 2.0±0.05 | 0.45max | | | 0.0 (0.0.2) | (0.016±0.002) | (0.028 ± 0.002) | (0.079±0.002) | (0.018max) | | BK1005(0402) | 0.5 (0.020) | 0.65±0.1 | 1.15±0.1 | 2.0±0.05 | 0.8max | | _ | | (0.026±0.004)
1.0±0.2 | (0.045±0.004)
1.8±0.2 | (0.079±0.002)
4.0±0.1 | (0.031max)
1.1max | | BK1608(0603) | 0.8 (0.031) | (0.039 ± 0.008) | (0.071 ± 0.008) | (0.157 ± 0.004) | (0.043max) | | | | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | 1.1max | | BK2125 (0805) | 0.85(0.033) | (0.059 ± 0.008) | (0.091 ± 0.008) | (0.157 ± 0.004) | (0.043max) | | BK2010(0804) | 0.45(0.018) | 1.2±0.1 | 2.17±0.1 | 4.0±0.1 | 0.8max | | BR2010(0004) | 0.43(0.016) | (0.047 ± 0.004) | (0.085 ± 0.004) | (0.157 ± 0.004) | (0.031max) | | BKP0402(01005) | 0.2 (0.008) | 0.25±0.04 | 0.45±0.04 | 2.0±0.05 | 0.36max | | | _ (======, | (0.010±0.002) | (0.018±0.002) | (0.079 ± 0.002) | (0.014max) | | BKP0603(0201) | 0.3 (0.012) | 0.40±0.06
(0.016±0.002) | 0.70±0.06
(0.028±0.002) | 2.0±0.05
(0.079±0.002) | 0.45max
(0.018max) | | | | 0.65±0.1 | 1.15±0.1 | 2.0±0.05 | 0.8max | | BKP1005(0402) | 0.5 (0.020) | (0.026 ± 0.004) | (0.045 ± 0.004) | (0.079 ± 0.002) | (0.031max) | | DVD1600 (0600) | 0.0 (0.001) | 1.0±0.2 | 1.8±0.2 | 4.0±0.1 | 1.1max | | BKP1608 (0603) | 0.8 (0.031) | (0.039 ± 0.008) | (0.071 ± 0.008) | (0.157 ± 0.004) | (0.043max) | | BKP2125 (0805) | 0.85(0.033) | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | 1.1max | | | 5.55 (5.550) | (0.059 ± 0.008) | (0.091 ± 0.008) | (0.157±0.004) | (0.043max) | | BKH0603(0201) | 0.3 (0.012) | 0.40 ± 0.06 | 0.70±0.06 | 2.0±0.05 | 0.45max | | | | (0.016±0.002) | (0.028±0.002) | (0.079±0.002) | (0.018max) | | BKH1005(0402) | 0.5 (0.020) | 0.65±0.1
(0.026±0.004) | 1.15±0.1
(0.045±0.004) | 2.0±0.05
(0.079±0.002) | 0.8max
(0.031max) | | | | 0.62±0.03 | 0.77±0.03 | 2.0±0.05 | 0.45max | | MCF0605 (0202) | 0.3 (0.012) | (0.02±0.00
(0.024±0.001) | (0.030 ± 0.001) | (0.079 ± 0.002) | (0.018max) | | MOEK1000 (0000) | 0.0 (0.004) | 1.1±0.05 | 1.9±0.05 | 4.0±0.1 | 0.72max | | MCFK1608 (0603) | 0.6 (0.024) | (0.043 ± 0.002) | (0.075 ± 0.002) | (0.157 ± 0.004) | (0.028max) | | MCFE1608(0603) | 0.65(0.026) | 1.1±0.05 | 1.9±0.05 | 4.0±0.1 | 0.9max | | MOI L1000 (0003) | 0.03 (0.020) | (0.043 ± 0.002) | (0.075 ± 0.002) | (0.157±0.004) | (0.035max) | | MCHK2012 (0805) | 0.8 (0.031) | 1.55±0.2 | 2.3±0.2 | 4.0±0.1 | 0.9max | | - | <u> </u> | (0.061 ± 0.008) | (0.091 ± 0.008) | (0.157 ± 0.004) | (0.035max) | Unit: mm(inch) This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | - | Thickness | Chip | cavity | Insertion Pitch | Tape Thickness | | | |----------------------------|--------------|---------------------|---------------------|---------------------|----------------|---------|--| | Type mm(inch) | | А | В | F | K | Т | | | OV010E (000E) | 1.05(0.040) | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | 2.0 | 0.3 | | | CK2125 (0805) | 1.25(0.049) | (0.059 ± 0.008) | (0.091 ± 0.008) | (0.157 ± 0.004) | (0.079) | (0.012) | | | OV0010E (000E) | 1.05(0.040) | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | 2.0 | 0.3 | | | CKS2125 (0805) | 1.25(0.049) | (0.059 ± 0.008) | (0.091 ± 0.008) | (0.157 ± 0.004) | (0.079) | (0.012) | | | OKD0010 (000E) | 0.9 (0.035) | 1.55±0.2 | 2.3±0.2 | 4.0±0.1 | 1.3 | 0.3 | | | CKP2012 (0805) | 0.9 (0.035) | (0.061 ± 0.008) | (0.091 ± 0.008) | (0.157 ± 0.004) | (0.051) | (0.012) | | | CKP2016 (0806) 0.9 (0.035) | | 1.8±0.1 | 2.2±0.1 | 4.0±0.1 | 1.3 | 0.25 | | | CKP2010 (0800) | 0.9 (0.035) | (0.071 ± 0.004) | (0.087 ± 0.004) | (0.157 ± 0.004) | (0.051) | (0.01) | | | | 0.7 (0.000) | | | | 1.4 | | | | | 0.7 (0.028) | | | | (0.055) | | | | OKD0E00 (1000) | 0.0 (0.035) | 2.3±0.1 | 2.8±0.1 | 4.0 ± 0.1 | 1.4 |
0.3 | | | CKP2520 (1008) | 0.9 (0.035) | (0.091 ± 0.004) | (0.110 ± 0.004) | (0.157 ± 0.004) | (0.055) | (0.012) | | | | 1.1 (0.042) | | | | 1.7 | | | | | 1.1 (0.043) | | | | (0.067) | | | | NIMAGO 1 G (GGGE) | 0.0 (0.005) | 1.55±0.2 | 2.3±0.2 | 4.0±0.1 | 1.3 | 0.3 | | | NM2012 (0805) | 0.9 (0.035) | (0.061 ± 0.008) | (0.091 ± 0.008) | (0.157 ± 0.004) | (0.051) | (0.012) | | | NM2520(1008) | 0.9 (0.035) | | | | 1.4 | | | | | 0.9 (0.035) | 2.3±0.1 | 2.8±0.1 | 4.0±0.1 | (0.055) | 0.3 | | | | 1.1 (0.043) | (0.091 ± 0.004) | (0.110 ± 0.004) | (0.157 ± 0.004) | 1.7 | (0.012) | | | | | | | | (0.067) | | | | LK2125(0805) | 1.05(0.040) | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | 2.0 | 0.3 | | | | 1.25(0.049) | (0.059 ± 0.008) | (0.091 ± 0.008) | (0.157 ± 0.004) | (0.079) | (0.012) | | | | 0.05(0.000) | | | | 1.5 | | | | | 0.85(0.033) | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | (0.059) | 0.3 | | | HK2125(0805) | 4.0 (0.000) | (0.059 ± 0.008) | (0.091 ± 0.008) | (0.157 ± 0.004) | 2.0 | (0.012) | | | | 1.0 (0.039) | | | | (0.079) | | | | | | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | 2.0 | 0.3 | | | BK2125 (0805) | 1.25(0.049) | (0.059 ± 0.008) | (0.091 ± 0.008) | (0.157 ± 0.004) | (0.079) | (0.012) | | | DI(0010(1000) | 0.0(0.004) | 1.9±0.1 | 3.5±0.1 | 4.0±0.1 | 1.4 | 0.3 | | | BK3216(1206) | 0.8(0.031) | (0.075 ± 0.004) | (0.138 ± 0.004) | (0.157 ± 0.004) | (0.055) | (0.012) | | | 14050000(0000) | 0.4 (0.040) | 0.75±0.05 | 0.95±0.05 | 2.0±0.05 | 0.55 | 0.3 | | | MCF0806(0302) | 0.4 (0.016) | (0.030 ± 0.002) | (0.037 ± 0.002) | (0.079 ± 0.002) | (0.022) | (0.012) | | | | 0.55 (0.000) | 1.15±0.05 | 1.40±0.05 | 4.0±0.1 | 0.65 | 0.3 | | | MCF1210 (0504) | 0.55 (0.022) | (0.045 ± 0.002) | (0.055 ± 0.002) | (0.157 ± 0.004) | (0.026) | (0.012) | | | | () | 1.1±0.1 | 2.3±0.1 | 4.0±0.1 | 0.85 | 0.3 | | | MCF2010(0804) | 0.45 (0.018) | (0.043 ± 0.004) | (0.091 ± 0.004) | (0.157 ± 0.004) | (0.033) | (0.012) | | | | | 1.1±0.1 | 1.95±0.1 | 4.0±0.1 | 1.4 | 0.25 | | | MCKK1608(0603) | 1.0 (0.039) | (0.043 ± 0.004) | (±0.004) | (0.157 ± 0.004) | (0.055) | (0.01) | | | | | 1.55±0.2 | 2.3±0.2 | 4.0±0.1 | 1.35 | 0.25 | | | MCKK2012 (0805) | 1.0 (0.039) | (0.061 ± 0.008) | (0.091 ± 0.008) | (0.157 ± 0.004) | (0.053) | (0.010) | | | | 1 | (0.001 = 0.000) | (0.001 = 0.000) | (0.107 = 0.004) | (0.000) | | | Unit: mm(inch) [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). ### Embossed Tape (4mm wide) ### Unit:mm(inch) | T | Thickness | Chip cavity | | Insertion Pitch | Tape Th | nickness | |-----------------|-------------|-------------|------|-----------------|---------|----------| | Туре | mm(inch) | Α | В | F | K | Т | | HKQ0402 (01005) | 0.2 (0.008) | 0.23 | 0.43 | 1.0±0.02 | 0.5max. | 0.25max. | | | | | | | Unit | : mm | # 4 LEADER AND BLANK PORTION ### **5**Reel Size | A | В | С | D | E | R | |------------------|-------------------|-----------------------|-------------------|---------|-----| | ϕ 178 ± 2.0 | ϕ 50 or more | ϕ 13.0 \pm 0.2 | ϕ 21.0 ± 0.8 | 2.0±0.5 | 1.0 | | | | | | | | | | t | W | |----------------|---------|--------| | 4mm width tape | 1.5max. | 5±1.0 | | 8mm width tape | 2.5max. | 10±1.5 | ### (Unit : mm) ### **6**Top tape strength The top tape requires a peel-off force of $0.1 \sim 0.7 N$ in the direction of the arrow as illustrated below. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). ### Multilayer chip inductors Multilayer chip inductors for high frequency, Multilayer chip bead inductors Multilayer common mode choke coils (MC series F type) Metal Multilayer Chip Power Inductors (MCOIL™ MC series) | REL | Iabi | LITY | ' DA | ٩ТА | |-----|------|------|------|-----| | | | | | | | 1. Operating Tempe | rature Range | | | | |--------------------|--------------|----------------|--|--| | F | BK0402 | | | | | | BK0603 | | | | | | BK1005 | | | | | | BKH0603 | | | | | | BKH1005 | | | | | | BK1608 | | | | | | BK2125 | | | | | | BK2010 | | | | | | ARRAY | BK3216 | | | | | BKP0402 | BROZTO | | | | | BKP0603 | | | | | | BKP1005 | | | | | | BKP1608 | | | | | | BKP2125 | | | | | | MCF 0605 | | | | | | MCF 0806 | | | | | MCF 1210 | | | -40~+85°C | | | | MCF 2010 | | | | | | CK1608 | | | | | | CK2125 | | | | | | CKS2125 | | | | | Specified Value | CKP1608 | | | | | | CKP2012 | | | | | | CKP2016 | | | | | | CKP2520 | | -40~+85°C | | | | NM2012 | | | | | | NM2520 | | | | | | LK1005 | | † | | | | LK1608 | | | | | | LK2125 | | † | | | | HKQ0402 | | | | | | HK0603 | | | | | | HK1005 | | - | | | | HK1608 | | | | | | HK2125 | | -40~+85°C | | | | HKQ0603W/HKQ | 0603S/HKQ0603U | | | | | AQ105 | | | | | | MCFK1608 | | | | | | MCFE1608 | | | | | | MCKK1608 | | | | | | MCHK2012 | | -40~+125°C (Including self-generated heat) | | | | | | † | | | | MCKK2012 | | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 0 Ct T | t D | | | | |--------------------|-------------------|------------------|-----------|--| | 2. Storage Tempera | BK0402 | | | | | | BK0603 | | | | | | | | | | | | BK1005
BKH0603 | | | | | | | | FF 140500 | | | | BKH1005 | | 55~+125°C | | | | BK1608 | | | | | | BK2125 | 1 | | | | | ARRAY | BK2010 | | | | | | BK3216 | | | | | BKP0402 | | | | | | BKP0603 | | | | | | BKP1005 | | | | | | BKP1608 | | | | | | BKP2125 | | | | | | MCF 0605 | | | | | | MCF 0806 | | -40~+85°C | | | | MCF 1210 | | | | | | MCF 2010 | | | | | | CK1608 | | | | | | CK2125 | | | | | Specified Value | CKS2125 | | | | | | CKP1608 | | _ | | | | CKP2012 | | | | | | CKP2016 | | -40∼+85°C | | | | CKP2520 | | | | | | NM2012 | | | | | | NM2520 | | | | | | LK1005 | | | | | | LK1608 | | | | | | LK2125 | | | | | | HKQ0402 | | | | | | HK0603 | | | | | | HK1005 | | | | | | HK1608 | | -40~+85°C | | | | HK2125 | | 10 1000 | | | | | KQ0603S/HKQ0603U | | | | | AQ105 | | | | | | MCFK1608 | | | | | | MCFE1608 | | | | | | MCKK1608 | | -40~+85°C | | | | MCHK2012 | | | | | | MCKK2012 | | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 3. Rated Current | | | | | | |------------------|----------|--------|--|--|--| | | BK0402 | | 150~750mA DC | | | | | BK0603 | | 100~500mA DC | | | | | BK1005 | | 120~1000mA DC | | | | | BKH0603 | | 115~450mA DC | | | | | BKH1005 | | 200~300mA DC | | | | | BK1608 | | 150~1500mA DC | | | | | BK2125 | | 200~1200mA DC | | | | | ARRAY | BK2010 | 100mA DC | | | | | ARRAT | BK3216 | 100~200mA DC | | | | | BKP0402 | | 0.55~1.1A DC | | | | | BKP0603 | | 0.8~1.8A DC | | | | | BKP1005 | | 0.8~2.4A DC | | | | | BKP1608 | | 1.0~3.0A DC | | | | | BKP2125 | | 1.5~4.0A DC | | | | | MCF 0605 | | 0.05A DC | | | | | MCF 0806 | | 0.1~0.13A DC | | | | | MCF 1210 | | 0.1~0.16A DC | | | | | MCF 2010 | | 0.1A DC | | | | | CK1608 | | 50~60mA DC | | | | | CK2125 | | 60~500mA DC | | | | | CKS2125 | | 110∼280mA DC | | | | Specified Value | CKP1608 | | 0.35~0.9A DC | | | | Specified value | CKP2012 | | 0.7~1.7A DC | | | | | CKP2016 | | 0.9~1.6A DC | | | | | CKP2520 | | 1.1~1.8A DC | | | | | NM2012 | | 1.0~1.2A DC | | | | | NM2520 | | 0.9~1.2A DC | | | | | LK1005 | | 20~25mA DC | | | | | LK1608 | | 1~150mA DC | | | | | LK2125 | | 5~300mA DC | | | | | HK0603 | | 60~470mA DC | | | | | HK1005 | | 110~300mA DC (-55~+125°C) 200~900mA DC (-55~+85°C) | | | | | HK1608 | | 150~300mA DC | | | | | HK2125 | | 300mA DC | | | | | HKQ0402 | | 100~500mA DC | | | | | HKQ0603W | | 100~850mA DC | | | | | HKQ0603S | | 130~600mA DC | | | | | HKQ0603U | | 190~900mA DC | | | | | AQ105 | | 280~710mA DC | | | | | MCFK1608 | | Idc1 : 1500~2300mA DC, Idc2 : 900~2100mA DC | | | | | MCFE1608 | | Idc1 : 1400~2600mA DC, Idc2 : 800~1500mA DC | | | | | MCKK1608 | | Idc1 : 2800~2000mA DC | | | | | 1 | | 1 | | | ### Definition of rated current: MCHK2012 MCKK2012 - •In the CK, CKS and BK Series, the rated current is the value of current at which the temperature of the element is increased within 20°C. - •In the BK Series P type, CK Series P type, NM Series, the rated current is the value of current at which the temperature of the element is increased within 40°C. - •In the LK, HK, HKQ0603, and AQ Series, the rated current is either the DC value at which the initial L value is decreased within 5% with the application of DC bias, or the value of current at which the temperature of the element is increased within 20°C. Idc1 : 2260~4320mA DC, Idc2 : 1470~3600mA DC Idc1 : 3600~6200mA DC, Idc2 : 2100~4000mA DC - •In the HKQ0402(~9N1), the rated current is either the DC value at which the initial L value is decreased within 5% with the application of DC bias, or the value of current at which the temperature of the element is increased within 20°C. - •In the HKQ0402(10N~), the rated current is either the DC value at which the initial L value is decreased within 5% with the application of DC bias, or the value of current at which the
temperature of the element is increased within 25°C. - •In the MC Series, Idc1 is the DC value at which the initial L value is decreased within 30% and Idc2 is the DC value at which the temperature of element is increased within 40°C by the application of DC bias. (at 20°C) [►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | ### Specified Value BC4029 | 4.7 | | | | |--|-----------------|---------------|----------------------|--| | BRK003 | 4. Impedance | DICOADO | | 10 0000 50(100 050(01) | | BR(1005 | | | | | | BRH-0003 | | | | | | BRH1005 | | | | | | BR1606 22~5000 ± 25% | | | | | | BR2125 | | | | | | ### ARRAV | | | | | | ARRAY | | | | | | BRP0402 | | ARRAY | | | | BKP0603 | | | 3210 | | | BRY1005 | | | | | | BRF0108 33~4709 ±29% BRF0125 33~4309 ±29% MCF 0905 12~909 ±501120, ±204030;2800,±25460;0 MCF 1910 40~900 ±204(21900),±254(0ther) MCF 2101 50.000 50.000 2012 2014 50.000 50.000 MCF 2015 50. | | | | | | BRP2125 33~300 ± 29% | | | | | | MCF 0805 | | | | | | MGF 1210 40 ~ 90 Ω ± 20 (219 0.0), ± 25 (20 0.0) MGF 2010 50 Ω ± 20 (219 0.0), ± 25 (20 0.0), ± 25 (20 0.0) MGF 2010 50 Ω ± 20 (219 0.0), ± 25 (20 0.0), ± 25 (20 0.0) CK1698 70 | | | | | | MCF 1210 | | | | | | McF 2010 | | | | | | Ck 1608 | | | | | | CK2125 | | | | 0011 120% | | Specified Value | | | | - | | CKP1608 | | | | | | CKP2012 | Specified Value | | | 1 | | CKP2507 | | | | 1 | | CKP2507 | | | | | | NM2520 | | | | 1 | | LK1005 | | NM2012 | | | | LK1508 | | NM2520 | | | | LK2125 | | LK1005 | | | | HKQ0402 | | LK1608 | | | | HK0603 | | LK2125 | | _ | | HK1005 | | HKQ0402 | | | | HK1608 | | HK0603 | | | | HK2125 | | HK1005 | | | | HKQ0603K/HKQ0603S/HKQ0603U | | | | | | AQ105 | | | | | | MCFK1608 | | | S/HKQ0603U | | | MCKK1608 | | | | | | MCKK2012 MCKK2012 BK0402Series, BKP0402Series Measuring frequency : 100±1MHz Measuring ig : 16197A(or its equivalent) Measuring frequency : 100±1MHz Measuring ig : 16193A(or its equivalent) Measuring ig : 16193A(or its equivalent) Measuring ig : 16193A(or its equivalent) Measuring frequency : 100±1MHz Measuring ig : 16192A(or its equivalent), 16193A(or its equivalent) Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring ig : 16092A(or its equivalent) or 16192A(or its equivalent)/HW Measuring frequency : 100±1MHz | | | | _ | | MCKK2012 BK0402Series, BKP0402Series Measuring frequency : 100±1MHz Measuring equipment : E4991A(or its equivalent) Measuring jig : 16197A(or its equivalent) BK0603Series, BKP0603Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent) Measuring jig : 16193A(or its equivalent) Measuring jig : 16193A(or its