

Keywords: MAX20743, MAX20730, integrated switching regulator, POL, point-of-load, serial bus, I2C, PMBus, monitoring, reporting, control

APPLICATION NOTE 604:

PMBUS PROTOCOLS FOR CONTROLLING AND MONITORING THE MAX20743/MAX20730 SWITCHING REGULATORS

Abstract: The MAX20743MAX20730 fully integrated switching regulators include a serial bus (PMBus) that supports advanced regulator monitoring and control capabilities. This application note covers the serial interface protocols used for controlling and monitoring the ICs.

MAX20734 PMBus Interface Overview

INPOLECTOP IN INCLUSION OF INCLUSION INTERIOR OF INCLUSION INTERIOR OF INTERIORO OF INTERIORO OF INTER

- Command. The Protest interface supports a avaes, or avae

Monitoring Functions The following monitoring functions are available through the MAX20734 PMBus interface:

- Various fault status
- Vanous haut status
 Parameters programmed using R_SEL configuration resistors
 Input voltage
 Output voltage
 Junction temperature

- Output current

- Output current
 Control Functions
 Overtemperature fault thresholds
 Output voltage command
 Output voltage command
 Output voltage minimum and maximum thresholds
 Operation: On and off configuration
 Regulation
 Regulation to power-good delay timing
 Soft-start timing
 Frequency
 Overcurrent protection mode
 Identify and insplanter
- Overcurrent protection mode
 Internal gain values
 Output voltage command ramping rate

MAX20734 PMBus Protocol

WriteRead Format
The MAX20734 PMBus interface supports single-byte, dual-byte (word) register read/write, block read, as well as send byte protocols. Table 1 to Table 6 show the format used for all supported operations. Note that packet error checking can be used on any transaction. Table 7 shows the MAX20734 PMBus command codes. A 3x/h written to the WRITE_PROTECT register (Reg. 10h) disables the write-protect feature and 0x20h turns on the write protect to all registers except the OPERATION and YOUT_COMMAND registers.

		Table	1.	Read	Byte	Format	
--	--	-------	----	------	------	--------	--

# of bits		1					1		8											8		
	5	S	PMBus Add	iress		1	N	S-ACK	Comma	and		S-A	СК	S	PMBus	Address		R	M-ACK	Data Byte	M-NACK	Р
able 2. Write By	/te Format																					
# of bits														8					8			
			S	PMBus A	ddress				W		S-ACK			Command	i		S-ACK		Data Byte		S-ACK	Р
Table 3. Read Wo	ord Format																					
# of bits	1	7			1	1		8	1		1	7			1	1	8		1	8	1	1
	S	PMB	us Address		W	S-ACK		Command	S-AC	к	S	PMBus	Address		R	S-ACK	Data Byte Lo	w	M-ACK	Data Byte High	M-NACK	P
Table 4. Write W	ord Format	t																				
# of bits		1	7				1	1	8				1		8			1	8		1	1
		S	PMBus Ac	ddress			W	S-ACK	Co	ommar	nd		S-ACK		Data By	te Low		S-ACK	Data I	Byte High	S-ACK	Ρ
Table 5. Send By	/te Format																					
# of bits				1	7								1	1			8			1		1
				S	Pl	MBus Add	ess						W	S-A	ACK		Comma	nd		S-ACK		Р
Table 6. Block R	ead Format	t																				
# of bits	1	7				1	1	8			1		1	7			1	1	8		1	
	S	PI	MBus Addres	ŝŝ		W	S-ACH	Con	nmand		S-/	ACK	S	PMBus	Address		R	S	ACK B	yte Count = N	M-ACK	
								8			1		8				1		8		1	1

Data Byte 2

M-ACK

Data Byte N

M-NACK

Tables	×.	τ	0		

Data Byte 1

M-ACK

- s 1 To 6 Legend
 START condition: Clock and data lines initially high. Data transitions low while clock is high. Clock transitions low.
 STOP condition: Clock and data lines initially low. Clock transitions high while data is low. Data transitions high.
 Read bit (big)-high)
 Read bit (big)-high) Tal S P R w Write bit (logic-low) Relevant MAX20734 PMBus register Relevant MAX20734 PM Slave acknowledge Master acknowledge Master no-acknowledge Command S-ACK M-ACK M-NACK

Table 7. MAX20734 PMBus Command Codes

Note 1. Packet error check (PEC) can be used in conjunction with these commands. Note 2. The PEC is a CRC-8 error checking byte, calculated on all the message bytes. Note 3. The OEN signal does not need to be high to communicate over the PMBus interface.

