
ABE1000 Series

AC-DC Power Supplies

The high efficiency and high power density of the ABE series ensures minimal power loss in end-use equipment, thereby facilitating higher reliability, easier thermal management and meets regulatory approvals for environmentally-friendly end products.

These power supplies are ideal for medical, telecom, datacom, industrial equipment and other applications.

Key Features & Benefits

- 5 x 9.51 x 1.61 Inch Form Factor
- Universal Input
- Current Sharing
- Output Power up to 1000 W
- Fan Cooled
- Peak Power Capability
- 5 V Stand by Provision

Applications

- Instrumentation
- Lighting
- Industrial Applications
- Applied Computing
- Renewable Energy
- Test and Measurement
- Robotics
- Wireless Communication

a bel group

1. MODEL SELECTION

MODEL NUMBER	VOLTAGE	TYPE	MAX. LOAD	MIN. LOAD	RIPPLE & NOISE ¹
ABE1000-1T12	12 V	Fan Cooled	41.67 A	0.0 A	2%
ABE1000-1T15	15 V	Fan Cooled	41.67 A	0.0 A	2%
ABE1000-1T24	24 V	Fan Cooled	41.66 A	0.0 A	2%
ABE1000-1T30	30 V	Fan Cooled	33.33 A	0.0 A	2%
ABE1000-1T48	48 V	Fan Cooled	20.83 A	0.0 A	2%
ABE1000-1T58	58 V	Fan Cooled	17.24 A	0.0 A	2%

2. INPUT SPECIFICATIONS

PARAMETER	DESCRIPTION / CONDITION	SPECIFICATION
Input Voltage	Universal	85 - 264 VAC / 120 - 390 VDC
Input Frequency		47 – 63 Hz
Input Current	120 VAC: 240 VAC:	11 A max. 5.5 A max.
Input Protection	In Live & Neutral both	F16 A / 250 V
No Load Power	Over entire input range with main output kept OFF using Remote ON/OFF Over entire input range with main output kept ON using Remote ON/OFF	3 W typ. 6 W typ.
Inrush Current	240 VAC:	25 A max.
Power Factor	120 VAC: 240 VAC:	0.98 0.95
Switching Frequency	PFC converter: Variable Resonant converter: Variable	85 kHz typical 100 kHz typical

3. OUTPUT SPECIFICATIONS

PARAMETER	DESCRIPTION / CONDITION	SPECIFICATION
Output Power	Fan Cooled	1000 W
Efficiency	120 VAC: 240 VAC:	88% Typical 93%
Hold-up Time	120 VAC / 240 VAC:	8 ms
Line Regulation		+/-0.5%
Load Regulation		+/-1.0%
Transient Response	50% to 100% load change, 50 Hz, 50% duty cycle, $0.1~\text{A}/\mu\text{s}$	< 10%, recovery time < 5 ms
Voltage Adjustment		+/-3%
Set Point Tolerance		+/-1%
Rise Time		<100 ms
Over Current Protection	Hic-Up Type, autorecovery	120 to 150%
Over Voltage Protection	Latch Type, AC Power to be recycled for recovery	114%
Short Circuit Protection	Short term, autorecovery	
Over Temperature Protection	Autorecovery	130-140°C primary heat sink
Current Share	Up to 3 supplies connected in parallel (optional)	

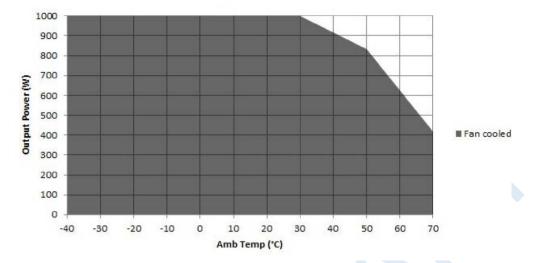


Figure 1. Power Derating Curve ABE1000

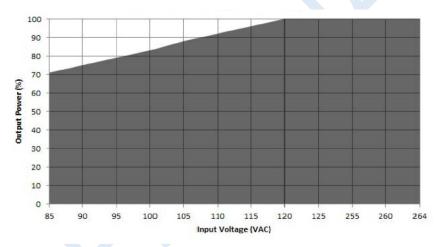


Figure 2. Power Derating Curve w.r.t. Input

Notes:

- 1. For Ripple measurement minimum output power requirement is 25 W.
- 2. Ripple is peak to peak with 20 MHz BW and 10 μF (Tantalum capacitor) in parallel with a 0.1 μF capacitor at rated line voltage and load ranges
- 3. Please contact factory/ sales representative for minimum load required for ripple to be within specification.
- 4. Combined output power of main output, fan supply and standby supply shall not exceed max. power rating.
- Standby output voltage 5 V/ 1.5A with tolerance including set point accuracy, line and load regulation is +/-10%.
- 6. Ripple and noise is less than 5%.
- 7. Specifications are for nominal input voltage, 25°C unless otherwise stated.
- 8. PSU is supplied with J3, pin-6 and pin-7 shorted to enable main output without remote on/off feature.

4. ENVIRONMENTAL SPECIFICATIONS

PARAMETER	DESCRIPTION / CONDITION	SPECIFICATION
Operating Temperature	Refer to derating curve	-40 to +70°C
Storage Temperature		-40 to +85°C
Relative Humidity	Non-condensing	5% to 95%
Altitude	Operating: Non-operating:	16,000 ft. 40,000 ft.
MTBF	Telcordia -SR332-issue 3	1.28 million hours

5. EMC SPECIFICATIONS

PARAMETER	DESCRIPTION / CONDITION	CRITERIA
Conducted Emissions	EN 55032	Class B
Radiated Emissions	EN 55032	Class A (Class B external toroid)
Input Current Harmonics	EN 61000-3-2	Class A
Voltage Fluctuation and Flicker	EN 61000-3-3	Complies
ESD Immunity	EN 61000-4-2	Α
Radiated Field Immunity	EN 61000-4-3	A
Electrical Fast Transient Immunity	EN 61000-4-4	A
Surge Immunity	EN 61000-4-5	A
Conducted Immunity	EN 61000-4-6	Α
Magnetic Field Immunity	EN 61000-4-8	A
Voltage Dips, Interruptions	EN 61000-4-11	A & B

6. SAFETY SPECIFICATIONS

PARAMETER	DESCRIPTION / CONDITION	SPECIFICATION
Isolation Voltage	Input to Output Input to Earth	4000 VDC 2500 VDC
Safety Standard(s)	IEC/EN62368-1, Ed 2 UL62368, CSA C22-2 NO- 62368-1	Pending
Agency Approvals	Nemko, UL, C-UL	Pending
CE mark	Complies with LVD Directive	Pending

7. SIGNALS

PARAMETER	DESCRIPTION / CONDITION
Power Good / Fail Signal	Power Good: Is a TTL signal which goes high after main output reaches 90% of its set value. The delay is 0.1 s to 0.5 s Power Fail: The same signal goes low at least 1ms before main output falls to 90% of set value at AC Power off
Remote Sense	Compensates for 200 mV drop
Remote On / Off	Pin 6 & Pin 7 of J3 can be used for Remote on/off. Shorting Pin 6 to Pin 7 enables main output while keeping the pins open disables main output
OCP Limit Set	Pin 8 & Pin 9 of J3 must be shorted