equivalent) Measuring jig : 16193A(or its equivalent) BK1005Series, BKP1005Series, BKH1005Series Measuring frequency : 100±1MHz Measuring gequipment : 4291A(or its equivalent), 16193A(or its equivalent) Measuring jig : 16192A(or its equivalent), 16193A(or its equivalent) Measuring frequency : 100±1MHz Measuring gequipment : 4291A(or its equivalent), 16192A(or its equivalent) Measuring jig : 16092A(or its equivalent), 16192A(or its equivalent) Measuring jig : 16092A(or its equivalent) or 16192A(or its equivalent)/HW BK2010·3216Series, MCF Series Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | | | _ | | BK0402Series, BKP0402Series | | | | - | | BK0402Series, BKP0402Series Measuring frequency : 100±1MHz Measuring gequipment : E4991A (or its equivalent) Measuring jig : 16197A (or its equivalent) BK0603Series, BKP0603Series Measuring frequency : 100±1MHz Measuring gequipment : 4291A (or its equivalent) Measuring jig : 16193A (or its equivalent) Measuring jig : 16193A (or its equivalent) Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring gequipment : 4291A (or its equivalent), 16193A (or its equivalent) Measuring frequency : 100±1MHz equipment : 4291A (or its equivalent), 4195A (or its equivalent) | | | | - | | Measuring frequency : 100±1MHz Measuring jig : 16197A(or its equivalent) BK0603Series, BKP0603Series Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring gequipment : 4291A(or its equivalent) Measuring jig : 16193A(or its equivalent) Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring gequipment : 4291A(or its equivalent), 16193A(or its equivalent) Measuring jig : 16192A(or its equivalent), 16193A(or its equivalent) Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring gequipment : 4291A(or its equivalent), 4195A(or its equivalent)/HW BK2010-3216Series, MCF Series Measuring frequency : 100±1MHz 4291A(or its equivalent), 4195A(or its equivalent) | | | 125 orion | | | Measuring equipment : E4991A(or its equivalent) Measuring jig : 16197A(or its equivalent) BK0603Series, BKP0603Series Measuring frequency : 100±1MHz Measuring jig : 16193A(or its equivalent) Measuring jig : 16193A(or its equivalent) Measuring jig : 16193A(or its equivalent) BK1005Series, BKP1005Series ,BKH1005Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent) Measuring jig : 16192A(or its equivalent), 16193A(or its equivalent) Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) Measuring jig : 16092A(or its equivalent) or 16192A(or its equivalent) Measuring frequency : 100±1MHz equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | , | | | | Measuring jig : 16197A(or its equivalent) BK0603Series, BKP0603Series Measuring frequency : 100±1MHz Measuring giquipment : 4291A(or its equivalent) Measuring jig : 16193A(or its equivalent) Measuring jig : 16193A(or its equivalent) BK1005Series, BKP1005Series BKH1005Series BK1005Series, BKH1005Series Measuring frequency : 100±1MHz Measuring gequipment : 4291A(or its equivalent), 16193A(or its equivalent) Measuring jig : 16192A(or its equivalent), 16193A(or its equivalent) BK1608·2125Series, BKP1608·2125Series Measuring frequency : 100±1MHz Measuring jig : 16092A(or its equivalent), 4195A(or its equivalent)/HW BK2010·3216Series, MCF Series Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring frequency : 4291A(or its equivalent), 4195A(or its equivalent) | | | | uivalent) | | BK0603Series, BKP0603Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent) Measuring jig : 16193A(or its equivalent) BK1005Series, BKP1005Series BKH1005Series Test Methods and Remarks Measuring frequency : 100±1MHz Measuring gequipment : 4291A(or its equivalent), 16193A(or its equivalent) Measuring jig : 16192A(or its equivalent), 16193A(or its equivalent) BK1608*2125Series, BKP1608*2125Series Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring jig : 16092A(or its equivalent) or 16192A(or its equivalent)/HW BK2010*3216Series, MCF Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | | | | | Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent) Measuring jig : 16193A(or its equivalent) BK1005Series, BKP1005Series BKH1005Series Test Methods and Remarks Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent) Measuring jig : 16192A(or its equivalent), 16193A(or its equivalent) BK1608·2125Series, BKP1608·2125Series Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its
equivalent) Measuring jig : 16092A(or its equivalent) or 16192A(or its equivalent)/HW BK2010·3216Series, MCF Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | | | | | Measuring equipment : 4291A(or its equivalent) Measuring jig : 16193A(or its equivalent) BK1005Series, BKP1005Series ,BKH1005Series Test Methods and Remarks Measuring frequency : 100±1MHz Measuring jig : 16192A(or its equivalent) Measuring jig : 16192A(or its equivalent) Measuring frequency : 100±1MHz Measuring jig : 16092A(or its equivalent) or 16192A(or its equivalent)/HW BK2010•3216Series, MCF Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | | | | | BK1005Series, BKP1005Series ,BKH1005Series Test Methods and Remarks Measuring frequency : 100±1MHz Measuring jig : 16192A(or its equivalent), 16193A(or its equivalent) BK1608•2125Series, BKP1608•2125Series Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring jig : 16092A(or its equivalent), 4195A(or its equivalent)/HW BK2010•3216Series, MCF Series Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring frequency : 4291A(or its equivalent), 4195A(or its equivalent) | | | : 4291A (or its equi | ivalent) | | Test Methods and Remarks Measuring frequency : 100±1MHz Measuring jig : 16192A(or its equivalent), 16193A(or its equivalent) BK1608·2125Series, BKP1608·2125Series Measuring frequency : 100±1MHz Measuring frequency : 100±1MHz Measuring jig : 16092A(or its equivalent), 4195A(or its equivalent) Measuring jig : 16092A(or its equivalent) or 16192A(or its equivalent)/HW BK2010·3216Series, MCF Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | | | uivalent) | | Remarks Measuring equipment : 4291A(or its equivalent) Measuring jig : 16192A(or its equivalent), 16193A(or its equivalent) BK1608 • 2125Series, BKP1608 • 2125Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) Measuring jig : 16092A(or its equivalent) or 16192A(or its equivalent)/HW BK2010 • 3216Series, MCF Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | | | | | Measuring jig : 16192A(or its equivalent), 16193A(or its equivalent) BK1608•2125Series, BKP1608•2125Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) Measuring jig : 16092A(or its equivalent) or 16192A(or its equivalent)/HW BK2010•3216Series, MCF Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | | | | | BK1608 • 2125Series, BKP1608 • 2125Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) Measuring jig : 16092A(or its equivalent) or 16192A(or its equivalent)/HW BK2010 • 3216Series, MCF Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | Remarks | | | | | Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) Measuring jig : 16092A(or its equivalent) or 16192A(or its equivalent)/HW BK2010•3216Series, MCF Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | | | uivalent), 16193A(or its equivalent) | | Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) Measuring jig : 16092A(or its equivalent) or 16192A(or its equivalent)/HW BK2010•3216Series, MCF Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | | | | | Measuring jig : 16092A(or its equivalent) or 16192A(or its equivalent)/HW BK2010•3216Series, MCF Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | | | ivalent) 4195A(or its equivalent) | | BK2010•3216Series, MCF Series Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | | | | | Measuring frequency : 100±1MHz Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | | · · | analy of 101001(or to oquitalone)/1111 | | Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent) | | | | | | Measuring jig : 16192A(or its equivalent) | | | | ivalent), 4195A(or its equivalent) | | | | Measuring jig | : 16192A(or its equ | uivalent) | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 5. Inductance | | | | |------------------|---|--------------------------------|--| | | BK0402 | | | | | BK0603 | | | | | BK1005 | | | | | BKH0603 | | | | | BKH1005 | | | | | BK1608 | | † | | | BK2125 | | - | | | BK2010 | | - | | | ARRAY BK3216 | | | | | BKP0402 | | - | | | BKP0603 | | - | | | | | - | | | BKP1005
BKP1608 | | - | | | | | - | | | BKP2125 | | - | | | MCF 0605 | | - | | | MCF 0806 | | - | | | MCF 1210 | | - | | | MCF 2010 | | 47 100 11 1000 | | | CK1608 | | 4.7~10.0 µH: ±20% | | | CK2125 | | 0.1~10.0 µH: ±20% | | | CKS2125 | | 1.0~10.0 µH: ±20% | | | CKP1608 | | 0.33~2.2 µH: ±20% | | Specified Value | CKP2012 | | 0.47~4.7 µH: ±20% | | | CKP2016 | | 0.47~4.7 µH: ±20% | | | CKP2520 | | 0.47~4.7 µH: ±20% | | | NM2012 | | 0.82~1.0 µH: ±20% | | | NM2520
LK1005 | | 1.0~2.2 µH: ±20% | | | | | 0.12~2.2 μH: ±10 or 20% | | | LK1608 | | 0.047~33.0 \(\mu\)H: \(\pm 20\)% \(0.10~12.0 \(\mu\)H: \(\pm 10\)% | | | LK2125 | | 0.047~33.0 \(\mu\)H: \(\pm 20\)% \(0.10~12.0 \(\mu\)H: \(\pm 10\)% | | | HK0603 | | 1.0~6.2nH: ±0.3nH 6.8~100nH: ±5% | | | HK1005 | | 1.0~6.2nH: ±0.3nH 6.8~270nH: ±5% | | | HK1608 | | 1.0~5.6nH: ±0.3nH 6.8~470nH: ±5% | | | HK2125 | | 1.5~5.6nH: ±0.3nH 6.8~470nH: ±5% | | | HKQ0402 | | 0.5~3.9nH: ±0.1 or 0.2 or 0.3nH 4.3~5.6nH: ±0.3nH or 3% or 5% | | | | | 6.2~47nH: ±3 or 5% | | | HKQ0603W | | $0.6 \sim 3.9$ nH: ± 0.1 or 0.2 or 0.3 nH $4.3 \sim 6.2$ nH: ± 0.2 or 0.3 nH or 3 or 5% | | | HKQ0603S | | 6.8~30nH: ±3 or 5% 33~100nH: ±5% | | | HKQ0603U | | 0.6~6.2nH: ±0.2 or 0.3nH 6.8~22nH: ±3 or 5%
0.6~4.2nH: ±0.1 or 0.2 or 0.3nH 4.3~6.5nH: ±0.2 or 0.3nH 6.8~22nH: ±3 or 5% | | | | | | | | AQ105 | | 1.0~6.2nH: ±0.3nH 6.8~15nH: ±5% | | | MCFK1608 | | 0.24~1.0 µH: ±20% | | | MCFE1608 | | 0.24~1.0 µH: ±20% | | | MCKK1608 | | 0.24~1.0 µH: ±20%
0.24~1.0 µH: ±20% | | | MCHK2012 | | | | | MCKK2012 | | 0.24~1.0 μH: ±20% | | | CK, LK, CKP, NM, MC Series | : 2~4MHz(CK16 | 808) | | | Measuring frequency Measuring frequency | : 2~4MHz(CK16
: 2~25MHz(CK2 | | | | Measuring frequency | : 2~25MHz(CK2 | | | | Measuring frequency | : 10~25MHz(LK | | | | Measuring frequency | : 1~50MHz(LK1 | | | | Measuring frequency | : 0.4~50MHz(LH | | | | Measuring frequency | | 8 • CKP2012 • CKP2016 • CKP2520 • NM2012 • NM2520 • MCFK1608 • MCFE1608 • MCHK2012 • MCKK2012) | | | Measuring equipment /jig | | B+16092A(or its equivalent) •4195A+41951+16092A(or its equivalent) | | | , 5.6 | | 2A(or its equivalent) ·4291A+16193A(or its equivalent)/LK1005 | | | | | 11A + 42842C + 42851 - 61100 (or its equivalent) / CKP1608 · CKP2012 · CKP2016 · CKP2520 · NM2012 · | | | | NM2520 · MCF | K1608·MCFE1608·MCKK1608·MCHK2012·MCKK2012 | | Test Methods and | Measuring current | :•1mA rms (0.047 | 7~4.7 μH) | | Remarks | | •0.1mA rms(5.6 | 6~33 (H) | | | HK、HKQ、AQ Series | 0.1110 (0.0 | 0 00 July | | | Measuring frequency | : 100MHz(HK060 | 03+HK1005+AQ105) | | | Measuring frequency | : 50/100MHz(Hk | | | | Measuring frequency | | 603S • HKQ0603U) | | | Measuring frequency | : 300/500MHz(H | | | | Measuring frequency | : 100/500MHz(H | | | | Measuring equipment /jig | :•4291A+16197 | A(or its equivalent)/HK0603·AQ105 | | | | •4291A + 16193 | 3A(or its equivalent)/HK1005 | | | | | 97A(or its equivalent)/HKQ0603S+HKQ0603U+HKQ0603W | | | | | 2A + in-house made jig(or its equivalent)/HK1608 · HK2125 | | | | •E4991A+161 | 96D (or its equivalent) / HKQ0402 | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 0.0 | | | | |------------------|--|-----------------|---| | 6. Q | BK0402 | | | | | BK0402
BK0603 | | - | | | BK1005 | | - | | | BKH0603 | | 1 | | | BKH1005 | | - | | | BK11003 | | - | | | BK2125 | | - | | | BK2010 | | - | | | ARRAY BK3216 | | - | | | BKP0402 | | | | | BKP0603 | | - | | | BKP1005 | | 1 | | | BKP1608 | | 1 | | | BKP2125 | | | | | MCF 0605 | | | | | MCF 0806 | | | | | MCF 1210 | | | | | MCF 2010 | | | | Specified Value | CK1608 | | | | | CK2125 | | | | | CKS2125 | | | | | CKP1608 | | | | | CKP2012 | | _ | | | CKP2016 | | | | | CKP2520 | | | | | NM2012 | | | | | NM2520 | | | | | LK1005 | | 10~20 min. | | | LK1608 | | 10~35 min.
15~50 min. | | | LK2125
HK0603 | | 4~5 min. | | | HK1005 | | 8 min. | |
| HK1608 | | 8~12 min. | | | HK2125 | | 10~18 min. | | | HKQ0402 | | 3~8 min. | | | HKQ0603W | | 6~15 min. | | | HKQ0603S | | 10~13 min. | | | HKQ0603U | | 14 min. | | | AQ105 | | 8 min. | | | MCFK1608 | | | | | MCFE1608 | | _ | | | MCKK1608 | | | | | MCHK2012 | | | | | MCKK2012 | | | | | LK Series Measuring frequency: 10~25MHz(LK100 | | 205) | | | Measuring frequency | : 1~50MHz(LK160 | | | | Measuring frequency : 0.4~50MHz(LK100 | | | | | | | +16092A(or its equivalent) | | | 3 11 33 | | -16092A (or its equivalent) | | | •4294A+16192A(•4291A+16193A(Measuring current •1mA rms(0.047~ •0.1mA rms(5.6~ | | (or its equivalent) | | | | | (or its equivalent)/LK1005 | | | | | · | | Test Methods and | | | -33 μH) | | Remarks | HK, HKQ, AQ Series | | THY COSE A CASE | | Tomano | Measuring frequency : 100MHz(HK0603* | | | | | Measuring frequency : 50/100MHz(HK16
Measuring frequency : 500MHz(HKQ060) | | | | | Measuring frequency : 300/500MHz(HKQ | | | | | Measuring frequency : 300/300MHz(HKG | | | | | | | (or its equivalent)/HK0603•AQ105 | | | | | (or its equivalent)/HK1005 | | | •E4991A+16197/
•4291A+16092A | | A(or its equivalent)/HKQ0603S+HKQ0603U+HKQ0603W | | | | | + in-house made jig(or its equivalent)/HK1608, HK2125 | | | | •E4991A+16196 | D(or its equivalent)HKQ0402 | | | | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 7. DC Resistance | | | | | |-----------------------------|--------------------|---|--------------------------------------|--| | | BK0402 | | 0.07∼1.2Ωmax. | | | | BK0603 | | 0.065∼1.50 Ω max. | | | | BK1005 | | 0.03~0.90 Ω max. | | | | BKH0603 | | 0.26~3.20 Ω max. | | | | BKH1005 | | 0.85~2.00 Ω max. | | | | BK1608 | | 0.05∼1.10Ω max. | | | | BK2125 | | 0.05~0.75Ω max. | | | | | BK2010 | 0.10~0.90Ω max. | | | | ARRAY | BK3216 | 0.15~0.80 Ω max. | | | | BKP0402 | | 0.05~0.15 Ω max. | | | | BKP0603 | | 0.030~0.180Ω max. | | | | BKP1005 | | 0.0273~0.220Ω max. | | | | BKP1608 | | 0.025~0.18 Ω max. | | | | BKP2125 | | 0.020~0.075Ω max. | | | | MCF 0605 | | 2.5~5.0Ω max | | | | MCF 0806 | | 1.5~5.0 Ω max. | | | | MCF 1210 | | 1.5~4.5 Ω max. | | | | MCF 2010 | | 4.5Ω max. | | | | CK1608 | | $0.45 \sim 0.85 \Omega(\pm 30\%)$ | | | | CK2125 | | 0.16~0.65 Ω max. | | | | CKS2125 | | 0.12~0.52 Ω max. | | | | CKP1608 | | 0.15~0.35 Ω max. | | | Specified Value | CKP2012 | | 0.08~0.28 Ω max. | | | | CKP2012
CKP2016 | | 0.075~0.20 Ω max | | | | CKP2520 | | 0.05~0.16 Ω max. | | | | NM2012 | | 0.10~0.15Ω max. | | | | NM2520 | | 0.11~0.22 Ω max. | | | | LK1005 | | 0.41 ~ 1.16 Ω max. | | | | LK1608 | | $0.2\sim2.2\Omega$ max. | | | | LK2125 | | 0.2 × 2.2 x max.
0.1 ~ 1.1 Ω max. | | | | HK0603 | | 0.11~3.74Ω max. | | | | HK1005 | | 0.08~4.8Ω max. | | | | HK1608 | | 0.05~2.6 Ω max. | | | | HK2125 | | 0.05~2.6 Ω max. | | | | HKQ0402 | | 0.10~1.5 Ω max.