		MDds command codes																		
Command Code		Command Name	Туре	Size	Default	Low Byte								High	Byte					
01h	1	OPERATION	RW	1	00h	OE_INT	0	0	0	0	0	0	0							
02h	2	ON_OFF_CONFIG	RO	1	1Fh	0	0	0	1	1	1	1	1							
03h	3	CLEAR_FAULTS	WO	0																
10h	16	WRITE_PROTECT	RW	1	20h			PROT_ENABLE												
1Bh	27	SMBALERT_MASK	RW	2	N/A	ALERT-MASK [7:0]				ALERT-MASI	K[15:8]									
20h	32	VOUT_MODE	RO	1	17h	0	0	0	1	0	1	1	1							
21h	33	VOUT_COMMAND	RW	2	C_SELA			VI	DAC[7:0]					0	0	0	0	0	0	VDAC[9:8]
24h	36	VOUT_MAX	RW	2	0280h			VI	MAX[7:0]					0	0	0	0	0	0	VMAX[9:8]
78h	120	STATUS_BYTE	RO	1	00h	BUSY	OFF#	VOUT_OV_FAUL	T IOUT_OC_FAULT	VIN_UV_FAULT	TEMP	CML	N/A							
79h	121	STATUS_WORD	RO	2	0000h	BUSY	OFF#	VOUT_OV_FAUL	T IOUT_OC_ FAULT	VIN_UV_FAULT	TEMP	CML	N/A	VOUT	IOUT/ POUT	INPUT	MFR_ SPECIFIC	POWER_ GOOD	0 0	0
7Ah	122	STATUS_VOUT	RO	1	00h	OVP_FLT	0	0	UVP_FLT	VOUTMA X_FLT	0	0	0							

Table 9. ST	ATUS_WORD		
BYTE	BIT NUMBER	STATUS BIT NAME	MEANING
Low	7	BUSY	A fault is asserted because the device was busy and unable to respond.
	6	OFF#	This bit is asserted if the unit is not providing power to the output, regardless of the reason, including simply not being enabled.

STATUS_INPUT RESERVED 0 0 VIN_UV_FAULT STATUS_VOUT VOUT_OV_FAULT 7 6 5 4 7 6 5 4 3 2 1 0 STATUS_WORD (Upper Byte) 7 VOUT 6 IOUT/POUT 5 INPUT 4 MFR_SPECIFIC 3 POWER_GOOD# 2 0 1 0 0 0 VOUT_UV_FAULT VOUT_MAX_FAULT 3 2 1 0 Ļ STATUS_MFR_SPECIFIC VOUTMIN_FAULT O RADC_FAULT AUMA_FAULT BOOST_FAULT VXSHORT_FAULT STATUS_IOUT IOUT_OC_FAULT STATUS_BYTE (Also is The Lower Byte of STATUS_WORD) 7 BUSY 6 OFF# 5 VOUT_OV_FAULT 4 IOUT_OC_FAULT 7 5 4 3 2 0 3 VIN_UV_FAULT VSN_VSP_FAULT 1 0 TEMPERATURE CML NA 0 LDO_FAULT 0 2 0 STATUS_CML INVALID/UNSUPPORTED COMMAN INVALID/SUPPORTED DATA PACKETTERROR CHECK FAILED STATUS_TEMPERATURE 7 OT_FAULT 6 0 6 5 4 3 2 0 5 0 OTHER COMMUNICATION FAULT 0 1 0 1 0 0 0 Figure mary of Status registe

Status Reporting The MAX20734 supports the status registers shown in Figure 1. The CLEAR_FAULTS command is used to clear any fault bits that have been set, and clear the device's SMALERT pin output. The CLEAR_FAULTS command does not cause a unit that has been latched off for a fault condition to restart. To restart after a latched fault, power must be cycled. If the fault is still present after power is cycled, the fault bit is set again. The STATUS_BYTE contains the most important faults and warnings. The STATUS_WORD contains two bytes of information. The low byte of the STATUS_WORD is the same as the STATUS_BYTE, and the high byte contains additional information about the status of the device.