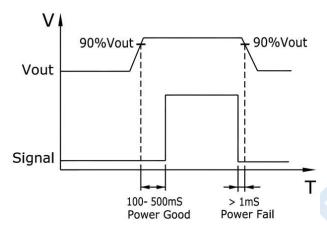
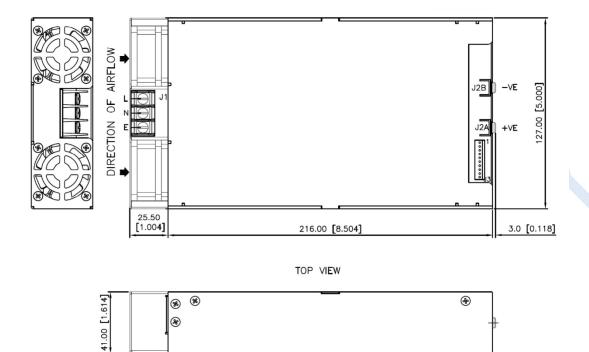
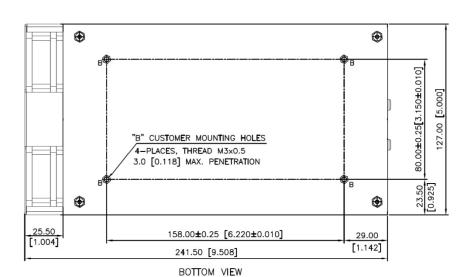


Figure 3. Power Good / Fail Signal Diagram


8. CONNECTOR & PIN DESCRIPTION

CONNECTOR	PIN	DESCRIP ⁻	TION / CONDITION	MANUFACTURER / PN
AC Input Connector	J1	Pin 2	AC Line Neutral Earth	TE Connectivity: NC6-P107-03
DC Output Connector	J2		+VE -VE	6-32 inches Screw Pan HD Mating: Designed to accept Ring Tongue Terminal AMP: 8-31886-1, wherein one 16 AWG (max) wire can be crimped. Note: One Ring Tongue Terminal with 16 AWG is recommended for current up to 11 A only. Use multiple tongue terminals with wire for more current.
Aux (Fan) Output	J3	Pin 2 Pin 3 Pin 4 Pin 5 Pin 6 Pin 7 Pin 8 Pin 9	GND 5V AUX PGPF VS - VS + GND RMT CL2 CL1 LS	Molex: 22-23-2101 Mating: 22-01-2107; Pins: 08-50-0113


9. MECHANICAL SPECIFICATIONS

PARAMETER	DESCRIPTION / CONDITION
Weight	approx. 1300 g
Dimensions	127 x 241.5 x 41 mm (5 x 9.51 x 1.61 inches)
Cooling	Fan cooled

æ

MECHANICAL OUTLINE DIMENSIONS ALL DIMENSIONS ARE IN MM [INCHES] GEN.TOLERANCE:±1.0 MM [±0.04]

Figure 4. Mechanical drawings

7

10. INSTALLTION INSTRUCTION FOR CURRENT SHARING

During the installation and setup of parallel supplies in a system it is important that a single remote sense point be used for all the supplies. The remote sense voltage between the supplies must be adjusted to within 1% to ensure the supplies are inside the 1% capture window. If the supplies are not initially adjusted inside the capture window the supplies will not current share satisfactorily.

SET-UP PROCEDURE:

- 1. Connect load cables to the outputs of each supply.
- 2. Connect the remote sense lines to the load in twisted style. (A common remote sense point must be used for all the supplies in parallel).
- 3. Connect all the "LS" signal (Pin 10) on the J3 connector between the supplies.
- 4. Adjust remote sense voltage of each supply to within 1% of rated output voltage or readjust to required set point. (Adjustment to be done with all other parallel supplies off).
- Current sharing between the supplies can be verified by monitoring the output current of each supply with a hall effect DC current probe. The supplies should share to within 10% of the total load current.
- 6. The current share circuit has a capture window voltage of +/- 1% of the rated output voltage. If the output remote sense voltage of one of the supplies is adjusted outside the 1% window the supplies will not current share satisfactorily.

CURRENT SHARING BLOCK DIAGRAM

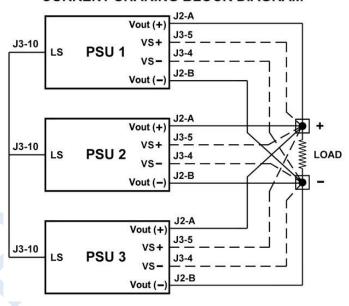


Figure 5. Current Sharing Block Diagram

For more information on these products consult: tech.support@psbel.com

NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

North America +1 408 785 5200