0.08~5.0 Ω max. | | | | · · | | | | | | HKQ0603W | | 0.07~4.1 Ω max. | | | | HKQ0603S | | 0.06~1.29 Ω max. | | | | HKQ0603U | | 0.06~1.29 Ω max. | | | | AQ105 | | 0.07~0.45Ω max. | | | | MCFK1608 | | 0.050~0.224Ω max. | | | | MCFE1608 | | 0.100~0.340Ω max. | | | | MCKK1608 | | 0.038~0.123Ω max. | | | | MCHK2012 | | 0.024~0.111Ω max. | | | | MCKK2012 | | 0.025 ~ 0.090 Ω max. | | | Test Methods and
Remarks | Measuring equipm | Measuring equipment: VOAC-7412, VOAC-7512, VOAC-7521 (made by Iwasaki Tsushinki), HIOKI3227 (or its equivalent) | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 8. Self Resonance Frequency(SRF) | | | | | | |----------------------------------|---|---------|-----------------------|--|--| | | BK0402 | | | | | | | BK0603 | | | | | | | BK1005 | | | | | | | BKH0603 | | | | | | | BKH1005 | | | | | | | BK1608 | | | | | | | BK2125 | | | | | | | ARRAY | BK2010 | | | | | | | BK3216 | | | | | | BKP0402 | BITOLIO | | - | | | | BKP0603 | | | | | | | BKP1005 | | | | | | | BKP1608 | | | | | | | | | | | | | | BKP2125
MCF 0605 | | | | | | | MCF 0806 | | | | | | | MCF 0808 | | | | | | | | | | | | | | MCF 2010 | | | 1705MH | | | | CK1608 | | | 17~25MHz min. | | | | CK2125 | | | 24~235MHz min. | | | | CKS2125 | | | 24~75MHz min. | | | Specified Value | CKP1608 | | | | | | | CKP2012 | | | | | | | CKP2016 | | | _ | | | | CKP2520 | | | | | | | NM2012 | | | | | | | NM2520 | | | | | | | LK1005 | | | 40~180MHz min. | | | | LK1608 | | | 9~260MHz min. | | | | LK2125 | | | 13~320MHz min. | | | | HK0603 | | | 900~10000MHz min. | | | | HK1005 | | | 400~10000MHz min. | | | | HK1608 | | | 300∼10000MHz min. | | | | HK2125 | | | 200~4000MHz min. | | | | HKQ0402 | | | 1200~10000MHz min. | | | | HKQ0603W | | | 800~10000MHz min. | | | | HKQ0603S | | | 1900~10000MHz min. | | | | HKQ0603U | | | 1900∼10000MHz min. | | | | AQ105 | | | 2300~10000MHz min. | | | | MCFK1608 | | | | | | | MCFE1608 | | | | | | | MCKK1608 | | |] - | | | | MCHK2012 | | | | | | | MCKK2012 | | <u> </u> | | | | | LK, CK Series : | | | | | | Test Methods and | Measuring equipment : 4195A (or its equiv | | : 4195A (or its equiv | valent) | | | Remarks | Measuring jig : 41951+16092A(or | | : 41951+16092A(o | or its equivalent) | | | Remarks | HK、HKQ、AQ Series: | | | | | | | Measuring equipment : 8719C (or its equiv | | | valent) •8753D (or its equivalent) /HK2125 | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 9. Temperature Characteristic | | | | | | | |-------------------------------|--|-----------|--------|----------------------------------|--|--| | | BK0402 | | | | | | | | BK0603 | | | | | | | | BK1005 | | | | | | | | BKH0603 | | | | | | | | BKH1005 | | | | | | | | BK1608 | | | | | | | | BK2125 | | | | | | | | ARRAY | BK2010 | | | | | | | | BK3216 | | | | | | | BKP0402 | | | | | | | | BKP0603 | | | _ | | | | | BKP1005 | | | | | | | | BKP1608 | | | | | | | | BKP2125 | | | | | | | | MCF 0605 | | | | | | | | MCF 0806 | | | | | | | Specified Value | MCF 1210 | | | | | | | | MCF 2010 | | | | | | | | CK1608 | | | | | | | | CK2125 | | | | | | | | CKS2125 | | | | | | | | CKP1608 | | | | | | | opcomed value | CKP2012 | | | | | | | | CKP2016 | | | | | | | | CKP2520 | | | | | | | | NM2012 | | | | | | | | NM2520 | | | | | | | | LK1005 | | | | | | | | LK1608 | | | | | | | | LK2125 | | | | | | | | HK0603 | | | | | | | | HK1005 | | | | | | | | HK1608 | | | | | | | | HK2125 | | | | | | | | HKQ0402 | | | | | | | | HKQ0603W | | | | | | | | HKQ0603S | | | Inductance change:Within ±10% | | | | | HKQ0603U | | | Inductance change. Within ± 1070 | | | | | AQ105 | | | | | | | | MCFK1608 | | | | | | | | MCFE1608 | | | | | | | | MCKK1608 | | | | | | | | MCHK2012 | | | | | | | | MCKK2012 | | | | | | | | HK, HKQ, AQ Series: | | | | | | | | Temperature range : −30~ +85°C | | | | | | | Test Methods and | Reference temperature : +20°C | | | | | | | Remarks | MC Series: | | | | | | | | Temperature range : -40~+85°C Reference temperature : +20°C | | | | | | | | reference temp | ici ature | . 1200 | | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 11. Solderability | I =1/0./00 | | | |--------------------------|--|-------------------------|--| | | BK0402 | | | | | BK0603 | | | | | BK1005 | | | | | BKH0603 | | | | | BKH1005 | | | | | BK1608 | | | | | BK2125 | | | | | ARRAY | BK2010 | | | | | BK3216 | | | | BKP0402 | | | | | BKP0603 | | | | | BKP1005 | | | | | BKP1608 | | | | | BKP2125 | | | | | MCF 0605 | | | | | MCF 0806 | | | | | MCF 1210 | | | | | MCF 2010 | | | | | CK1608 | | | | | CK2125 | | | | | CKS2125 | | | | Specified Value | CKP1608 | | At least 90% of terminal electrode is covered by new solder. | | Specified Value | CKP2012 | | | | | CKP2016 | | | | | CKP2520 | | | | | NM2012 | | | | | NM2520 | | | | | LK1005 | | | | | LK1608 | | | | | LK2125 | | | | | HK0603 | | | | | HK1005 | | | | | HK1608 | | | | | HK2125 | | | | | HKQ0402 | | | | | HKQ0603W | | | | | HKQ0603S | | | | | HKQ0603U | | | | | AQ105 | | | | | MCFK1608 | | | | | MCFE1608 | | | | | MCKK1608 | | | | | MCHK2012 | | | | | MCKK2012 | | | | Toot Mothede and | Solder temperatu | ure : 230±5°C (JIS Z 32 | 282 H60A or H63A) | | Test Methods and Remarks | Solder temperature : 245±3°C (Sn/3.0Ag | | .g/0.5Cu) | | Nemarks | Duration | :4±1 sec. | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For
details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 12. Resistance to Sold | _ | | | | | | | |------------------------|---------------------|------------------|-------------------|--|--|--|--| | | BK0402 | | | | | | | | | BK0603 | | | | | | | | | BK1005 | | | | | | | | | BKH0603 | | | | | | | | | BKH1005 | | | | | | | | | BK1608 | | | | | | | | | BK2125 | | | Appearance: No significant abnormality | | | | | | ARRAY | BK2010 | | Impedance change:Within ±30% | | | | | | | BK3216 | | | | | | | | BKP0402 | | | | | | | | | BKP0603 | | | | | | | | | BKP1005 | | | | | | | | | BKP1608 | | | | | | | | | BKP2125 | | | | | | | | | MCF 0605 | | | | | | | | | MCF 0806 | | | Appearance: No significant abnormality | | | | | | MCF 1210 | | | Impedance change: Within ±20% | | | | | | MCF 2010 | | | | | | | | | CK1608 | | | | | | | | | CK2125 | | | Appearance: No significant abnormality | | | | | | CKS2125 | | | Inductance change | | | | | | CKP1608 | | | R10~4R7: Within ±10% | | | | | 0 '6 17/1 | CKP2012 | | | 6R8~100: Within ±15% CKS2125: Within ±20% | | | | | Specified Value | CKP2016 | | | | | | | | | CKP2520 | | | CKP1608、CKP2012、CKP2016、CKP2520、NM2012、NM2520: Within ±30% | | | | | | NM2012 | | | | | | | | | NM2520 | | | A N 1 100 A 1 100 | | | | | | LK1005 | | | Appearance: No significant abnormality | | | | | | I K1600 | | | Inductance change: Within ±15% | | | | | | LK1608 | | | Appearance: No significant abnormality Inductance change | | | | | | LK2125 | | | 47N~4R7: Within ±10% | | | | | | | | | 5R6~330: Within ±15% | | | | | | HK0603 | | | | | | | | | HK1005 | | | | | | | | | HK1608 | | | | | | | | | HK2125 | | | | | | | | | HKQ0402 | | | Appearance: No significant abnormality | | | | | | HKQ0603W | | | Inductance change: Within ±5% | | | | | | HKQ0603S | | | | | | | | | HKQ0603U | | | | | | | | | AQ105 | | | | | | | | | MCFK1608 | | | | | | | | | MCFE1608 | | | A N 1 20 A 1 12 | | | | | | MCKK1608 | | | Appearance: No significant abnormality | | | | | | MCHK2012 | | | Inductance change: Within ±10% | | | | | | MCKK2012 | | | | | | | | | Solder temperatu | re : | :260±5°C | | | | | | | Duration | | :10±0.5 sec. | | | | | | Test Methods and | Preheating tempe | erature : | :150 to 180°C | | | | | | Remarks | Preheating time | | : 3 min. | | | | | | | | | | methanol solution with colophony for 3 to 5 sec. | | | | | (1) (1) 12" | Recovery | | | covery under the standard condition after the test.(See Note 1) | | | | | (Note 1) When there a | re questions concer | rning measuremen | t result; measure | ement shall be made after 48±2 hrs of recovery under the standard condition. | | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 12 Th 1 Cl | | | | | | | |-------------------|-----------------------------------|---|---|-----------------------------------|--|--| | 13. Thermal Shock | DKO400 | | 1 | | | | | | BK0402 | | | | | | | | BK0603 | | - | | | | | | BK1005 | | - | | | | | | BKH0603 | | - | | | | | | BKH1005 | | - | | | | | | BK1608 | | | | | | | | BK2125 | T = | | gnificant abnormality | | | | | ARRAY | BK2010 | Impedance change | : Within ±30% | | | | | | BK3216 | | | | | | | | BKP0402 | | | | | | | BKP0603 | | - | | | | | | BKP1005 | | - | | | | | | BKP1608 | | - | | | | | | BKP2125 | | | | | | | | MCF 0605 | | | | | | | | MCF 0806 | | | gnificant abnormality | | | | | MCF 1210 | | Impedance change | : WITNIN ±20% | | | | | MCF 2010 | | A | 20 | | | | | CK1608 | | | gnificant abnormality | | | | | CK2125 | | | :Within ±20% Q change:Within ±30% | | | | | CKS2125 Specified Value CKP1608 | | Appearance: No significant abnormality Inductance change: Within ±20% | | | | | Specified Value | | | | | | | | • | CKP2012 | | 1 | | | | | | CKP2016 | | Appearance: No sig | gnificant abnormality | | | | | CKP2520 | | Inductance change | | | | | | NM2012 | | | | | | | | NM2520 | | | | | | | | LK1005 | | | 200 | | | | | LK1608 | | Appearance: No significant abnormality | | | | | | LK2125 | | Inductance change: Within ±10% Q change: Within ±30% Appearance: No significant abnormality Inductance change: Within ±10% Q change: Within ±20% | | | | | | HK0603 | | | | | | | | HK1005 | | | | | | | | HK1608 | | | | | | | | HK2125 | | | | | | | | HKQ0402 | | | | | | | | HKQ0603W | | | | | | | | HKQ0603S | | | | | | | | HKQ0603U | |] | | | | | | AQ105 | | | | | | | | MCFK1608 | | | | | | | | MCFE1608 | | Annearance : No sis | gnificant abnormality | | | | | MCKK1608 | | Inductance change | | | | | | MCHK2012 | | | . main =1070 | | | | | MCKK2012 | | | | | | | | Conditions for 1 | | | | | | | | Step | temperature(°C) | | time (min.) | | | | | 1 | Minimum operating temperatur | e +0/-3 | 30±3 | | | | Test Methods and | 2 | Room temperature | | 2~3 | | | | Remarks | 3 | Maximum operating temperatur | re +3/-0 | 30±3 | | | | | 4 | Room temperature | | 2~3 | | | | | Number of cycle | es:5
3 hrs of recovery under the standar | al accordistant - O 1 | test (See Note 1) | | | | | i Recovery: 2 to 3 | o nrs of recovery under the standar | a condition after the | Lest. (See Note 1) | | | Recovery: 2 to 3 hrs of recovery under the standard condition after the test. (See Note 1) (Note 1) When there are questions concerning measurement result; measurement shall be made after 48±2 hrs of recovery under the standard condition. [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 14. Damp Heat (Stea | | | | | |-----------------------|------------------------------|---|--|--| | | BK0402 | | | | | | BK0603 | | | | | | BK1005 | | | | | | BKH0603 | | | | | | BKH1005 | | | | | | BK1608 | | | | | | BK2125 | Appearance: No significant abnormality | | | | | ARRAY BK2010 | Impedance change: Within ±30% | | | | | BK3216 | | | | | | BKP0402 | | | | | | BKP0603 | | | | | | BKP1005 | | | | | | BKP1608 | | | | | | BKP2125 | | | | | | MCF 0605 | | | | | | MCF 0806 | Appearance: No significant abnormality | | | | | MCF 1210 | Impedance change: Within ±20% | | | | | MCF 2010 | Account No. 100 Count do not the | | | | | CK1608 | Appearance: No significant abnormality | | | | | CK2125 | Inductance change: Within ±20% Q change: Within ±30% | | | | | CKS2125 | Appearance: No significant abnormality Inductance change: Within ±20% | | | | 0 :5 17/1 | CKP1608 | | | | | Specified Value | CKP2012 | | | | | | CKP2016 | Appearance: No significant abnormality | | | | | CKP2520 | Inductance change: Within ±30% | | | | | NM2012 | | | | | | NM2520 | | | | | | LK1005 | Appearance: No significant abnormality | | | | | LK1608 | Inductance change: Within ±10% Q change: Within ±30% | | | | | LK2125 | Appearance: No significant abnormality | | | | | HK0603 | Inductance change: Within ±20% Q change: Within ±30% | | | | | HK1005 | | | | | | HK1608 | | | | | | HK2125 | A No. of the last | | | | | HKQ0402 | Appearance: No significant abnormality | | | | | HKQ0603W | Inductance change: Within ±10% Q change: Within ±20% | | | | | HKQ0603S | | | | | | HKQ0603U | | | | | | AQ105 | | | | | | MCFK1608 | | | | | | MCFE1608 | Appearance: No significant abnormality | | | | | MCKK1608 | Appearance: No
significant abnormality Inductance change: Within ±10% | | | | | MCHK2012 | inductance change. Within ± 1070 | | | | | MCKK2012 | | | | | <u> </u> | BK, BKP, BKH, LK, CK, CKS, (| KP, NM Series, MCF Series: | | | | | Temperature :40±2°C | | | | | | Humidity : 90 to 95%F | | | | | | Duration : 500 +24/-0 | | | | | Test Methods and | Recovery : 2 to 3 hrs o | recovery under the standard condition after the removal from test chamber.(See Note 1) | | | | Remarks | HK, HKQ, AQ, MC Series: | | | | | | Temperature :60±2°C | | | | | | Humidity :90 to 95%F | Н | | | | | Duration :500 +24/-0 | | | | | | | recovery under the standard condition after the removal from test chamber.(See Note 1) | | | | (Note 1) When there a | | ent result; measurement shall be made after 48±2 hrs of recovery under the standard condition. | | | | | | • | | | [►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 15. Loading under Dan | i | | | | | |-----------------------|--|----------------------------------|---|--|--| | | BK0402 | | 4 | | | | | BK0603 | | <u> </u> | | | | | BK1005 | | <u> </u> | | | | | BKH0603 | | <u> </u> | | | | | BKH1005 | | | | | | | BK1608 | | | | | | | BK2125 | | Appearance: No significant abnormality | | | | | ARRAY BK2010 | | Impedance change: Within ±30% | | | | | В | K3216 | | | | | | BKP0402 | | | | | | | BKP0603 | | | | | | | BKP1005 | | | | | | | BKP1608 | | | | | | | BKP2125 | | | | | | | CK1608 | | Appearance: No significant abnormality | | | | | CK2125 | | Inductance change: Within ±20% Q change: Within ±30% | | | | | CKS2125 | | Appearance: No significant abnormality | | | | | ONOZIZO | | Inductance change: Within ±20% | | | | | CKP1608 | | | | | | | CKP2012 | | | | | | | CKP2016 | | Appearance: No significant abnormality | | | | | CKP2520 | | Inductance change: Within ±30% | | | | Specified Value | NM2012 | | | | | | | NM2520 | | | | | | | LK1005 | | Appearance: No significant abnormality | | | | | ENTOGO | | Inductance change: Within ±10% Q change: Within ±30% | | | | | | | Appearance: No significant abnormality | | | | | LK1608 | | Inductance change: $0.047 \sim 12.0 \mu\text{H}$: Within $\pm 10\%$ $15.0 \sim 33.0 \mu\text{H}$: Within $\pm 15\%$ | | | | | | | Q change: Within ±30% | | | | | LK2125 | | Appearance: No significant abnormality | | | | | LUCOCOC | | Inductance change: Within ±20% Q change: Within ±30% | | | | | HK0603 | | - | | | | | HK1005 | | - | | | | | HK1608
HK2125 | | - | | | | | | | Appearance: No significant abnormality | | | | | HKQ0402 | | Inductance change: Within ±10% Q change: Within ±20% | | | | | HKQ0603W | | 4 | | | | | HKQ0603S | | - | | | | | HKQ0603U | | 4 | | | | | AQ105 | | | | | | | MCFK1608※ | | - | | | | | MCFE1608※ | | Appearance: No significant abnormality | | | | | MCKK1608※ | | Inductance change: Within ±10% | | | | | MCHK2012※
MCKK2012※ | | - | | | | | | OK OKE OKE NIM C: | | | | | | Temperature | CK、CKS、CKP、NM Series:
:40±2°C | | | | | | Humidity | : 90 to 95%RH | | | | | | Applied current | : Rated current | | | | | | Duration Duration | :500 +24/-0 hrs | | | | | | Recovery | | der the standard condition after the removal from test chamber.(See Note 1) | | | | Test Methods and | HK, HKQ, AQ, MC Series: | | | | | | Remarks | | | | | | | | Temperature | :60±2°C | | | | | | Humidity | :90 to 95%RH | | | | | | Applied current | :Rated current ※MC ser | ies ; Idc2max | | | | | Duration | :500 +24/-0 hrs | | | | | | Recovery | :2 to 3 hrs of recovery un | der the standard condition after the removal from test chamber.(See Note 1) | | | | Make an akandandaan | office "devoted and time" unformed to begin in defined as fellows. | | | | | Note on standard condition: "standard condition" referred to herein is defined as follows: 5 to $35^{\circ}\!\text{C}\,$ of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure. When there are questions concerning measurement results: In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}C$ of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition." (Note 1) Measurement shall be made after 48 ± 2 hrs of recovery under the standard condition. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 16. Loading at High Te | mperature | | |-----------------------------|---|--| | | BK0402 | | | | BK0603 | | | | BK1005 | | | | BKH0603 | | | | BKH1005 | | | | BK1608 | | | | BK2125 | Appearance: No significant abnormality | | | BK2010 | Impedance change: Within ±30% | | | ARRAY BK3216 | | | | BKP0402 | | | | BKP0603 | | | | BKP1005 | | | | BKP1608 | | | | BKP2125 | | | | MCF 0605 | - | | | MCF 0806 | Appearance: No significant abnormality | | | MCF 1210 | Impedance change: Within ±20% | | | MCF 2010 | impedance change. Within ±2070 | | | CK1608 | Appearance: No significant abnormality | | | CK2125 | Inductance change: Within ±20% Q change: Within ±30% | | | GRZ123 | Appearance: No significant abnormality | | | CKS2125 | Inductance change: Within ±20% | | | CKP1608 | inductance change. Within ±2070 | | | CKP2012 | | | Specified Value | CKP2012