PMBus ADDRESS (PMAD)	CONSTANT/VARIABLE
(6)(MSB)	Constant = 1
(5)	Constant = 0
(4)	Constant = 1
(3)	Constant = 0
(2)	R_SELA_bit2
(1)	R_SELA_bit1
(0)	R_SELA_bit0

7Bh

123 STATUS_IOUT

Table 8. MAX20734 PMBus Address Byte

Configuring the MAX20734 Address The MAX20734 PMBus address is set through R_SELA. Eight unique addresses are possible, as shown in Table 8.

RO 1 00h

OCP_FLT

0

0

RW = Read Write, RO = Read Only, WO = Write Only, BLK = Block Read, VBOOT[1:0] values in MFR_DEVSET1 are programmed by the external capacitor (C_SELA) and equal to binary value 00b, here representing VBOOT[1:0] values in MFR_DEVSET1 are programmed by the external capacitor (C_SELA) and equal to binary value 00b, here representing VBOOT[1:0] values in MFR_DEVSET1 are programmed by the external capacitor (C_SELA) and equal to binary value 00b, here representing VBOOT[1:0] values in MFR_DEVSET1 are programmed by the external capacitor (C_SELA) and equal to binary value 00b, here representing VBOOT[1:0] values in MFR_DEVSET1 are programmed by the external capacitor (C_SELA) and equal to binary value 00b, here representing VBOOT[1:0] values in MFR_DEVSET1 are programmed by the external capacitor (C_SELA) and equal to binary value 00b, here representing VBOOT[1:0] values in MFR_DEVSET1 are programmed by the external capacitor (C_SELA) and equal to binary value 00b, here representing VBOOT[1:0] values in MFR_DEVSET1 are programmed by the external capacitor (C_SELA) and equal to binary value 00b, here representing VBOOT[1:0] values in MFR_DEVSET1 are programmed by the external capacitor (C_SELA) and equal to binary value 00b, here representing VBOOT[1:0] values in MFR_DEVSET1 are programmed by the external capacitor (C_SELA) and equal to binary value 00b, here representing VBOOT[1:0] values in MFR_DEVSET1 are programmed by the external capacitor (C_SELA) and equal to binary value 00b, here representing VBOOT[1:0] values in MFR_DEVSET1 are programmed by the external capacitor (C_SELA) and equal to binary value 00b, here representing VBOOT[1:0] values in MFR_DEVSET1 are programmed by the external capacitor (C_SELA) are program