CKP2016 | Annayana Na simificant showns lity | | Specified Value | CKP2520 | Appearance: No significant abnormality Inductance change: Within ±30% | | | NM2012 | inductance change. Within ±3070 | | | | | | | NM2520 | Annayana Ma simificant shaquasitt | | | LK1005 | Appearance: No significant abnormality | | | | Inductance change: Within ±10% Q change: Within ±30% Appearance: No significant abnormality | | | LK1608 | Inductance change: $0.047 \sim 12.0 \mu\text{H}$: Within $\pm 10\%$ 15.0 $\sim 33.0 \mu\text{H}$: Within $\pm 15\%$ | | | EKTOOO | Q change: Within ±30% | | | | Appearance: No significant abnormality | | | LK2125 | Inductance change: Within ±20% Q change: Within ±30% | | | HK0603 | and control of an agent that in the control of an angent that in the control of an agent that in the control of a | | | HK1005 | | | | HK1608 | | | | HK2125 | | | | HKQ0402 | Appearance: No significant abnormality | | | HKQ0603W | Inductance change: Within ±10% Q change: Within ±20% | | | HKQ0603S | | | | HKQ0603U | | | | AQ105 | | | | MCFK1608※ | | | | MCFE1608% | | | | MCKK1608% | Appearance: No significant abnormality | | | MCHK2012% | Inductance change: Within ±10% | | | MCKK2012% | | | Test Methods and
Remarks | Temperature : Maximum operatin Applied current : Rated current X: Duration : 500 +24/-0 hrs | g temperature MC series ; Idc2max very under the standard condition after the removal from test chamber. | | | | | Note on standard condition: "standard condition" referred to herein is defined as follows: 5 to $35^{\circ}\!C\,$ of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure. When there are questions concerning measurement results: In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}C$ of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard
condition." (Note 1) Measurement shall be made after 48 ± 2 hrs of recovery under the standard condition. [►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). Precautions on the use of Multilayer chip inductors Multilayer chip inductors for high frequency, Multilayer chip bead inductors Multilayer common mode choke coils (MC series F type) Metal Multilayer Chip Power Inductors (MCOILTM MC series) #### **PRECAUTIONS** #### 1. Circuit Design - ◆ Verification of operating environment, electrical rating and performance - 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications #### Precautions As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. - ◆Operating Current(Verification of Rated current) - 1. The operating current including inrush current for inductors must always be lower than their rated values. - 2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect. #### 2. PCB Design Precautions - ◆Pattern configurations (Design of Land-patterns) - 1. When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: - (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. - (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist. - (3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to design land patterns smaller than terminal electrode of chips. - ◆Pattern configurations (Inductor layout on panelized[breakaway] PC boards) - After inductors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully performed to minimize stress. - ◆Pattern configurations(Design of Land-patterns) - The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts (larger fillets which extend above the component end terminations). Examples of improper pattern designs are also shown. - (1) Recommended land dimensions for a typical chip inductor land patterns for PCBs Recommended land dimensions for wave-soldering (Unit:mm) | Ту | ре | 1608 | 2012 | 2125 | 2016 | 2520 | 3216 | |------|----|---------|---------|---------|---------|---------|---------| | Size | L | 1.6 | 2.0 | 2.0 | 2.0 | 2.5 | 3.2 | | Size | W | 0.8 | 1.25 | 1.25 | 1.6 | 2.0 | 1.6 | | A | ١ | 0.8~1.0 | 1.0~1.4 | 1.0~1.4 | 1.0~1.4 | 1.0~1.4 | 1.8~2.5 | | Е | 3 | 0.5~0.8 | 0.8~1.5 | 0.8~1.5 | 0.8~1.5 | 0.6~1.0 | 0.8~1.7 | | (| | 0.6~0.8 | 0.9~1.2 | 0.9~1.2 | 1.3~1.6 | 1.6~2.0 | 1.2~1.6 | #### Technical considerations Recommended land dimensions for reflow-soldering (Unit:mm) | T | уре | 0402 | 0603 | 1005 | 105 | 1608 | 2012 | 2125 | 2016 | 2520 | 3216 | |------|-----|-----------|-----------|-----------|-----------|---------|---------|---------|---------|---------|---------| | Size | L | 0.4 | 0.6 | 1.0 | 1.0 | 1.6 | 2.0 | 2.0 | 2.0 | 2.5 | 3.2 | | Size | W | 0.2 | 0.3 | 0.5 | 0.6 | 0.8 | 1.25 | 1.25 | 1.6 | 2.0 | 1.6 | | | A | 0.15~0.25 | 0.20~0.30 | 0.45~0.55 | 0.50~0.55 | 0.8~1.0 | 0.8~1.2 | 0.8~1.2 | 0.8~1.2 | 1.0~1.4 | 1.8~2.5 | | | В | 0.10~0.20 | 0.20~0.30 | 0.40~0.50 | 0.30~0.40 | 0.6~0.8 | 0.8~1.2 | 0.8~1.2 | 0.8~1.2 | 0.6~1.0 | 0.6~1.5 | | | С | 0.15~0.30 | 0.25~0.40 | 0.45~0.55 | 0.60~0.70 | 0.6~0.8 | 0.9~1.6 | 0.9~1.6 | 1.2~2.0 | 1.8~2.2 | 1.2~2.0 | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). Excess solder can affect the ability of chips to withstand mechanical stresses. Therefore, please take proper precautions when designing land-patterns. Recommended land dimension for Reflow-soldering | Type | | 3216 | 2010 | 1210 | 0806 | 0605 | |------|---|---------|---------|-----------|-----------|-----------| | c. L | | 3.2 | 2.0 | 1.25 | 0.85 | 0.65 | | Size | W | 1.6 | 1.0 | 1.0 | 0.65 | 0.50 | | а | 1 | 0.7~0.9 | 0.5~0.6 | 0.45~0.55 | 0.25~0.35 | 0.27~0.33 | | b | | 0.8~1.0 | 0.5~0.6 | 0.7~0.8 | 0.25~0.35 | 0.17~0.23 | | С | ; | 0.4~0.5 | 0.2~0.3 | 0.25~0.35 | 0.25~0.35 | 0.20~0.26 | | d | | 0.8 | 0.5 | 0.55 | 0.5 | 0.4 | (Unit:mm) ((2) Examples of good and bad solder application | ۷. | Examples of good and bad solde | r application | | |----|---|--|-----------------| | | Item | Not recommended | Recommended | | | Mixed mounting of SMD and leaded components | Lead wire of component | Solder-resist | | | Component placement close to the chassis | Chassis Solder (for grounding) Electrode pattern | Solder-resist | | | Hand-soldering of leaded
components near mounted
components | Lead wire of component Soldering iron | Solder-resist - | | | Horizontal component
placement | | Solder-resist | - ◆Pattern configurations (Inductor layout on panelized[breakaway] PC boards) - 1-1. The following are examples of good and bad inductor layout; SMD inductors should be located to minimize any possible mechanical stresses from board warp or deflection. | Item Not recommended | | Recommended | | | |-------------------------|--|---|----|--| | Deflection of the board | | Position the component at a right angle to the direction of the mechanical stresses that are anticipated. | of | | 1-2. To layout the inductors for the breakaway PC board, it should be noted that the amount of mechanical stresses given will vary depending on inductor layout. An example below should be counted for better design. 1-3. When breaking PC boards along their perforations, the amount of mechanical stress on the inductors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, any ideal SMD inductor layout must also consider the PCB splitting procedure. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). #### 3. Considerations for automatic placement - ◆Adjustment of mounting machine - 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards. - 2. The maintenance and inspection of the mounter should be conducted periodically. #### Precautions #### ◆Selection of Adhesives - 1. Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use. - ◆Adjustment of mounting machine - 1. If the lower limit of the pick-up nozzle is low, too much force may be imposed on the inductors, causing damage. To avoid this, the following points should be considered before lowering the pick-up nozzle: - The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the board. - (2) The pick-up pressure should be adjusted between 1 and 3N static loads. - (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins should be used under the PC board. The following diagrams show some typical examples of good pick-up nozzle placement: | Item | Improper method | Proper method | |-----------------------|----------------------|---------------------------------| | Single-sided mounting | chipping or cracking | supporting pins or back-up pins | | Double-sided mounting | chipping or cracking | supporting pins or back-up pins | #### Technical considerations - 2. As the alignment pin wears out, adjustment of the nozzle height can cause chipping or cracking of the inductors because of mechanical impact on the inductors. To avoid this, the monitoring of the width between the alignment pin in the stopped position, and maintenance, inspection and replacement of the pin should be conducted periodically. - ◆Selection of Adhesives - 1. Some adhesives may cause reduced insulation resistance. The difference between
the shrinkage percentage of the adhesive and that of the inductors may result in stresses on the inductors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect component placement, so the following precautions should be noted in the application of adhesives. - (1) Required adhesive characteristics - a. The adhesive should be strong enough to hold parts on the board during the mounting & solder process. - b. The adhesive should have sufficient strength at high temperatures. - c. The adhesive should have good coating and thickness consistency. - d. The adhesive should be used during its prescribed shelf life. - e. The adhesive should harden rapidly. - f. The adhesive must not be contaminated. - g. The adhesive should have excellent insulation characteristics. - h. The adhesive should not be toxic and have no emission of toxic gasses. - (2) When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much adhesive may cause defective soldering due excessive flow of adhesive on to the land or solder pad. #### [Recommended conditions] | Figure | 0805 case sizes as examples | | | |--------|-----------------------------|--|--| | а | 0.3mm min | | | | b | 100∼120 μm | | | | С | Area with no adhesive | | | #### 4. Soldering Precautions #### ◆Selection of Flux - 1. Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use; - (1) Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied. - (2) When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level. - (3) When using water-soluble flux, special care should be taken to properly clean the boards. #### ◆Soldering 1. Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions, and please contact us about peak temperature when you use lead-free paste. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). #### ◆Selection of Flux - 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor. - 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. - 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux. #### Soldering #### 1-1. Preheating when soldering Heating: Chip inductor components should be preheated to within $100 \text{ to } 130^{\circ}\text{C}$ of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100°C . Chip inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock. #### [Reflow soldering] #### [Recommended conditions for eutectic soldering] #### [Recommended condition for Pb-free soldering] - %Ceramic chip components should be preheated to within 100 to 130°C of the soldering. - *Assured to be reflow soldering for 2 times. - *MC series; Peak 230°C(eutectic soldering), 260°C(Pb-free soldering)max within 5sec. #### Caution Technical considerations 1. The ideal condition is to have solder mass (fillet) controlled to 1/2 to 1/3 of the thickness of the inductor, as shown below: 2. Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible. #### [Wave soldering] #### [Recommended conditions for eutectic soldering] #### [Recommended condition for Pb-free soldering] - $\mbox{\%}$ Ceramic chip components should be preheated to within 100 to 130°C of the soldering. - XAssured to be wave soldering for 1 time. - Except for reflow soldering type. #### Caution - 1. Make sure the inductors are preheated sufficiently. - 2. The temperature difference between the inductor and melted solder should not be greater than 100 to 130°C . - 3. Cooling after soldering should be as gradual as possible. - 4. Wave soldering must not be applied to the inductors designated as for reflow soldering only. #### [Hand soldering] #### [Recommended conditions for eutectic soldering #### [Recommended condition for Pb-free soldering] - (**※**⊿T≦190°C(3216Type max), ⊿T≦130°C(3225 Type min) - \times It is recommended to use 20W soldering iron and the tip is 1 ϕ or less. - *The soldering iron should not directly touch the components. - *Assured to be soldering iron for 1 time Note: The above profiles are the maximum allowable soldering condition, therefore these profiles are not always recommended. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). #### Caution 1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. 2. The soldering iron should not directly touch the inductor. #### 5. Cleaning ◆Cleaning conditions 1. When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux Precautions used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the inductor's characteristics. Cleaning conditions > 1. The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation of the inductor's electrical properties (especially insulation resistance). 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors. (1) Excessive cleaning a. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the inductor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked: Ultrasonic output Below 20W/Q Ultrasonic frequency Below 40kHz 5 min. or less Ultrasonic washing period #### 6. Post cleaning processes ◆Application of resin coatings, moldings, etc. to the PCB and components. #### Precautions **Technical** considerations - 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance. - 2. When a resin's hardening temperature is higher than the inductor's operating temperature, the stresses generated by the excess heat may lead to inductor damage or destruction. - 3. Stress caused by a resin's temperature generated expansion and contraction may damage inductors. The use of such resins, molding materials etc. is not recommended. #### 7. Handling - ◆Breakaway PC boards (splitting along perforations) - 1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board. - 2. Board separation should not be done manually, but by using the appropriate devices. - General handling precautions - 1. Always wear static control bands to protect against ESD. - 2. Keep the inductors away from all magnets and magnetic objects. - 3. Use non-magnetic tweezers when handling inductors. Precautions - 4. Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded. - 5. Keep bare hands and metal products (i.e., metal desk) away from chip electrodes or conductive areas that lead to chip electrodes. - 6. Keep inductors away from items that generate magnetic fields such as speakers or coils. - Mechanical considerations - 1. Be careful not to subject the inductors to excessive mechanical shocks. - (1) If inductors are dropped on the floor or a hard surface they should not be used. - (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components. #### 8. Storage conditions #### temperature and humidity in the storage area. Humidity should especially be kept as low as possible. #### Recommended conditions Ambient temperature: Below 30°C Humidity: Below 70% RH The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of inductor is deteriorated as time passes, so inductors
should be used within 6 months from the time of delivery. 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control •Inductor should be kept where no chlorine or sulfur exists in the air. #### Technical considerations Precautions #### ◆Storage 1. If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . #### CHIP BEAD INDUCTORS FOR POWER LINES (FB SERIES M TYPE) #### ■PARTS NUMBER *Operating Temp. : -40~+125°C (Including self-generated heat) △=Blank space ①Series name | Code | Series name | |------|--------------| | FB | Ferrite bead | | E Onapc | | |---------|------------------| | Code | Shape | | М | Rectangular chip | (3)Characteristics | © | | | | | |------|---------------------|--|--|--| | Code | Characteristics | | | | | J | Standard | | | | | Н | High Impedance type | | | | (4)Dimensions (L × W) | 4) Differsions (L \(\sqrt{W} \) | | | | | | |----------------------------------|------------|-------------------------|--|--|--| | Code Type (inch) | | Dimensions
(L×W)[mm] | | | | | 1608 | 1608(0603) | 1.6 × 0.8 | | | | | 2125 | 2125(0805) | 2.0 × 1.25 | | | | | 2012 | 2012(0805) | 2.0 ^ 1.20 | | | | | 2016 | 2016(0806) | 2.0 × 1.6 | | | | | 3216 | 3216(1206) | 3.2 × 1.6 | | | | | 3225 | 3225(1210) | 3.2 × 2.5 | | | | | 4516 | 4516(1806) | 4.5 × 1.6 | | | | | 4525 | 4525(1810) | 4.5 × 2.5 | | | | | 4532 | 4532(1812) | 4.5 × 3.2 | | | | | | • | | | | | #### ⑤Material | Code | Material | |------|---------------------------| | HS | | | НМ | Refer to impedance curves | | HL | for material differences | | MM | | 6Nominal impedance | Code
(example) | Nominal impedance[Ω] | |-------------------|-------------------------------| | 330 | 33 | | 221 | 220 | | 102 | 1000 | 7Impedance tolerance | Code | Impedance tolerance | | |------|---------------------|--| | _ | ±25% | | | N | ±30% | | 8 Packaging | Code | Packaging | |------|-----------| | Т | Taping | | Jinternal code | | |----------------|---------------| | Code | Internal code | | Δ | Standard | | | | #### STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY Recommended Land Patterns Surface Mounting •Mounting and soldering conditions should be checked beforehand. | Type | Α | В | С | |-----------|------|-----|------| | FB MJ1608 | 1.0 | 1.0 | 1.0 | | FB MJ2125 | 1.4 | 1.2 | 1.65 | | FB MJ3216 | 1.4 | 2.2 | 2.0 | | FB MJ4516 | 1.75 | 3.5 | 2.0 | | FB MH1608 | 1.0 | 1.0 | 1.0 | | FB MH2012 | 1.4 | 1.2 | 1.65 | | FB MH2016 | 1.4 | 1.2 | 2.0 | | FB MH3216 | 1.4 | 2.2 | 2.0 | | FB MH3225 | 1.4 | 2.2 | 2.9 | | FB MH4516 | 1.75 | 3.5 | 2.0 | | FB MH4525 | 1.75 | 3.5 | 2.9 | | FB MH4532 | 1.75 | 3.5 | 3.7 | | | | | | Unit:mm | Typo | 1 | W | Т | | Standard qu | uantity [pcs] | |-----------|---------------------|---------------------|---------------------|---------------------|-------------|---------------| | Туре | _ | VV | | е | Paper tape | Embossed tape | | FB MJ1608 | 1.6±0.2 | 0.8 ± 0.2 | 0.8 ± 0.2 | 0.3 ± 0.2 | 4000 | _ | | (0603) | (0.063 ± 0.008) | (0.031 ± 0.008) | (0.031 ± 0.008) | (0.012 ± 0.008) | 4000 | _ | | FB MJ2125 | 2.0±0.2 | 1.25±0.2 | 0.85 ± 0.2 | 0.5 ± 0.3 | 4000 | _ | | (0805) | (0.079 ± 0.008) | (0.049 ± 0.008) | (0.033 ± 0.008) | (0.020 ± 0.012) | 4000 | _ | | FB MJ3216 | 3.2±0.3 | 1.6±0.2 | 1.1±0.2 | 0.5 ± 0.3 | _ | 2000 | | (1206) | (0.126 ± 0.012) | (0.063 ± 0.008) | (0.043 ± 0.008) | (0.020 ± 0.012) | _ | 2000 | | FB MJ4516 | 4.5±0.3 | 1.6±0.2 | 1.1 ± 0.2 | 0.5 ± 0.3 | _ | 2000 | | (1806) | (0.177 ± 0.012) | (0.063 ± 0.008) | (0.043 ± 0.008) | (0.020 ± 0.012) | _ | 2000 | | FB MH1608 | 1.6±0.1 | 0.8±0.1 | 0.8 ± 0.1 | 0.3±0.15 | 4000 | _ | | (0603) | (0.063 ± 0.004) | (0.031 ± 0.004) | (0.031 ± 0.004) | (0.012 ± 0.006) | 4000 | _ | | FB MH2012 | 2.0±0.2 | 1.25±0.2 | 0.85 ± 0.2 | 0.5 ± 0.3 | 4000 | | | (0805) | (0.079 ± 0.008) | (0.049 ± 0.008) | (0.033 ± 0.008) | (0.020 ± 0.012) | 4000 | _ | | FB MH2016 | 2.0±0.2 | 1.6±0.2 | 1.6±0.2 | 0.5 ± 0.3 | | 2000 | | (0806) | (0.079 ± 0.008) | (0.063 ± 0.008) | (0.063 ± 0.008) | (0.020 ± 0.012) | _ | 2000 | | FB MH3216 | 3.2±0.3 | 1.6±0.2 | 1.6±0.2 | 0.5 ± 0.3 | _ | 2000 | | (1206) | (0.126 ± 0.012) | (0.063 ± 0.008) | (0.063 ± 0.008) | (0.020 ± 0.012) | _ | 2000 | | FB MH3225 | 3.2±0.3 | 2.5±0.3 | 2.5±0.3 | 0.5 ± 0.3 | _ | 1000 | | (1210) | (0.126 ± 0.012) | (0.098 ± 0.012) | (0.098 ± 0.012) | (0.020 ± 0.012) | _ | 1000 | | FB MH4516 | 4.5±0.3 | 1.6±0.2 | 1.6±0.2 | 0.5 ± 0.3 | _ | 2000 | | (1806) | (0.177 ± 0.012) | (0.063 ± 0.008) | (0.063 ± 0.008) | (0.020 ± 0.012) | _ | 2000 | | FB MH4525 | 4.5±0.4 | 2.5±0.3 | 2.5±0.3 | 0.9 ± 0.6 | _ | 1000 | | (1810) | (0.177 ± 0.016) | (0.098 ± 0.012) | (0.098 ± 0.012) | (0.035 ± 0.024) | | 1000 | | FB MH4532 | 4.5±0.4 | 3.2±0.3 | 3.2 ± 0.3 | 0.9 ± 0.6 | | 2000 | | (1812) | (0.177 ± 0.016) | (0.126 ± 0.012) | (0.126 ± 0.012) | (0.035 ± 0.024) | _ | 2000 | [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). #### Standard type | _ | | | -, | |---|----|-----------------|------| | | FB | MJ [*] | 1608 | | Parts number | EHS | Nominal impedance
(Ω) | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current
[A] (max.) | Thickness
[mm] | |------------------|------|--------------------------|---------------------|------------------------------|----------------------------|-----------------------------|-------------------| | FB MJ1608HS280NT | RoHS | 28 | ±30% | 100 | 0.007 | 4.0 | 0.8 ±0.2 | | FB MJ1608HM230NT | RoHS | 23 | ±30% | 100 | 0.007 | 4.0 | 0.8 ±0.2 | #### ●FB MJ2125 | Parts number | EHS | Nominal impedance
(Ω) | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current [A] (max.) | Thickness
[mm] | |------------------|------|--------------------------|---------------------|------------------------------|----------------------------|--------------------------|-------------------| | FB MJ2125HS250NT | RoHS | 25 | ±30% | 100 | 0.004 | 6.0 | 0.85 ±0.2 | | FB MJ2125HS420-T | RoHS | 42 | ±25% | 100 | 0.008 | 4.0 | 0.85 ±0.2 | | FB MJ2125HM210NT | RoHS | 21 | ±30% | 100 | 0.004 | 6.0 | 0.85 ±0.2 | | FB MJ2125HM330-T | RoHS | 33 | ±25% | 100 | 0.008 | 4.0 | 0.85 ±0.2 | | FB MJ2125HL8R0NT | R₀HS | 8 | ±30% | 100 | 0.008 | 4.0 | 0.85 ±0.2 | #### ●FB MJ3216 | Parts number | EHS | Nominal impedance
(Ω) | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current
[A] (max.) | Thickness
[mm] | |------------------|------|--------------------------|---------------------|------------------------------|----------------------------|-----------------------------|-------------------| | FB MJ3216HS480NT | RoHS | 48 | ±30% | 100 | 0.005 | 6.0 | 1.1 ±0.2 | | FB MJ3216HS800-T | RoHS | 80 | ±25% | 100 | 0.010 | 4.0 | 1.1 ±0.2 | | FB MJ3216HM380NT | RoHS | 38 | ±30% | 100 | 0.005 | 6.0 | 1.1 ±0.2 | | FB MJ3216HM600-T | RoHS | 60 | ±25% | 100 | 0.010 | 4.0 | 1.1 ±0.2 | | FB MJ3216HL160NT | RoHS | 16 | ±30% | 100 | 0.012 | 4.0 | 1.1 ±0.2 | #### ●FB MJ4516 | Parts number | EHS | Nominal impedance
(Ω) | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current [A] (max.) | Thickness
[mm] | |------------------|------|--------------------------|---------------------|------------------------------|----------------------------|--------------------------|-------------------| | FB MJ4516HS720NT | R₀HS | 72 | ±30% | 100 | 0.007 | 6.0 | 1.1 ±0.2 | | FB MJ4516HS111-T | RoHS | 110 | ±25% | 100 | 0.014 | 4.0 | 1.1 ±0.2 | | FB MJ4516HM560NT | RoHS | 56 | ±30% | 100 | 0.007 | 6.0 | 1.1 ±0.2 | | FB MJ4516HM900-T | RoHS | 90 | ±25% | 100 | 0.014 | 4.0 | 1.1 ±0.2 | | FB MJ4516HL230NT | RoHS | 23 | ±30% | 100 | 0.014 | 3.5 | 1.1 ±0.2 | #### High impedance type GHz Band | FR | MH ₁ | 608 | |----|-----------------|-----| | ●FB MH1608 | | | | | | | | | | |------------------|------|---|-----------|------|--|--------------|---------------|-------------------|--| | Parts number | EHS | Nominal impedance
Measuring frequency 100[MHz] | | | Nominal impedance
Measuring frequency 1 [GHz] | | Rated current | Thickness
[mm] | | | | | (Ω) | tolerance | (Ω) | tolerance | [Ω] (max.) | E. 13 (a) | Limity | | | FB MH1608HM470-T | RoHS | 47 | ±25% | 75 | ±40% | 0.020 | 3.5 | 0.8 ±0.1 | | | FB MH1608HM600-T | RoHS | 60 | ±25% | 100 | ±40% | 0.025 | 3.0 | 0.8 ±0.1 | | | FB MH1608HM101-T | RoHS | 100 | ±25% | 170 | ±40% | 0.035 | 2.5 | 0.8 ±0.1 | | | FB MH1608HM151-T | RoHS | 150 | ±25% | 270 | ±40% | 0.050 | 2.1 | 0.8 ±0.1 | | | FB MH1608HM221-T | RoHS | 220 | ±25% | 370 | ±40% | 0.070 | 1.8 | 0.8 ±0.1 | | | FB MH1608HM331-T | RoHS | 330 | ±25% | 520 | ±40% | 0.130 | 1.2 |
0.8 ±0.1 | | | FB MH1608HM471-T | RoHS | 470 | ±25% | 750 | ±40% | 0.150 | 1.0 | 0.8 ±0.1 | | | FB MH1608HM601-T | RoHS | 600 | ±25% | 900 | ±40% | 0.170 | 0.9 | 0.8 ±0.1 | | | FB MH1608HM102-T | RoHS | 1000 | ±25% | 1200 | ±40% | 0.350 | 0.6 | 0.8 ±0.1 | | | FB MH1608HL300-T | RoHS | 30 | ±25% | 120 | ±40% | 0.028 | 2.6 | 0.8 ±0.1 | | | FB MH1608HL600-T | RoHS | 60 | ±25% | 220 | ±40% | 0.045 | 2.1 | 0.8 ±0.1 | | | FB MH1608HL121-T | RoHS | 120 | ±25% | 540 | ±40% | 0.130 | 1.2 | 0.8 ±0.1 | | | FB MH1608HL221-T | RoHS | 220 | ±25% | 950 | ±40% | 0.170 | 0.9 | 0.8 ±0.1 | | | FB MH1608HL331-T | RoHS | 330 | ±25% | 1200 | ±40% | 0.210 | 0.8 | 0.8 ±0.1 | | | FB MH1608HL471-T | RoHS | 470 | ±25% | 1500 | ±40% | 0.350 | 0.6 | 0.8 ±0.1 | | | FB MH1608HL601-T | RoHS | 600 | ±25% | 1800 | ±40% | 0.450 | 0.5 | 0.8 ±0.1 | | #### High impedance type #### ●FB MH2012 | Parts number | EHS | Nominal impedance
(Ω) | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current [A] (max.) | Thickness
[mm] | |------------------|-------------------|--------------------------|---------------------|------------------------------|----------------------------|--------------------------|-------------------| | FB MH2012HM800-T | RoHS | 80 | ±25% | 100 | 0.025 | 2.7 | 0.85 ± 0.2 | | FB MH2012HM121-T | RoHS | 120 | ±25% | 100 | 0.032 | 2.5 | 0.85 ±0.2 | | FB MH2012HM221-T | RoHS | 220 | ±25% | 100 | 0.060 | 2.0 | 0.85 ±0.2 | | FB MH2012HM331-T | R ₀ HS | 330 | ±25% | 100 | 0.080 | 1.8 | 0.85 ±0.2 | #### FB MH2016 | Parts number | EHS | Nominal impedance
(Ω) | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current [A] (max.) | Thickness
[mm] | |------------------|------|--------------------------|---------------------|------------------------------|----------------------------|--------------------------|-------------------| | FB MH2016HM121NT | RoHS | 120 | ±30% | 100 | 0.015 | 4.5 | 1.6 ±0.2 | | FB MH2016HM251NT | RoHS | 250 | ±30% | 100 | 0.050 | 2.0 | 1.6 ±0.2 | #### ●FB MH3216 | Parts number | EHS | Nominal impedance (Ω) | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current [A] (max.) | Thickness
[mm] | |------------------|-------------------|------------------------------|---------------------|------------------------------|----------------------------|--------------------------|-------------------| | FB MH3216HM221NT | RoHS | 220 | ±30% | 100 | 0.020 | 4.0 | 1.6 ±0.2 | | FB MH3216HM501NT | R ₀ HS | 500 | ±30% | 100 | 0.070 | 2.0 | 1.6 ±0.2 | #### ●FB MH3225 | Parts number | EHS | Nominal impedance
(Ω) | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current [A] (max.) | Thickness
[mm] | |------------------|------|--------------------------|---------------------|------------------------------|----------------------------|--------------------------|-------------------| | FB MH3225HM601NT | RoHS | 600 | ±30% | 100 | 0.042 | 3.0 | 2.5 ±0.3 | | FB MH3225HM102NT | RoHS | 1000 | ±30% | 100 | 0.100 | 2.0 | 2.5 ±0.3 | | FB MH3225HM202NT | RoHS | 2000 | ±30% | 100 | 0.130 | 1.2 | 2.5 ±0.3 | [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). #### ●FB MH4516 | Parts number | EHS | Nominal impedance
(Ω) | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current [A] (max.) | Thickness
[mm] | |------------------|------|--------------------------|---------------------|------------------------------|----------------------------|--------------------------|-------------------| | FB MH4516HM851NT | RoHS | 850 | ±30% | 100 | 0.100 | 1.5 | 1.6 ±0.2 | #### ●FB MH4525 | Parts number | EHS | Nominal impedance (Ω) | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance
[Ω](max.) | Rated current [A] (max.) | Thickness
[mm] | |------------------|------|--------------------------------|---------------------|------------------------------|----------------------------|--------------------------|-------------------| | FB MH4525HM102NT | RoHS | 1000 | ±30% | 100 | 0.060 | 3.0 | 2.5 ±0.3 | | FB MH4525HM162NT | RoHS | 1600 | ±30% | 100 | 0.130 | 2.0 | 2.5 ±0.3 | #### ●FB MH4532 | | Parts number | EHS | Nominal impedance
(Ω) | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance $[\Omega]$ (max.) | Rated current [A] (max.) | Thickness
[mm] | |----|-----------------|------|--------------------------|---------------------|------------------------------|---------------------------------|--------------------------|-------------------| | FE | 3 MH4532HM681-T | RoHS | 680 | ±25% | 100 | 0.028 | 4.0 | 3.2 ±0.3 | | FE | 3 MH4532HM132-T | RoHS | 1300 | ±25% | 100 | 0.060 | 3.0 | 3.2 ±0.3 | | FE | 3 MH4532HM202-T | RoHS | 2000 | ±25% | 100 | 0.130 | 1.3 | 3.2 ±0.3 | #### High current type | Parts number | EHS | Nominal impedance
(Ω) | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance $[\Omega]$ (max.) | Rated current [A] (max.) | Thickness
[mm] | |-------------------|------|--------------------------|---------------------|------------------------------|---------------------------------|--------------------------|-------------------| | FB MJ1608HS220NTR | RoHS | 22 | ±30% | 100 | 0.004 | 7.5 | 0.8 ±0.2 | | FB MJ1608HS280NTR | R₀HS | 28 | ±30% | 100 | 0.006 | 6.0 | 0.8 ±0.2 | | FB MJ1608HM180NTR | RoHS | 18 | ±30% | 100 | 0.004 | 7.5 | 0.8 ±0.2 | | FB MJ1608HM230NTR | R₀HS | 23 | ±30% | 100 | 0.006 | 6.0 | 0.8 ±0.2 | #### Low frequency type | Parts number | EHS | Nominal impedance (Ω) | Impedance tolerance | Measuring frequency
[MHz] | DC Resistance $[\Omega]$ (max.) | Rated current
[A] (max.) | Thickness
[mm] | |-----------------|------|------------------------------|---------------------|------------------------------|---------------------------------|-----------------------------|-------------------| | FBMH4532MM182PT | RoHS | 1800 | min | 10 | 0.8 | 0.7 | 3.2 ± 0.3 | [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). Frequency[MHz] Frequency[MHz] Frequency[MHz] [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). Frequency[MHz] Frequency[MHz] Frequency[MHz] [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). #### CHIP BEAD INDUCTORS FOR POWER LINES (FB SERIES M TYPE) #### PACKAGING #### 1 Minimum Quantity | Type | Standard Quantity[pcs] | | | | |-------------|------------------------|---------------|--|--| | туре | Paper Tape | Embossed Tape | | | | 1608 (0603) | 4000 | 1 | | | | 2125 (0805) | 4000 | 1 | | | | 2012 (0805) | 4000 | 1 | | | | 2016 (0806) | _ | 2000 | | | | 3216(1206) | - | 2000 | | | | 3225 (1210) | _ | 1000 | | | | 4516 (1806) | - | 2000 | | | | 4525(1810) | _ | 1000 | | | | 4532(1812) | _ | 2000 | | | #### 2 Tape Material #### **3**Taping Dimensions Paper tape (0.315 inches wide) This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | T | Chip (| Cavity | Insertion Pitch | Tape Thickness | |--------------------------------|--------------------------|--------------------------|--------------------------|----------------------| | Туре | Α | В | F | Т | | FBMJ1608
FBMH1608
(0603) | 1.0±0.2
(0.039±0.008) | 1.8±0.2
(0.071±0.008) | 4.0±0.2
(0.157±0.008) | 1.1max
(0.043max) | | FBMJ2125
FBMH2012
(0805) | 1.5±0.2
(0.059±0.008) | 2.3±0.2
(0.091±0.008) | 4.0±0.2
(0.157±0.008) | 1.1max
(0.043max) | Unit: mm(inch) #### Embossed tape (0.315 inches wide) | Tuno | Chip Cavity | | Insertion Pitch | Tape Thickness | | |----------|---------------------|---------------------|---------------------|----------------|------------| | Туре | Α | В | F | K | Т | | FBMH2016 | 1.8±0.2 | 2.2±0.2 | 4.0±0.2 | 2.6max | 0.6max | | (0806) | (0.071 ± 0.008) | (0.087 ± 0.008) | (0.157 ± 0.008) | (0.102max) | (0.024max) | | FBMJ3216 | 1.9±0.2 | 3.5±0.2 | 4.0±0.2 | 1.5max | 0.3max | | (1206)
| (0.075 ± 0.008) | (0.138 ± 0.008) | (0.157 ± 0.008) | (0.059max) | (0.012max) | | FBMH3216 | 1.9±0.2 | 3.5±0.2 | 4.0±0.2 | 2.6max | 0.6max | | (1206) | (0.075 ± 0.008) | (0.138 ± 0.008) | (0.157 ± 0.008) | (0.102max) | (0.024max) | | FBMH3225 | 2.8±0.2 | 3.5±0.2 | 4.0±0.2 | 4.0max | 0.6max | | (1210) | (0.110 ± 0.008) | (0.138 ± 0.008) | (0.157 ± 0.008) | (0.157max) | (0.024max) | Unit: mm(inch) #### Embossed tape (0.472 inches wide) | Tuma | Chip Cavity | | Insertion Pitch Tape Thi | | ickness | |----------|---------------------|---------------------|--------------------------|------------|------------| | Туре | Α | В | F | K | Т | | FBMJ4516 | 1.9±0.2 | 4.9±0.2 | 4.0±0.2 | 1.5max | 0.3max | | (1806) | (0.075 ± 0.008) | (0.193 ± 0.008) | (0.157 ± 0.008) | (0.059max) | (0.012max) | | FBMH4516 | 1.9±0.2 | 4.9±0.2 | 4.0±0.2 | 2.6max | 0.6max | | (1806) | (0.075 ± 0.008) | (0.193 ± 0.008) | (0.157 ± 0.008) | (0.102max) | (0.024max) | | FBMH4525 | 2.9±0.2 | 4.9 ± 0.2 | 4.0±0.2 | 4.0max | 0.6max | | (1810) | (0.114 ± 0.008) | (0.193 ± 0.008) | (0.157 ± 0.008) | (0.157max) | (0.024max) | | FBMH4532 | 3.6±0.2 | 4.9±0.2 | 8.0±0.2 | 4.0max | 0.6max | | (1812) | (0.142 ± 0.008) | (0.193 ± 0.008) | (0.315 ± 0.008) | (0.157max) | (0.024max) | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). #### 4 Leader and Blank portion Direction of tape feed Insertion leader is 400 mm or more (including 20 empty cavities) Empty cavities at end of reel: 40 holes or more #### ⑤Reel size | Туре | ΦD | ¢ d | W | t | |----------|---------------------|--------------------|---------------------------|----------------| | FBMJ1608 | | | 10.0±1.5 | | | FBMJ2125 | | | (0.394 ± 0.059) | | | FBMJ3216 | | | (0.394 ± 0.039) | | | FBMJ4516 | | | 14.0±1.5