7Ch	124	STATUS_INPUT	RO	1	00h	RSVD	0	0	FUVLO_FLT	FUVLO_FLT	0	0 0							
7Dh	125	STATUS_TEMPERATURE	RO	1	00h	OTP_FLT	0	0	0	0	0	0 0							
7Eh	126	STATUS_CML	RO	1	00h	INVALID/ UNSUPPORTED CMD	INVALID/ UNSUPPORTED DATA	INCORRECT PEO	0	0	0	OTHER 0 COMM FAULT							
80h	128	STATUS_MFR_SPECIFIC	RO	1	00h	VOUTMIN_ FLT	SEALR_FLT	RADC_FLT	AUVLO_FLT	BOOST-FAULT		VSN_ LDO_OF VSP_ FLT	F						
88h	136	READ_VIN	RO	2	N/A				VINADC_AVE[7:0]					0	0	0	0	0	VINADC_AVE[9:8]
8Bh	139	READ_VOUT	RO	2	N/A				VADC_AVE[7:0]					0	0	0	0	0	VADC_AVE[9:8]
8Ch	140	READ_IOUT	RO	2	N/A				IADC_AVE[7:0]				0	0	0	0	0	0	IADC_AVE[9:8]
8Dh	141	READ_TEMPERATURE_1	RO	2	N/A				TADC_AVE[7:0]				0	0	0	0	0	0	TADC_AVE[9:8]
99h	152	MFR_ID	BLK	5	N/A		ASCII "MAXIN	1"(HEX CODES 56)	n, 4Ch,n54h, 52h)										
9Bh	155	MFR_REVISION	BLK	1	N/A					ASCII "F	" (HEX CODE	E 31h)							
D1h	209	MFR_VOUT_MIN	RW	2	0133h				VMIN[7:0]				0	0	0	0	0	0	VMIN[9:8]
D2h	210	MFR_DEVSET1	RW	2	2061h	0	OC	:P[1:0]		FSW[2:0]		TSTAT[1:0]	0	RG	AIN[1:0]		OTP[1:0]	0	VBOOT[1:0]
D3h	211	MFR_DEVSET2	RW	2	03A6h	VRAT	E[1:0]	HICCUP_EN	RSVD	RSVD	RSVD	SFT_START[1:0]	0	0	0	0	0		IMAX[2:0]

0

0

0 0 0

	5	VOUT_OV_FAULT	An output overvoltage fault has occurred.
	4	IOUT_OC_FAULT	An output overcurrent fault has occurred.
	3	VIN_UV_FAULT	An input undervoltage fault has occurred.
	2	TEMPERATURE	A temperature fault has occurred.
	1	CML	A communications, memory, or logic fault has occurred.
	0	N/A	NA
High	7	VOUT	An output voltage fault has occurred.
	6	IOUT/POUT	An output current fault has occurred.
	5	INPUT	An input voltage, input current, or input power fault has occurred.
	4	MFR_SPECIFIC	A manufacturer specific fault or warning has occurred.
	3	POWER_GOOD#	If this bit is set, power is not good.
	2	N/A	NA
	1	N/A	NA
	0	N/A	N/A

Control

Deration/On and Off Configuration The OPERATION command is used to turn on (0x80h) and turn off (0x0h) with OE pin low, as determined by the ON_OFF_CONFIG, which is fixed at 0x1Fh.

Output Voltage Control
The following registers are used for output voltage-related configuration settings. All the formats are in linear mode with N = -9, which is indicated in the V_{OUT} Mode register (Reg_20h) value of 0x17h. The output voltage command (Reg_21h) and other output voltage related commands are a -2-bit unsigned variable. The output voltage formulas follow:

$\frac{V_{OUT}}{V} = \text{REG}_2\text{lh} (\text{BITS 15:0}) \times 2^{A-9}$	(Eq. 1)
$\frac{V_{OUTMAX}}{V} = \text{REG}_24\text{ (BITS 15:0)} \times 2^{A\cdot9}$	(Eq. 2)
$\frac{V_{\text{OUTMIN}}}{V} = \text{REG_D1h (BITS 15:0)} \times 2^{A-9}$	(Eq. 3)

Configuration Registers The PGMA and PGMB configuration resistors and capacitors are used to configure PMBus address, soft-start timing, boot voltage overcurrent protection limit, internal gain setting, and frequency. There are two PMBus registers, MFR_DEVSET1 and MFR_DEVSET2, that can be used to check and overcurrent protection limit, output voltage command ramping rate, and overcurrent protection mode. The override parameters revert back to default values once power is cycled.

MFR_DEVSET2 (Reg_D3h) is used to program the soft-start timing as shown in Table 11.

		5	
Table 10. PGMA	A (R_SELA)		
NO.	R(k)	SS TIME (ms)	SLAVE ADDRESS (1010_XXXX)
1	1.78	3	PMBus Slave Address 1010 000b
3	4.02	3	PMBus Slave Address 1010 010b
4	6.04	3	PMBus Slave Address 1010 011b
5	9.09	3	PMBus Slave Address 1010 100b
6	13.3	3	PMBus Slave Address 1010 101b
7	20	3	PMBus Slave Address 1010 110b
8	30.9	3	PMBus Slave Address 1010 111b
9	46.4	1.5	PMBus Slave Address 1010 000b
10	71.5	1.5	PMBus Slave Address 1010 001b
11	107	1.5	PMBus Slave Address 1010 010b
12	162	1.5	PMBus SlaveAddress 1010 011b

Table 11. Soft-Start Timing

SFT-START[1:0]	SOFT-START TIME (ms)
00b	0.75
01b	1.5
10b	3
11b	6

${\sf MFR_DEVSET1}$ (Reg_D2h (bits 9:8)) is used to read the boot voltage as shown in Table 12. Table 12. Boot Voltage

V _{BOOT} [1:0]	V _{BOOT} VOLTAGE (V)
00b	0.6484
01b	0.8984
10b	1.0
11b	NA

Other System Parameters

Overcurrent Protections Overcurrent protection MFR_DEVSET1 (Reg_D2h (bits 6:5)) is used to set the positive and negative overcurrent inception and clamp level as shown in Table 13.

OCP SETTING
Setting 0
Setting 1
Setting 2
Setting 3

Temperature Control MFR_DEVSET1 (Reg_D2h (bits 12:11)) is used to program the overtemperature trigger level as shown in Table 14.

Table 14. Overtemperature Shutdown Limit
OTP[1:0] OVERTEMPERATURE (°C)

ODb 150 O1b 30 TOb N/A		
01b 130 10b N/A 14b N/A	00b	150
10b NA	01b	130
44L N/A	10b	NA
IID N/A	11b	NA

Internal Gain Setting MFR_DEVSET1 (Reg_D2h) is used to program the internal gain setting as shown in Table 15. Table 15. Internal Gain Setting

R _{GAIN} [1:0]	R _{GAIN} (m)
00b	0.8
01b	3.2
10b	1.6
11b	6.4

Boot Voltage to Output Voltage Command Ramp Rate MFR_DEVSET2 (Reg_D3h (bits 7:6)) is used to program the boot voltage to output voltage command ramp rate as shown in Table 16.

Table 16. Output Voltage Ramping Rate V _{RATE} [1:0]	V _{RATE} (mV/µs)	
00b	4	
01b	2	
10b	1	
11b	N/A	

Frequency MFR_DEVSET1 (Reg_D2h (bits 4:2)) is used to program the switching frequency as shown in Table 17. Table 17 Fragmanau Bagiata

Table 17. Frequency Register	
FSW[2:0]	FREQUENCY (kHz)
000b	400
001b	500
010b/011b	600
100b	700
101b	800
110b/111b	900

Regulation to Power-Good Delay Timing MFR_DEVSET1 (Reg_D2h) is used to program the tSTAT time as shown in Table 18.

Table 18. t_{STAT} Register

TSTAT [1:0]	tSTAT TIME (μs)
00b	2000
01b	125
10b	62.5
11b	32

Output Current Overcurrent Mode MFR_DEVSET2 (Reg_D3h) is used to program the output current overcurrent mode as shown in Table 19.

Table 19. Overcurrent Protection Mode	
CODE (BINARY)	OCP MODE
0b	Constant current
1b	Hiccup

Read Telemetry

The MAX20734 provides reporting of junction temperature, output current, input voltage, and voltage at the sense pins. With direct feedback, the voltage at the sense pins equals V_{OUT}. With a divider in the feedback, the voltage at the sense pins is scaled by the divide ratio. Read Output Current Read I_{OUT} returns the output current in amperes. The data is in PMBus DIRECT format, with R = -1, and m and b as defined below.