(0.551±0.059) | | | FBMH1608 | 180+0/-3 | 60+1/-0 | | 2.5max | | FBMH2012 | (7.09+0/-0.118) | (2.36+0.039/-0) | 10.0±1.5 | (0.098max) | | FBMH2016 | | | (0.394 ± 0.059) | | | FBMH3216 | | | (0.334 ± 0.033) | | | FBMH3225 | | | | | | FBMH4516 | | | 14.0±1.5 | | | FBMH4525 | | | (0.551 ± 0.059) | | | EDMU4522 | 330±2.0 | 100±1.0 | 14.0±2.0 | 3.0max | | FBMH4532 | (12.99 ± 0.080) | (3.94 ± 0.039) | (0.551 ± 0.080) | (1.181max) | | | | | | Unit: mm(inch) | #### **®**Top tape strength The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below. Finis catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . #### CHIP BEAD INDUCTORS FOR POWER LINE (FB SERIES M TYPE) #### ■RELIABILITY DATA | 1. Operating Tempe | rature Range | | | |-----------------------------|--|--|--| | Specified Value | -40°C~+125°C Including self-generated heat | | | | | | | | | 2. Storage Tempera | ture Range | | | | Specified Value | -40°C∼+85°C | | | | Test Methods and
Remarks | *Note: -5 to +40°C in taped packaging | | | | 3. Impedance | | | | | Specified Value | Within the specified tolerance | | | | Test Methods and
Remarks | Measuring equipment : Impedance analyzer (HP4291A) or its equivalent Measuring frequency : 100±1 MHz | | | | | | | | | 4. DC Resistance | | | | | Specified Value | Within the specified range | | | | Test Methods and
Remarks | Four-terminal method Measuring equipment : Milliohm High-Tester 3226 (Hioki Denki) or its equivalent | | | | 5. Rated Current | | | | | Specified Value | Within the specified range | | | | | | | | | 6. Vibration | | | | | Specified Value | Appearance : No significant abnormality Impedance change : Within ±30% of the initial value | | | | Test Methods and
Remarks | According to JIS C60068-2-6. Vibration type : A Time : 2 hrs each in X,Y, and Z directions Total: 6 hrs Frequency range : 10 to 55 to 10Hz (/min.) Amplitude : 1.5 mm (shall not exceed acceleration 196m/s²) Mounting method : Soldering onto PC board | | | | | | | | | 7. Solderability | | | | | Specified Value | 90% or more of immersed surface of terminal electrode shall be covered with fresh solder. | | | | Test Methods and
Remarks | Solder temperature : 230±5°C Immersion time : 4±1 sec. Preconditioning : Immersion into flux. Immersion and Removal speed : 25mm/sec. | | | | | | | | | 8. Resistance to So | Idering Heat | | | | Specified Value | Appearance : No significant abnormality Impedance change : Within ±30% of the initial value | | | | Test Methods and
Remarks | Preheating : 150°C for 3 min. Resistance to Soldering Heat : 260±5°C Duration : 10±0.5 sec. Preconditioning : Immersion and Removal speed : 25mm/sec. | | | Recovery : 2 to 3 hrs of recovery under the standard condition after the test. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). #### 9. Thermal Shock : No significant abnormality Appearance Specified Value : Within $\pm 50/-10\%$ of the initial value Impedance change According to JIS C60068-2-14. Conditions for 1 cycle Temperature (°C) Duration (min.) Step -40±3°C 30 ± 3 2 Room Temperature Within 3 Test Methods and 3 85±2°C 30±3 Remarks 4 Room Temperature Within 3 Number of cycles : 100 Mounting method : Soldering onto PC board Recovery : 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. | 10. Resistance to Humidity (steady state) | | | | | |---|--|--|--|--| | Specified Value | Appearances
Impedance change | : No significant abnormality : Within $\pm 30\%$ of the initial value | | | | Test Methods and
Remarks | Temperature Humidity Duration Mounting method Recovery | : $40\pm2^{\circ}$ C
: 90 to 95% RH
: $500+24/-0$
: Soldering onto PC board
: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. | | | | 11. Loading under D | 11. Loading under Damp Heat | | | | | |---------------------|-----------------------------|---|--|--|--| | Specified Value | Appearance | No significant abnormality | | | | | | Impedance change | Within ±30% of the initial value | | | | | | Temperature | : 40±2°C | | | | | | Humidity | : 90 to 95%RH | | | | | Test Methods and | Applied current | : Rated current | | | | | Remarks | Duration | : 500+24/0 hrs | | | | | | Mounting method | : Soldering onto PC board | | | | | | Recovery | : 2 to 3hrs of recovery under the standard condition after the removal from test chamber. | | | | | | | | | | | | 12. High Temperatu | 12. High Temperature Loading Test | | | | |-----------------------------|---|---|--|--| | Specified Value | Appearance
Impedance change | : No significant abnormality : Within $\pm 30\%$ of the initial value | | | | Test Methods and
Remarks | Temperature Duration Applied current Mounting method Recovery | : 85±2°C : 500+24/-0 hrs : Rated current : Soldering onto PC board : 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. | | | | 13. Bending Strengt | th | | | | | | | | |-----------------------------|--|--|--|--|--|--|--|--| | Specified Value | Appearance : No mechanical damage. | | | | | | | | | Test Methods and
Remarks | Warp : 2mm Testing board : Glass epoxy-resin substrate Thickness : 0.8mm Board R-230 Warp Warp (Unit: mm) | | | | | | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). # Specified Value No separation or indication of separation of electrode. Applied force : 5N Duration : 10 sec. Hooked jig Remarks Board Cross-section Note on standard condition: "standard condition" referred to herein is defined as follows: 5 to 35° C of temperature, 45 to 85% relative humidity and 86 to 106kPa of air pressure. When there are questions concerning measurement results: In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}\text{C}$ of temperature, 60 to 70% relative humidity and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition." This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check
our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). #### CHIP BEAD INDUCTORS FOR POWER LINE (FB SERIES M TYPE) #### **PRECAUTIONS** #### 1. Circuit Design Precautions #### ◆Operating environment ## 1. The products described in this specification are intended for use in general electronic equipment, (office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems,) where product failure might result in loss of life, injury or damage. For such uses, contact TAIYO YUDEN Sales Department in advance. #### ◆Rated current Rated current of this product is shown in this catalogue, but please be sure to have the base board designed with adequate inspection in case of the generation of heat becomes high within the rated current range when the base board is in high resistance or in bad heating conditions. #### 2. PCB Design Precautions #### ◆Land pattern design 1. Please refer to a recommended land pattern. #### 3. Considerations for automatic placement Precautions - ◆Adjustment of mounting machine - 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards. - 2. Mounting and soldering conditions should be checked beforehand. Technical considerations - Adjustment of mounting machine - 1. When installing products, care should be taken not to apply distortion stress as it may deform the products. #### 4. Soldering #### ◆Wave soldering - 1. Please refer to the specifications in the catalog for a wave soldering - ◆Reflow soldering - 1. Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified. - **♦**Lead free soldering - When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, etc. sufficiently. #### Precautions ◆Preheating when soldering $Heating: The \ temperature \ difference \ between \ soldering \ and \ remaining \ heat \ should \ not \ be \ greater \ than \ 150 ^{\circ}C.$ Cooling: The temperature difference between the components and cleaning process should not be greater than 100°C. ◆Recommended conditions for using a soldering iron Put the soldering iron on the land-pattern. Soldering iron's temperature - Below 350°C Duration - 3 seconds or less The soldering iron should not directly touch the inductor. #### ◆Wave, Reflow, Lead free soldering 1. If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products. [Recommended reflow condition] #### ◆Preheating when soldering - 1. There is a case that products get damaged by a heat shock. - ◆Recommended conditions for using a soldering iron - If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 5. Handling | | |----------------|---| | | ◆Handling 1. Keep the inductors away from all magnets and magnetic objects. ◆Setting PC boards | | | 1. When setting a chip mounted base board, please make sure that there is no residual stress to the chip by distortion in the board or at screw part. | | Precautions | ♦Breakaway PC boards (splitting along perforations) | | | 1. When splitting the PC board after mounting inductors, care should be taken not to give any stresses of deflection or twisting to the board. | | | 2. Board separation should not be done manually, but by using the appropriate devices. | | | ♦ Mechanical considerations | | | Please do not give the inductors any excessive mechanical shocks. | | | ♦Handling | | | 1. There is a case that a characteristic varies with magnetic influence. | | | ♦ Setting PC boards | | Technical | 1. There is a case that a characteristic varies with residual stress. | | considerations | ◆Breakaway PC boards (splitting along perforations) | | | 1. Planning pattern configurations and the position of products should be carefully performed to minimize stress. | | | ♦ Mechanical considerations | | | 1. There is a case to be damaged by a mechanical shock. | | 6. Storage condi | tions | |--------------------------|--| | Precautions | ◆Storage 1. To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. •Recommended conditions Ambient temperature −5~40°C Humidity Below 70% RH The ambient temperature must be kept below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, inductors should be used within 6 months from the time of delivery. | | Technical considerations | ◆Storage 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. | #### LEADED FERRITE BEAD INDUCTORS(FB SERIES A TYPE / R TYPE) WAVE #### ■PARTS NUMBER *Operating Temp.: -25~+105°C (Including self-generated heat) △=Blank space | ①Series name | | | | | | | | |--------------|--------------|--|--|--|--|--|--| | Code | Series name | | | | | | | | ED | Fourito bood | | | | | | | ### ②Shape ## Code Shape A Axial lead R Radial lead | ③Dimensions of core(D) | | | | | | | | | | |------------------------|---------------------------|--|--|--|--|--|--|--|--| | Code | Dimensions of core(D)[mm] | | | | | | | | | | 03 | φ 2.5 | | | | | | | | | | 04 | ϕ 3.5 | | | | | | | | | | 05 | 5.0 | | | | | | | | | | 06 | 6.0 | | | | | | | | | | 07 | 7.5 | | | | | | | | | | 4 Material | | |------------|---------------------------| | Code | Material | | HA | Refer to impedance curves | | VA | for material differences | | | | | ⑤Nominal impedance | | | | | | | | | |--------------------|-----------------------------------|--|--|--|--|--|--|--| | Code
(example) | Nominal impedance[Ω min.] | | | | | | | | | 850 | 85 | | | | | | | | | 121 | 120 | | | | | | | | Excluding 03type **6**Lead configuration | Code | Lead configurations[mm] | | | | |------|--|--|--|--| | AB | Straight lead (26mm lead space) / ammo | | | | | BB | Straight lead (52mm lead space) / ammo | | | | | KD | Formed lead (10mm pitch) / bulk | | | | | KE | Formed lead (12.5mm pitch) / bulk | | | | | KF | Formed lead / bulk (15.0mm pitch) / bulk | | | | | NA | Lead (2.5mm pitch)/bulk (FBR) | | | | | INA | Straight lead / bulk (FBA) | | | | | NB | Formed lead (crimped) / bulk | | | | | SA | Straight lead (FBR05 type) / ammo | | | | | SB | Straight lead (FBR07 type) / ammo | | | | | ТВ | Straight lead (FBR07 type) / ammo | | | | | UB | Radial lead formed / ammo | | | | | US | Formed lead (crimped) / bulk | | | | | VB | Dual side lead formed (crimped) / ammo | | | | | VS | Formed lead / bulk | | | | | 7Internal code | | |----------------|---------------| | Code | Internal code | | -00 | Standard | #### ■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). | | | | Dimensions | | Standard Quantity (pcs) | | | | | | | |-----|--------------------------------|----------|---|-----------------|-------------------------|--------------------------|----------------|-------|---------------|------|---------| | | Туре | Taping | | Bulk | | D | L | Type | Lead | Bulk | Taped | | | | Straight | Formed | Straight Formed | | | | Туре | Configuration | Duik | Ammo | | | 05VA121 □ -00 | _ | SA
P | _ | NA . | 5.0 max. | 7.5
(0.295) | FBR05 | NA | 1000 | 2-0 | | | | 751D | P: 12.7(0.500) | | F: 2.5(0.098) | (0.197 max.) | | PBNOS | SA | i,E. | 2000 | | | 06HA850NA-00
06VA850NA-00 | - | - | <u>(</u> - | NA . | 6.0±0.5
(0.236±0.020) | 5.0
(0.197) | FBR06 | NA | 1000 | <u></u> | | FBR | 06HA121NA-00
06VA121NA-00 | | | | F: 2.5(0.098) | | 7.0
(0.276) | | | | | | | 07HA850□-00
07VA850□-00 | | SB,TB | 800 | NB | 7.5±0.5
(0.295±0.020) | 5.5
(0.217) | FBR07 | NB | 1000 | _ | | | 07HA121 □ -00
07VA121 □ -00 | | P: 12.7(0.500)
H: SB 18 +2.0
TB 16 ±0.5 | _ | F: 5.0 (0.197) | | 7.5
(0.295) | | SB, TB | 7_2 | 2000 | Unit:mm(inch) ☐Please specify the lead configuration code. Note: Lead diameter (ϕ d) shall fall within a range of
0.65mm±0.05mm, FBR07 types however, will have a lead diameter (ϕ d) range of 0.6mm±0.05mm. #### ■PARTS NUMBER #### FBA | Parts number | EHS | EUC | EUC | EUC | EHG | EUC | EUC | E
0 | Nominal Impedance measuring fi | | | Rated current [A] (max.) | | DC Resistance | Rated current | | |---------------|------|-----------------|----------|-----|----------|-----|-------------|--------------|--------------------------------|--|--|--------------------------|--|---------------|---------------|--| | raits number | | [Ω] (min.) | Material | | Material | | [Ω] (max.) | [M Ω] (min.) | | | | | | | | | | | | [32] (111111.) | HA | VA | HA | VA | | | | | | | | | | | | FBA03△450□-00 | RoHS | 35 | 50 | 100 | 7.0 | 7.0 | 0.01 | 1.0 | | | | | | | | | | FBA04△450□-00 | RoHS | 45 | 50 | 100 | 7.0 | 7.0 | 0.01 | 1.0 | | | | | | | | | | FBA04△600□-00 | RoHS | 60 | 50 | 100 | 7.0 | 7.0 | 0.01 | 1.0 | | | | | | | | | | FBA04△900∏-00 | RoHS | 90 | 50 | 100 | 7.0 | 7.0 | 0.01 | 1.0 | | | | | | | | | #### FBR | Parts number | FUE | EHS | FUC | FUE | Nominal | Impedance measuring frequency [MHz] | | Rated [A] (| current
max.) | DC Resistance | Rated current | | |-----------------|------|--------------------------|----------|-----|----------|-------------------------------------|-------------|--------------------|------------------|---------------|---------------|--| | Parts number | EHS | EHS impedance [Ω] (min.) | Material | | Material | | [Ω] (max.) | $[M\Omega]$ (min.) | | | | | | | | [32] (111111.) | HA | VA | HA | VA | | | | | | | | FBR05VA121[]-00 | RoHS | 120 | - | 100 | - | 7.0 | 0.01 | 1.0 | | | | | | FBR06△850NA-00 | RoHS | 85 | 50 | 100 | 7.0 | 7.0 | 0.01 | 1.0 | | | | | | FBR06△121NA-00 | RoHS | 120 | 50 | 100 | 7.0 | 7.0 | 0.01 | 1.0 | | | | | | FBR07△850∏-00 | RoHS | 85 | 50 | 100 | 7.0 | 7.0 | 0.01 | 1.0 | | | | | | FBR07△121□-00 | RoHS | 120 | 50 | 100 | 7.0 | 7.0 | 0.01 | 1.0 | | | | | $\ensuremath{\mathbb{X}}\Delta \mbox{Please}$ specify material codes (HA,VA) and [] lead configuration code. [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). #### LEADED FERRITE BEAD INDUCTORS (FB SERIES A TYPE / R TYPE) #### ■PACKAGING #### **1**Minimum Quantity #### Axial lead (FBA) | | | Standard qu | antity [pcs] | |-------|--------------------|-------------|--------------| | Type | Lead Configuration | Bulk | Taped | | | | Duik | Ammo | | ' | NA, KD, US | 1000 | _ | | FBA03 | KE, KF, VS | 500 | - | | LDA09 | AB, BB | 1 | 2000 | | | UB, VB | 1 | 3000 | | | NA, KD, US | 1000 | - | | FBA04 | KE, KF, VS | 500 | - | | FBAU4 | AB, BB | | 1000 | | | VB, UB | _ | 3000 | #### Radial lead (FBR) | | | Standard quantity [pcs] | | | | |-------|--------------------|-------------------------|-------|--|--| | Туре | Lead Configuration | D. II. | Taped | | | | | | Bulk | Ammo | | | | FBR05 | NA | 1000 | _ | | | | FBRUD | SA | _ | 2000 | | | | FBR06 | NA | 1000 | _ | | | | EDD07 | NB | 1000 | _ | | | | FBR07 | SB, TB | _ | 2000 | | | #### 2Bulk dimensions #### Axial lead (FBA) | Туре | Dimensions | | | | | | | |-----------|------------------------------------|--------------------------------|---------------------------|-------------------|--------------|--|--| | Type | ϕ D | L1 | L2 | ϕ d | Q | | | | FBA03□450 | 2.5 ± 0.2 (0.098 ± 0.008) | 4.5±0.3
(0.177±0.012) | 6.5 max.
(0.256 max.) | | | | | | FBA04□450 | 3.5±0.2
(0.138±0.008) | 4.5±0.3
(0.177±0.012) | 6.5 max.
(0.256 max.) | 0.65±0.05 | 18 min. | | | | FBA04□600 | 3.5 ± 0.2 (0.138 ± 0.008) | 6.0+0.5/-0
(0.236+0.020/-0) | 8.5 max.
(0.335 max.) | (0.026 ± 0.002) | (0.709 min.) | | | | FBA04□900 | 3.5 ± 0.2 (0.138 ± 0.008) | 9.0±0.5
(0.354±0.020) | 11.0 max.