READ I _{OUT} = $\frac{(\text{REG 8Ch (BITS 15:0) × 10 8-b)}}{m}$ + a × (T _J -50)(AMPS)	(Eq. 4)
where: $m = 111 - 3.4 \times D$ $b = 3461 - 114 \times D$ $D = V_{GU}/V_{0H}$ a = 0.13 $T_{-1} = junction temperature reading in "C$	
Read Temperature Read Temperature in the junction temperature in "C. The data is in PMBus DIRECT format with m = 21, b = 5887, and R = -1.	
READ TEMP = (REG 8Dh (BITS 15:0) × 10 ^R -b) m (°C)	(Eq. 5)
Read Output Voltage Read V _{OUT} returns the output voltage in volts. The data is in PMBus LINEAR format, with N = -9.	
READ V_{OUT} = REG_8Bh (BITS 9:0) * 2 ^N (VOLTS)	(Eq. 6)
Read Input Voltage Read V _{By} returns the input voltage in volts. The data is in PMBus DIRECT format with m = 3592, b = 0, and R = -2.	
$READ_{IN} = \frac{(REG 88h [BITS 10:0] \times 10^{R} b)}{m} (VOLTS)$	(Eq. 7)
ARA READ/PMBus Alert The MAX20734 supports the alert response address (ARA) protocol as described in the SMBus 2.0 Specification. Refer to the SMBus 2.0 Specification Appendix A for more details.	
PMBus Alert Pin The MAX20734 SMALERT pin supports the SMBALERT# signal described in the SMBus 2.0 specification. The fault conditions that assert the alert line low are as follows:	
Any bits different from 0 and not masked by SMBALERT_MASK command pull low SMALERT pin in STATUS_CML.	

Any bits different from 0 and not masked by SMBALERT_MASK command pull low SMALERT pin in STATUS_CML
 Any bits different from 0 and not masked by SMBALERT_MASK command pull low SMALERT pin is STATUS_VOUT.
 Any bits different from 0 and not masked by SMBALERT_MASK command pull low SMALERT pin is TATUS_IOUT.
 Any bits different from 0 and not masked by SMBALERT_MASK command pull low SMALERT pin is TATUS_VOUT.
 Any bits different from 0 and not masked by SMBALERT_MASK command pull low SMALERT pin is TATUS_SPECIFIC.
 Any bits different from 0 and not masked by SMBALERT_MASK command pull low SMALERT pin is TATUS_INFT_SPECIFIC.
 Any bits different from 0 and not masked by SMBALERT_MASK command pull low SMALERT pin is TATUS_INFT_SPECIFIC.
 Any bits different from 0 and not masked by SMBALERT_MASK command pull low SMALERT pin is TATUS_INFT_SPECIFIC.
 Any bits different from 0 and not masked by SMBALERT_MASK command pull low SMALERT pin is TATUS_INFT_SPECIFIC.

SMBALERT_MASK is used to prevent a warning or fault condition from asserting the SMALERT pin. The command format (write word) used to block a status bit or bits from causing the SMALERT pin to be asserted is shown in Table 20. The bits in the mask byte align with the bits in the corresponding status register.

Table 20. SMBA	LERT_MA	SK Command Packet Form	at								
# of bits					8		8		8		
	S	PMBus Address	W	ACK	SMBALERT_MASK Command Code	ACK	Status_x Command Code	ACK	Mask Byte	ACK	Р
The two ways to	release th	e SMALERT pin are as follow	s:								
CLEAR_FA ARA (refer		mand Specification 2.0)									
Related Parts	5										
MAX20730					Integrated, Step-Down Switching Regulator with PMBus						
MAX20743					Integrated, Step-Down Switching Regulator with PMBus						
For Samples: htt	pport: http: ps://www.r	s://www.maximintegrated.com naximintegrated.com/en/samp nents: https://www.maximinteg	ples	'contact							

Application Note 6042: https://www.maximintegrated.com/en/an6042 APPLICATION NOTE 6042, AN6042, AN6042, AP6042, Appnote6042, Appnote 6042 @ 2014 Maxim Integrated Products, Inc. The content on this webpage is protected by copyright laws of the United States and of foreign countries. For requests to copy this content, contact us. Additional Legal Notices: https://www.maximitegrated.com/enfegal