(0.433 max.) | | | | | | Tuma | Dimensions | | | | | | | |--------------|---------------------|---------------------|--------------|---------------------|-------------------|--|--| | Type | ϕ D | Α | а | F | ϕ d | | | | FBA03□450 | 2.5±0.2 | 4.5±0.3 | 9.0 max. | | | | | | FBA03 🗆 450 | (0.098 ± 0.008) | (0.177 ± 0.012) | (0.354 max.) | 5.0±1.0 | 0.65±0.05 | | | | FBA04□450 | 3.5±0.2 | 4.5±0.3 | 9.0 max. | (0.197 ± 0.039) | (0.026 ± 0.002) | | | | FBA04 LL 430 | (0.138 ± 0.008) | (0.177 ± 0.012) | (0.354 max.) | | | | | | | | | | | Unit:mm(inch) | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). #### KD/KE/KF | Tura | Land Cymahal | | | Dimensions | | | |--------------|--------------|---------------------|---------------------|---------------------|---------------------|---------------------| | Type | Lead Symbol | φD | F | L1 | ϕ d | Q | | FBA03□450 | | 2.5±0.2 | 10.0±1.0 | 4.5±0.3 | | 7.0±2.0 | | FBA03 1400 | | (0.098 ± 0.008) | (0.394 ± 0.039) | (0.177±0.012) | | (0.276 ± 0.079) | | FBA04□450 | KD | 3.5±0.2 | 10.0±1.0 | 4.5±0.3 | 0.65 ± 0.05 | 7.5±2.0 | | FDA04 1430 | KD | (0.138 ± 0.008) | (0.394 ± 0.039) | (0.177±0.012) | (0.026 ± 0.020) | (0.295 ± 0.079) | | FBA04□600 | | 3.5 ± 0.2 | 10.0 ± 1.0 | 6.0 + 0.5 / -0 | | 7.5 ± 2.0 | | FBA04 🗆 000 | | (0.138 ± 0.008) | (0.394 ± 0.039) | (0.236+0.020/-0) | | (0.295 ± 0.079) | | FBA03□450 | | 2.5±0.2 | 12.5±1.0 | 4.5±0.3 | | 7.0±2.0 | | FBA03 11430 | | (0.098 ± 0.008) | (0.492 ± 0.039) | (0.177±0.012) | | (0.276 ± 0.079) | | FBA04□450 | - KE | 3.5 ± 0.2 | 12.5±1.0 | 4.5±0.3 | | 7.5±2.0 | | FBA04L1430 | | (0.138 ± 0.008) | (0.492 ± 0.039) | (0.177±0.012) | 0.65 ± 0.05 | (0.295 ± 0.079) | | FBA04□600 | | 3.5±0.2 | 12.5±1.0 | 6.0 + 0.5 / -0 | (0.026 ± 0.020) | 7.5±2.0 | | FBA04 🗆 000 | | (0.138 ± 0.008) | (0.492 ± 0.039) | (0.236+0.020/-0) | | (0.295 ± 0.079) | | FBA04□900 | | 3.5 ± 0.2 | 12.5 ± 1.0 | 9.0±0.5 | | 7.5 ± 2.0 | | FBA04[]300 | | (0.138 ± 0.008) | (0.492 ± 0.039) | (0.354 ± 0.020) | | (0.295 ± 0.079) | | FBA03□450 | | 2.5 ± 0.2 | 15.0 ± 1.0 | 4.5±0.3 | | 7.0 ± 2.0 | | FBA03[1430 | | (0.098 ± 0.008) | (0.591 ± 0.039) | (0.177±0.012) | | (0.276 ± 0.079) | | FBA04□450 | | 3.5 ± 0.2 | 15.0±1.0 | 4.5±0.3 | | 7.5±2.0 | | 1 BA04 🗆 430 | KF | (0.138 ± 0.008) | (0.591 ± 0.039) | (0.177±0.012) | 0.65 ± 0.05 | (0.295 ± 0.079) | | FBA04□600 | KF | 3.5 ± 0.2 | 15.0 ± 1.0 | 6.0 + 0.5 / -0 | (0.026 ± 0.020) | 7.5 ± 2.0 | | FBA04L1000 | | (0.138 ± 0.008) | (0.591 ± 0.039) | (0.236+0.020/-0) | | (0.295 ± 0.079) | | FBA04□900 | | 3.5±0.2 | 15.0±1.0 | 9.0±0.5 | | 7.5±2.0 | | FDAU4[1300 | | (0.138 ± 0.008) | (0.591 ± 0.039) | (0.354 ± 0.020) | | (0.295 ± 0.079) | Unit:mm(inch) 1max $\%5\pm1$ for 900 type only | Туре | | | Dimensions | | | |-----------|---------------|------------------|--------------|---------------|-------------------| | Турс | ϕ D | Α | а | F | ϕ d | | FBA03□450 | 2.5±0.2 | 4.5±0.3 | 12.5 max. | 5.0±1.0 | 0.65±0.05 | | | (0.098±0.008) | (0.177±0.012) | (0.492 max.) | (0.197±0.039) | (0.026±0.002) | | FBA04□450 | 3.5±0.2 | 4.5±0.3 | 12.5 max. | 5.0±1.0 | 0.65 ± 0.05 | | | (0.138±0.008) | (0.177±0.012) | (0.492 max.) | (0.197±0.039) | (0.026 \pm 0.002) | | FBA04□600 | 3.5±0.2 | 6.0+0.5/-0 | 12.5 max. | 5.0±1.0 | 0.65±0.05 | | | (0.138±0.008) | (0.236+0.020/-0) | (0.492 max.) | (0.197±0.039) | (0.026±0.002) | | FBA04□900 | 3.5±0.2 | 9.0±0.5 | 16.0 max. | 5.0±1.0 | 0.65±0.05 | | | (0.138±0.008) | (0.354±0.020) | (0.630 max.) | (0.197±0.039) | (0.026±0.002) | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). #### Radial lead (FBR) | T | Dimensions | | | | | | | | | | |------------|---------------------|--------------|---------------------|--------------------------|---------------------|---------------------|--|--|--|--| | Туре | D | L1 | ϕ d | Q | W | F | | | | | | FBR05VA121 | 5.0 max. | 9.0 max. | 0.65±0.05 | 10.0 + 3/-5 | 2.5 max. | 2.5±1.0 | | | | | | FBRUSVATZT | (0.197 max.) | (0.354 max.) | (0.026 ± 0.002) | (0.394+0.118/-0.197) | (0.098 max.) | (0.098 ± 0.039) | | | | | | FBR06□850 | 6.0±0.5 | 7.0 max. | 0.65±0.05 | 10.0 + 3/-5 | 3.0±0.5 | 2.5±1.0 | | | | | | LDK00П000 | (0.236 ± 0.020) | (0.276 max.) | (0.026 ± 0.002) | (0.394+0.118/-0.197) | (0.118 ± 0.020) | (0.098 ± 0.039) | | | | | | FBR06□121 | 6.0±0.5 | 9.0 max. | 0.65±0.05 | 10.0 + 3/-5 | 3.0±0.5 | 2.5±1.0 | | | | | | FDRUULIZI | (0.236 ± 0.020) | (0.354 max.) | (0.026 ± 0.002) | (0.394 + 0.118 / -0.197) | (0.118 ± 0.020) | (0.098 ± 0.039) | | | | | Unit:mm(inch) | Туре | Dimensions | | | | | | | | |------------|---------------------|--------------|-------------------|----------------------|--------------|----------------------|--|--| | туре | D | L1 | ϕ d | Q | W | F | | | | FBR07□850 | 7.5±0.5 | 7.0 max. | 0.6±0.05 | 5.0+1/-2 | 2.5 max. | 5.0+1/-0.5 | | | | FBR0/L1000 | (0.295 ± 0.020) | (0.276 max.) | (0.024 ± 0.002) | (0.197+0.039/-0.079) | (0.098 max.) | (0.197+0.039/-0.020) | | | | FBR07□121 | 7.5±0.5 | 9.0 max. | 0.6±0.05 | 5.0+1/-2 | 2.5 max. | 5.0+1/-0.5 | | | | FDRU/LIZI | (0.295 ± 0.020) | (0.354 max.) | (0.024 ± 0.002) | (0.197+0.039/-0.079) | (0.098 max.) | (0.197+0.039/-0.020) | | | [►] This catalog
contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). #### ③Taping Dimensions #### AB (a: 26mm) (1.02inch lead space) | | a | | | | | | | | | |-------------|---------------------|----------------------|-----------------|------------|--------------------------------|---------------------|---------|--|--| | Type | Dimensions | | | | | | | | | | туре | ϕ D | L | а | b | L ₁ -L ₂ | ϕ d | pitch | | | | FBA03 | 2.5±0.2 | 4.5±0.3 | 26.0+1.5/-0 | 0.8max | 1.0 max | 0.65±0.05 | 10.0 | | | | FDAUS | (0.098 ± 0.008) | (0.177±0.012) | (1.02+0.059/-0) | (0.031max) | (0.039 max) | (0.026 ± 0.002) | (0.394) | | | | FBA04□450 | | 4.5±0.3 | 26.0+1.5/-0 | 0.8max | 1.0 max | 0.65±0.05 | 10.0 | | | | FBA04L1430 | | (0.177±0.012) | (1.02+0.059/-0) | (0.031max) | (0.039 max) | (0.026 ± 0.002) | (0.394) | | | | FBA04□600 | 3.5±0.2 | 6.0+0.5/-0 | 26.0+1.5/-0 | 0.8max | 1.0 max | 0.65±0.05 | 10.0 | | | | FBA04 🗆 000 | (0.138 ± 0.008) | (0.236 + 0.020 / -0) | (1.02+0.059/-0) | (0.031max) | (0.039 max) | (0.026 ± 0.002) | (0.394) | | | | | | 9.0±0.5 | 26.0+1.5/-0 | 0.8max | 1.0 max | 0.65±0.05 | 12.5 | | | | FBA04□900 | | (0.354 ± 0.020) | (1.02+0.059/-0) | (0.031max) | (0.039 max) | (0.026 ± 0.002) | (0.492) | | | Unit:mm(inch) #### BB(a: 52mm) (2.05inches lead space) | Type | Dimensions | | | | | | | | | |-------------|---------------------|----------------------|-------------------------|-------------|--------------------------------|---------------------|---------|--|--| | Туре | ϕ D | ١ | а | b | L ₁ -L ₂ | ϕ d | pitch | | | | FBA03 | 2.5±0.2 | 4.5±0.3 | 52.0+2/-1 | 1.2 max | 1.0 max | 0.65±0.05 | 10.0 | | | | FDA03 | (0.098 ± 0.008) | (0.177±0.012) | (2.05+0.079/-0.039) | (0.047 max) | (0.039 max) | (0.026 ± 0.002) | (0.394) | | | | FBA04□450 | | 4.5±0.3 | 52.0+2/-1 | 1.2max | 1.0 max | 0.65±0.05 | 10.0 | | | | FBA04 1430 | | (0.177±0.012) | (2.05 + 0.079 / -0.039) | (0.047max) | (0.039 max) | (0.026 ± 0.002) | (0.394) | | | | FBA04□600 | 3.5 ± 0.2 | 6.0 + 0.5 / -0 | 52.0 + 2/-1 | 1.2max | 1.0 max | 0.65 ± 0.05 | 10.0 | | | | FBA04 🗆 000 | (0.138 ± 0.008) | (0.236 + 0.020 / -0) | (2.05+0.079/-0.039) | (0.047 max) | (0.039 max) | (0.026 ± 0.002) | (0.394) | | | | FBA04□900 | | 9.0±0.5 | 52.0+2/-1 | 1.2max | 1.0 max | 0.65±0.05 | 12.5 | | | | FDAU4∐900 | | (0.354 ± 0.020) | (2.05+0.079/-0.039) | (0.047 max) | (0.039 max) | (0.026 ± 0.002) | (0.492) | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). #### SA(F: 2.5mm pitch) (0.098 inches) | Туре | Symbol | Dimensions | Symbol | Dimensions | Symbol | Dimensions | |-------|----------------------------|--------------------------------------|---------------------------|--|--------------------------|--------------------------------------| | А | 121: 9.0 max. (0.354 max.) | P ₂ | 6.35±1.3
(0.250±0.051) | Q | 1.0 max.
(0.039 max.) | | | | Т | 2.5 max.
(0.098 max.) | F | 2.5+1.0/-0.5
(0.098+0.039/-0.020) | ϕ D $_0$ | 4.0±0.3
(0.157±0.012) | | | D | 5.0 max.
(0.197 max.) | Δh | 0.0±2.0
(0.0±0.079) | ¢ d | 0.65 ± 0.05
(0.026 \pm 0.002) | | FBR05 | Н | 18.0+2.0/-0
(0.709+0.079/-0) | W | 18.0+1.0/-0.5
(0.709+0.039/-0.020) | L | 11.0 max.
(0.433 max.) | | | Р | 12.7±1.0
(0.500±0.039) | W _o | 12.5 min.
(0.492 min.) | t | 0.7±0.2
(0.028±0.008) | | | P ₀ | 12.7±0.3 ^{*1} (0.500±0.012) | W ₁ | 9.0+0.75/-0.5
(0.354+0.030/-0.020) | | Unit: mm(inch) | | | P ₁ | 5.1±0.7
(0.201±0.028) | W ₂ | 3.0 max. ^{※2}
(0.118 max.) | | | X1 Accumulated error for 20 pitches is ± 2 mm. #### SB/TB(F: 5mm pitch) (0.197 inches) | Туре | Symbol | Dimensions | Symbol | Dimensions | Symbol | Dimensions | |-------|--------|-------------------------------------|----------------|---------------------------------------|----------------|--| | | | 121: 9.0 max. (0.354 max.) | P ₀ | 12.7±0.3 ^{**1} (0.500±0.012) | W_1 | 9.0+0.75/-0.5
(0.354+0.039/-0.020) | | | A | 850: 7.0 max. (0.276 max.) | P ₁ | 3.85±0.8
(0.152±0.028) | W ₂ | 3.0 max. ^{※2}
(0.118 max.) | | | Т | 2.5 max.
(0.098 max.) | P ₂ | 6.35±1.3
(0.250±0.051) | Q | 1.0 max.
(0.039 max.) | | FBR07 | D | 7.5±0.5
(0.925±0.020) | F | 5.0+1.0/-0.5
(0.197+0.039/-0.020) | ϕ D $_0$ | 4.0±0.3
(0.157±0.012) | | | | SB: 18.0+2.0/-0
(0.709+0.079/-0) | Δh | 0.0±2.0
(0.0±0.079) | ø d | 0.6±0.05
(0.024±0.002) | | | Н | TB: 16.0±0.5
(0.630±0.020) | W | 18.0+1.0/-0.5
(0.709+0.039/-0.020) | L | 11.0 max.
(0.433 max.) | | | Р | 12.7±1.0
(0.500±0.039) | W ₀ | 12.5 min.
(0.492 min.) | t | 0.7±0.2
(0.028±0.008) | | | • | • | • | | • | Unit: mm(inch) | $[\]chi 1$ Accumulated error for 20 pitches is ± 2 mm. $[\]ensuremath{\%2}$ Bonding tape must not protrude from the base tape. $[\]divideontimes$ 2 Bonding tape must not protrude from the base tape. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | Туре | Symbol | Dimensions | Symbol | Dimensions | Symbol | Dimensions | | |------------------------|----------------|--------------------------|----------------|--------------------------|-----------------|------------------------|--| | | ^ | 4.5±0.3 | | 3.85±0.8 | W ₂ | 3.0 max. ^{※2} | | | | Α | (0.177±0.012) | P ₁ | (0.152 ± 0.032) | VV ₂ | (0.118 max.) | | | | ^ | 9.0 max. | P ₂ | 6.35±1.3 | Q | 1.0 max. | | | FBA03□450
FBA04□450 | A ₁ | (0.354 max.) | P ₂ | (0.250 ± 0.051) | l k | (0.039 max.) | | | | | 03: 2.5±0.2 | F | 5.0±1.0 | ϕ_{D_0} | 4.0±0.3 | | | | φD | (0.098±0.008) | | (0.197 ± 0.039) | φD_0 | (0.157 ± 0.012) | | | | | 04: 3.5±0.2 | Δh | 0.0±2.0 | 4-1 | 0.65 ± 0.05 | | | | | (0.138±0.008) | Δn | (0.0 ± 0.079) | ϕ d | (0.026 ± 0.002) | | | | Н | 20.0+0.5/-1.0 | W | 18.0+1.0/-0.5 | | 11.0 max. | | | | | (0.787 + 0.020 / -0.039) | VV | (0.709 + 0.039 / -0.020) | L | (0.433 max.) | | | | Р | 12.7±1.0 | 14/ | 12.5 min. | | 0.7±0.2 | | | | | (0.500 ± 0.039) | W ₀ | (0.492 min.) | Ι τ | (0.028 ± 0.008) | | | | Б | 12.7±0.3 ^{※1} | 14/ | 9.0+0.75/-0.5 | | | | | | P_0 | (0.500 ± 0.012) | W ₁ | (0.354 + 0.030 / -0.020) | | Unit: mm(inch) | | X1 Accumulated error for 20 pitches is ± 2 mm. #### ●VB 形状 | Туре | Symbol | Dimensions | Symbol | Dimensions | Symbol | Dimensions | |------------------------|--------|-------------------------------------|----------------|---------------------------------------|----------------|--| | | | 450: 4.5±0.3
(0.177±0.012) | Р | 12.7±1.0
(0.500±0.039) | W_1 | 9.0+0.75/-0.5
(0.354+0.030/-0.020) | | | Α | 600: 6.0+0.5/-0
(0.236+0.020/-0) | P ₀ | 12.7±0.3 ^{*1} (0.500±0.012) | W ₂ | 3.0 max. ^{※2}
(0.118 max.) | | | | 900: 9.0±0.5
(0.354±0.020) | P ₁ | 3.85±0.8
(0.152±0.032) | Q | 1.0 max.
(0.039 max.) | | FBA03□450
FBA04□450 | | 450: 12.5 max.
600: (0.492 max.) | P ₂ | 6.35±1.3
(0.250±0.051) | <i>ф</i> D₀ | 4.0±0.3
(0.157±0.012) | | FBA04□600
FBA04□900 | | 900: 16.0 max. (0.630 max.) | F | 5.0±1.0
(0.197±0.039) | ϕ d | 0.65 ± 0.05
(0.026 \pm 0.002) | | | φD | 03: 2.5±0.2
(0.098±0.008) | Δh | 0.0±2.0
(0.0±0.079) | L | 11.0 max.
(0.433 max.) | | | | 04: 3.5±0.2
(0.138±0.008) | W | 18.0+1.0/-0.5
(0.709+0.039/-0.020) | t | 0.7±0.2
(0.028±0.008) | | | H₀ | 16.0±0.5
(0.650±0.020) | W _o | 12.5 min.
(0.492 min.) | | 単位: mm(inch) | ^{※1} Accumulated error for 20 pitches is ±2mm. $[\]ensuremath{\%2}$ Bonding tape must not protrude from the base tape. $[\]frak{\%}2$ Bonding tape must not protrude from the base tape. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). # AXIAL LEADED INDUCTORS(CAL Type), RADIAL LEADED INDUCTORS(LH Type), LEADED FERRITE BEAD INDUCTORS(FB Series A Type/R Type) | RELIABILITY DA | TA | | | | | |-----------------------------|--
--|--|--|--| | | | | | | | | 1. Operating temper | rature Range | | | | | | | CAL45 Type | | | | | | Specified Value | LHLOOO | −25~+ 105°C | | | | | | FBA/FBR | | | | | | | CAL45 Type | | | | | | Test Methods and | LHLOOO | Including self-generated heat | | | | | Remarks | FBA/FBR | | | | | | | | | | | | | 2. Storage temperat | ture Range | | | | | | | CAL45 Type | | | | | | Specified Value | LHLOOO | -40~+ 85°C(Except for taping condition) | | | | | opcomod value | FBA/FBR | to a choope for taping condition, | | | | | | FDA/FDR | | | | | | 0 D | | | | | | | 3. Rated current | | | | | | | | CAL45 Type | | | | | | Specified Value | | Within the specified tolerance | | | | | | FBA/FBR | | | | | | | CAL45 Type: | | | | | | | The maximum DC value having inductance within 10% and temperature increase within 40°C by the application of DC bias. LHL | | | | | | | The maximum DC value having inductance decrease within 10% (LHLC08, LHLC10: within 30%) and temperature increase within the | | | | | | Test Methods and | following specified temperature by the | | | | | | Remarks | - | HL08, LHL10) | | | | | | : 40°C (LHLC08, LHLC10) | | | | | | | FBA/FBR: No disconnection or appearance abnormality by continuous current application for 30 min. Change after the application shall be | | | | | | | within $\pm 20\%$ of the initial value. | many by communication approximation to man go also the approximation of an action of the communication comm | | | | | | This is not guaranteed for electrical characteristics during current application. | | | | | | | | | | | | | 4. Impedance | | | | | | | | CAL45 Type | | | | | | Specified Value | LHLOOO | | | | | | | FBA/FBR | Within the specified tolerance | | | | | T . M .! | FBA/FBR: | | | | | | Test Methods and
Remarks | Measuring equipment : Impedance analyzer (HP4191A) or its equivalent | | | | | | rtomarto | Measuring frequency : Specified freq | uency | | | | | | | | | | | | 5. Inductance | | | | | | | | CAL45 Type | Within the appoint televance | | | | | Specified Value | LHL000 | Within the specified tolerance | | | | | | FBA/FBR | | | | | | | CAL45 Type : | | | | | | | | P4285A + HP42851A or its equivalent) | | | | | Test Methods and | Measuring frequency : Specified freq | uency | | | | | Remarks | LHL□□□ : Measuring equipment : LCR meter (H | P4285A+HP42851A or its equivalent) | | | | | | | P4263A) or its equivalent (at 1kHz) | | | | | | Measuring frequency : Specified freq | : Specified frequency | | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 6. Q | | T | | | | |-----------------------------|--|--|--|--|--| | | CAL45 Type | | | | | | Specified Value | | Within the specified tolera | ance | | | | | FBA/FBR | | | | | | | LHL O O O | | | | | | Test Methods and | 9 | IP4285A+HP42851A or its | • | | | | Remarks | : LCR meter (HP4263A) or its equivalent (at 1kHz) | | | | | | | Measuring frequency : Specified free | quency | | | | | | | | | | | | 7. DC Resistance | | | | | | | | CAL45 Type | | | | | | Specified Value | LHLOOO | Within the specified tolera | ance | | | | | FBA/FBR | | | | | | Test Methods and
Remarks | Measuring equipment : DC ohmmeter | , | | | | | | | | | | | | 8. Self resonance fr | equency | | | | | | | CAL45 Type | | | | | | Specified Value | LHL O O O | Within the specified tolera | ance | | | | | FBA/FBR | | | | | | Test Methods and | | | | | | | Remarks | Measuring equipment : (HP4191A, 4192A) its equivalent | | | | | | | | | | | | | 9. Temperature cha | racteristic | | | | | | | CAL45 Type | | | | | | Specified Value | LHL 🗆 🗆 🗆 | △L/L : Within ±7% | | | | | · | FBA/FBR | | | | | | | Change of maximum inductance deviation in | sten 1 to 5 | | | | | | Temperature | | | | | | | Step LHL | | | | | | Test Methods and | 1 20 | | | | | | Remarks | 2 Minimum operating to | • | | | | | | 3 20 (Standard temp | · | | | | | | 4 Maximum operating to 5 20 | emperature | | | | | | 5 20 | | | | | | | | | | | | | 10. Tensile strength | | 1 | | | | | | CAL45 Type | | | | | | Specified Value | | No abnormality such as cut lead, or looseness. | | | | | | FBA/FBR | | | | | | | CAL45 Type : Apply the stated tensile force | progressively in the direction | on to draw terminal. | | | | | force (N) duration (s) | | | | | | | 10 10 | | | | | | T . M .! | LHL : Apply the stated tensile force | | | | | | Test Methods and
Remarks | Nominal wire diameter tensile ϕ d (mm)
$0.3 < \phi$ d ≤ 0.5 |) force (N) 5 | duration (s) | | | | Romains | 0.5 < \$\phi\delta\leq 0.8\$ | 10 | 30±5 | | | | | 0.8 < ¢d ≦ 0.8 | 25 | | | | | | | | 20±1N shall be applied to the lead wire in the axial direction | | | | | of the component during 10 ± 1 | seconds. | | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 11. Over current | | | | | | | |-----------------------------|--|---------------------|-----|---|--|--| | | CAL45 Type | | No | emission of smoke no firing | g | | | Specified Value | LHLOOO | | | There shall be no scorch or short of wire. LHLC08, LHLC10 : There shall be no firing. | | | | | FBA/FBR | | | | | | | Test Methods and
Remarks | LHL CAL45 Type: Measuring current: Rated current Duration: 5 min. Number of measuring: one time | | | | | | | 12. Terminal strengt | h · handing | | | | | | | 12. Terminal strengt | - | | 1 | | | | | Charified Value | CAL45 Type | | | alamanmaalituu arrala aa arrit la | ad autocomos | | | Specified Value | | | | abnormality such as cut le | ad, or looseness. | | | | FBA/FBR | | | | | | | | initial position. This operation Number of bends: Two tires | tion is done over a | | d of 2-3 sec. Then second | he body through the angle of 90 degrees and return it to the bend in the opposite direction shall be made. | | | | Nominal wire diameter Bending force | | : | Mass reference | | | | | tensile $0.3 < \phi \text{ d} \leq 0.5$ 2.5 | | | weight
0.25 | | | | | 0.5 < \$\psi\$ d\section 0.8 | 5 | | 0.50 | | | | Test Methods and
Remarks | LHL□□□•FBA/FBR: Suspend a weight of specified mass at the en initial position. This operation is done over a pumber of bends: Two times. | | | d of 2-3 sec. Then second | he body through the angle of 90 degrees and return it to the bend in the opposite direction shall be made. | | | | Nominal wire diameter tensile | Bending force | ; | Mass reference
weight | | | | | 0.3< ¢d≦0.5 | 2.5 | | 0.25 | | | | | 0.5< ¢d≦0.8 | 5 | | 0.5 | | | | | 0.8 < ¢d≦1.2 | 10 | | 1.0 | | | | | | | | | | | | 13. Insulation resist | ance : between the terminal | ls and body | T | | | | | | CAL45 Type | | | | | | | Specified Value | | | 100 | $DM\Omega$ min. | | | | | FBA/FBR | | | | | | | Test Methods and
Remarks | nd LHL□□□: Applied voltage : 500 VDC Duration : 60 sec. | | | | | | | | | | | | | | | 14. Insulation resist | ance : between terminals ar | nd core | | | | | | | CAL45 Type | | | | | | | Specified Value | | | | | | | | | FBA/FBR | | | Ω min. | | | | Test Methods
and
Remarks | d FBA/FBR: Applied voltage : 100 VDC Duration : 60±5 sec. | | | | | | | | | | | | | | | 15. Withstanding : b | etween the terminals and bo | ody | | | | | | | CAL45 Type | | | | | | | Specified Value | LHL | | No | abnormality such as insula | tion damage | | | | FBA/FBR | | | | | | | Test Methods and
Remarks | LHL : According to JIS C5101- Metal global method Applied voltage : 500 Duration : 60 |) VDC | | | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 16. DC bias charact | 16. DC bias characteristic | | | | | | |-----------------------------|--|--|--|--|--|--| | | CAL45 Type | Δ L/L: Within -10% | | | | | | Specified Value | LHLOOO | | | | | | | | FBA/FBR | | | | | | | Test Methods and Remarks | CAL45 Type : Measure inductance with applications | cation of rated current using LCR meter to compare it with the initial value. | | | | | | | | | | | | | | 17. Body strength | | | | | | | | | CAL45 Type | No abnormality as damage. | | | | | | Specified Value | LHL O O O | | | | | | | | FBA/FBR | No abnormality such as cracks on body. | | | | | | Test Methods and
Remarks | CAL45 Type: Applied force :50N Duration : 10 sec. Speed : Shall attain to specified force in 2 sec. FBA: Applied force : 50±3N Duration : 30±1 sec. Press Pressing jig Specimen Imm Imm | | | | | | | | | | | | | | | 18. Resistance to vibration | | | | | | | | | CAL45 Type | Δ L/L : Within \pm 5% | | | | | | Specified Value | LHLDDD | Appearance : No abnormality $\Delta L/L$: Within $\pm 5\%$ Q change : Within $\pm 30\%$ | | | | | | | FBA/FBR | Appearance : No abnormality Impedance change : Within ±20% | | | | | | CAL45 Type LHL Appearance: No abnormality \[\Delta L/L: Within \pm 5\% \] Appearance: No abnormality \[\Delta L/L: Within \pm 5\% \] Q change: Within \pm 30\% Appearance: No abnormality Impedance change: Within \pm 20\% CAL45 Type: Directions : 2 hrs each in X, Y and Z directions total: 6hrs. Frequency range : 10 to 55 to 10Hz (1min.) Amplitude : 1.5mm Mounting method : Soldering onto printed board. | | |--|-----------------| | Specified Value LHL□□□ AL/L: Within ±5% Q change: Within ±30% Appearance: No abnormality Impedance change: Within ±20% CAL45 Type: Directions : 2 hrs each in X, Y and Z directions total: 6hrs. Frequency range : 10 to 55 to 10Hz (1min.) Amplitude : 1.5mm Mounting method : Soldering onto printed board. | | | Test Methods and CAL45 Type: Directions : 2 hrs each in X, Y and Z directions total : 6hrs. Frequency range : 10 to 55 to 10Hz (1min.) Amplitude : 1.5mm Mounting method : Soldering onto printed board. | Specified Value | | Impedance change: Within ±20% CAL45 Type: Directions : 2 hrs each in X, Y and Z directions total: 6hrs. Frequency range : 10 to 55 to 10Hz (1min.) Amplitude : 1.5mm Mounting method : Soldering onto printed board. | | | Directions : 2 hrs each in X, Y and Z directions total : 6hrs. Frequency range : 10 to 55 to 10Hz (1min.) Amplitude : 1.5mm Mounting method : Soldering onto printed board. | | | Remarks Recovery : At least 1hr of recovery under the standard condition after the test, followed by the measurement with LHL□□□•FBA/FBR: | | | Directions : 2 hrs each in X, Y and Z directions total : 6hrs. | | | Frequency range : 10 to 55 to 10Hz (1min.) | | | Amplitude : 1.5mm | | | Mounting method : Soldering onto printed board. | | | 19. Resistance to shock | | | | | | |-----------------------------|---|--|--|--|--| | Specified Value | CAL45 Type | | No significant abnormality in appearance | | | | | LHL | | | | | | | FBA/FBR | | | | | | Test Methods and
Remarks | CAL45 Type :
Drop test
Impact material
Height
Total number of drops | : concrete or vi
: 1m
: 10 times | nyl tile | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 20. Solderability | | | | | | |-----------------------------|---|--|--|---|--| | | CAL45 Type | | At least 7 | 5% of terminal electrode is covered by new solder. | | | Specified Value | LHLOOO | | At least 75% of terminal electrode is covered by new solder. | | | | | FBA/FBR | | At least 9 | 0% of terminal electrode is covered by new solder. | | | Test Methods and
Remarks | CAL45 Type: Solder temperature : $230\pm5^{\circ}$ C Duration : 2 ± 0.5 sec. LHL \square \square : Solder temperature : $235\pm5^{\circ}$ C Duration : 2 ± 0.5 sec. Immersion depth : Up to 1.5mm from FBA/FBR: Solder temperature : $230\pm5^{\circ}$ C Duration : 3 ± 1 sec. Immersion depth : Up to 1.5mm from FM is the control of t | | | | | | 21. Resistance to so | oldering heat | | | | | | | CAL45 Type | | ΔL/L : W | ithin ±5% | | | Specified Value | LHLOOO | | No significant abnormality in appearance Inductance change: Within ±5% Q change: Within ±30% | | | | | FBA/FBR | | No significant abnormality in appearance Impedance change : Within $\pm 20\%$ | | | | | CAL45 Type: Solder temperature : 270±5°C Duration : 5±0.5 sec. O Immersed conditions : Inserted into a condition in the co | | substrate wi
f recovery ι | th t=1.6mm under the standard condition after the test, followed by the measurement within $: 260\pm5^{\circ}\text{C}$ $: 10\pm1 \text{ sec.}$ $: \text{Up to 1.5mm from the bottom of case.}$ | | | Test Methods and
Remarks | Manual soldering : Solder tempera Duration Caution Recovery | | ature | : 350±10°C (At the tip of soldering iron) : 5±1 sec. : Up to 1.5mm from the bottom of case. : No excessive pressing shall be applied to terminals. : 1 to 2hrs of recovery under the standard condition after the test. | | | | FBA/FBR: Solder bath method: Condition 1: Solder temper Duration Immersion dep | | | : 260±5°C
: 10±1 sec.
: Up to 1.5mm from the terminal root. | | | | Condition 2 : Solder temper Duration Immersion dep Recovery | | | : 350±5°C
: 3±1 sec.
: Up to 1.5mm from the terminal root.
: 3hrs of recovery under the standard condition after the test. | | | | | | | | | | 22. Resistance to se | | | l | | | | | CAL45 Type | | Please av | oid the ultrasonic cleaning of this product. | | | Specified Value | | | | | | | | FBA/FBR | | No significant abnormality in appearance Impedance change : Within $\pm 20\%$ | | | | | EDA/EDD. | | | | | | 22. Resistance to solvent | | | | |
-----------------------------|---|---|---|--| | | CAL45 Type | | Please avoid the ultrasonic cleaning of this product. | | | Specified Value | LHL | | | | | | FBA/FBR | | No significant abnormality in appearance Impedance change : Within $\pm 20\%$ | | | Test Methods and
Remarks | FBA/FBR: Solvent temperature Duration Solvent type Recovery | : 20~25°C
: 30±5 sec.
: Acetone
: 3hrs of recovery | v under the standard condition after the test. | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). #### 23. Thermal shock CAL45 Type $\Delta L/L$: Within $\pm 10\%$ Appearance : No abnormality LHL 🗆 🗆 🗆 Inductance change: Within ±10% Specified Value Q change: Within ±30% Appearance: No abnormality FBA/FBR Impedance change: Within ±20% CAL45 Type: Conditions for 1 cycle Step Duration (min.) Temperature (°C) -25+0/-3 30 ± 3 2 Room temperature Within 3 3 +85+2/-0 30 ± 3 4 Within 3 Room temperature Number of cycles : 5 cycles Recovery : At least 1hr of recovery under the standard condition after the removal from test chamber, followed by the measurement within 2hrs. Test Methods and LHL . FBA/FBR: According to JIS C60068-2-14. Remarks Conditions for 1 cycle Step Temperature (°C) Duration (min.) $\underline{\text{Min}}\underline{\text{imum operating temperature}}$ 30 ± 3 1 2 Within 3 Room temperature 3 Maximum operating temperature 30±3 4 Room temperature Within 3 | 24. Damp heat | | | | |---|-------------------------|--|---| | | CAL45 Type | | Δ L/L: Within ± 10 % | | Specified Value | LHL | | | | opcomed value | FBA/FBR | | Appearance: No abnormality | | | T BA/T BIX | | Impedance change: Within ±20% | | CAL45 Type: Temperature : 40±2°C Humidity : 90~95%RH Duration : 1000 hrs Test Methods and Recovery : At least 1hr of recovery under the standard removal from temperature in | | | ry under the standard removal from test chamber, followed by the measurement within 2hrs. | | | Temperature
Humidity | : 60±2°C
: 90∼95%RH | | | | Duration
Recovery | : 1000 hrs
: 3hrs of recovery under | r the standard condition after the removal from the test chamber. | : 1 to 2hrs of recovery under the standard condition after the removal from the test chamber. [LHL | |]: 3hrs of recovery under the standard condition after the removal from the test chamber. (FBA/ FBR) : 10 cycles [LHL : 5 cycles (FBA/ FBR) Number of cycles Recovery This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 25. Loading under d | amp heat | | | | |-----------------------------|---|---|---|--| | | CAL45 Type | | Δ L/L: Within $\pm 10\%$ | | | Specified Value | LHLOOO | | Appearance : No abnormality Inductance change : Within $\pm 10\%$ Q change : Within $\pm 30\%$ | | | | FBA/FBR | | | | | Test Methods and
Remarks | CAL45 Type: Temperature Humidity Duration Applied current Recovery LHL : Temperature Humidity Duration Applied current Recovery | : 40±2°C
: 90∼95%RH
: 1000+48/-0 hrs
: Rated current | y under the standard removal from test chamber, followed by the measurement within 2hrs. under the standard condition after the removal from the test chamber. | | | | | | | | | 26. Loading at high | temperature | | | | | | CAL45 Type | | Δ L/L: Within ± 10 % | | | Specified Value | LHL000 | | | | | | FBA/FBR | | | | | Test Methods and
Remarks | CAL45 Type :
Temperature
Duration
Applied current
Recovery | : 85±2°C
: 1000 hrs
: Rated current
: At least 1hr of recover | y under the standard removal from test chamber, followed by the measurement within 2hrs. | | | 27 Law tamparatur | a life toot | | | | | 27. Low temperature | | | Δ L/L : Within $\pm 10\%$ | | | Specified Value | CAL45 Type LHL□□□ | | Appearance : No abnormality Inductance change : Within ±10% Q change : Within ±30% | | | | FBA/FBR | | | | | Test Methods and
Remarks | CAL45 Type: Temperature Duration Recovery LHL□□□: Temperature Duration Recovery | rature : $-25\pm2^{\circ}$ C on : 1000 hrs ery : At least 1hr of recovery under the standard removal from test chamber, followed by the measurement within 2hr $\Box\Box:$ eature : $-40\pm3^{\circ}$ C on : $1000+48/-0$ hrs | | | | | | | | | | 28. High temperatur | e life test | | | | | | CAL45 Type | | | | | Specified Value | LHLOOO | | Appearance : No abnormality Inductance change : Within ±10% Q change : Within ±30% | | | | FBA/FBR | | | | | Test Methods and
Remarks | LHL□□□ : Temperature Duration Recovery | : 105±2°C
: 1000+48/-0 hrs
: 1 to 2hrs of recovery u | under the standard condition after the removal from the test chamber. | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). ## AXIAL LEADED INDUCTORS(CAL Type), RADIAL LEADED INDUCTORS(LH Type), LEADED FERRITE BEAD INDUCTORS(FB Series A Type/R Type) #### PRECAUTIONS #### 1. Circuit Design Operating environment 1. The products described in this specification are intended for use in general electronic equipment, (office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical Precautions equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems,) where product failure might result in loss of life, injury or damage. For such uses, contact TAIYO YUDEN Sales Department in advance. 2. PCB Design Precautions 1. Please design insertion pitches as matching to that of leads of the component on PCBs. Design Technical 1. When Inductors are mounted onto a PC board, hole dimensions on the board should match the lead pitch of the component, if not, it will considerations cause breakage of the terminals or cracking of terminal roots covered with resin as excess stress travels through the terminal legs. 3. Considerations for automatic placement Adjustment of mounting machine Precautions 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards. 2. Mounting and soldering conditions should be checked beforehand. Technical ◆Adjustment of mounting machine 1. When installing products, care should be taken not to apply distortion stress as it may deform the products. considerations 4. Soldering ◆Wave soldering 1. Please refer to the specifications in the
catalog for a wave soldering. 2. Do not immerse the entire inductor in the flux during the soldering operation. Lead free soldering 1. When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently. Precautions ◆ Recommended conditions for using a soldering iron: •Put the soldering iron on the land-pattern. Soldering iron's temperature – Below 350°C Duration - 3 seconds or less •The soldering iron should not directly touch the inductor. Reflow soldering 1. As for reflow soldering, please contact our sales staff. ◆Lead free soldering 1. If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently **Technical** degrade the reliability of the products. considerations Recommended conditions for using a soldering iron If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products. 5. Cleaning Cleaning conditions Precautions 1. CAL type, LH type Please do not do cleaning by a supersonic wave. Cleaning conditions Technical 1. CAL type, LH type, considerations If washing by supersonic waves, supersonic waves may deform products. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 6. Handling | | |-----------------------------|---| | Precautions | ✦ Handling 1. Keep the inductors away from all magnets and magnetic objects. ✦ Mechanical considerations 1. Please do not give the inductors any excessive mechanical shocks. 2. LH type If inductors are dropped onto the floor or a hard surface they should not be used. ✦ Packing 1. Please do not give the inductors any excessive mechanical shocks. In loading, please pay attention to handling indication mentioned in a packing box (a loading direction / number of maximum loading / fragile item). | | Technical
considerations | ✦ Handling 1. There is a case that a characteristic varies with magnetic influence. ✦ Mechanical considerations 1. There is a case to be damaged by a mechanical shock. 2. LH type There is a case to be broken by a fall. ✦ Packing 1. There is a case that a lead wire could be deformed by a fall or an excessive shock. | | 7. Storage conditions | | |--------------------------|--| | Precautions | ♦ Storage 1. To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. Recommended conditions • Ambient temperature 0~40°C • Humidity Below 70% RH The ambient temperature must be kept below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, inductors should be used within one year from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage. | | Technical considerations | ◆Storage 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. |