Nano-Power Pushbutton On/Off Controller and Battery Seal

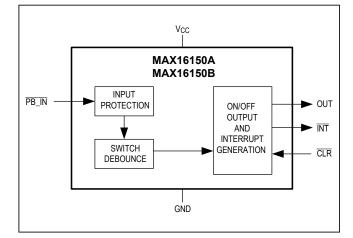
General Description

The MAX16150A and the MAX16150B are pushbutton on/off controllers with a switch de-bouncer and built-in latch. These devices accept a noisy input from a mechanical switch and produce a clean latched output and a one-shot interrupt output in response to a switch closure exceeding the debounce period at $\overline{PB_IN}$. The MAX16150A de-asserts the latched output when the switch closure period exceeds the shutdown period while the MAX16150B does not de-assert the latched output in response to switch closure. For the MAX16150B, a longer switch closure results in longer interrupt signal.

The MAX16150A and MAX16150B operate from a supply range of +1.3V to +5.5V and consume less than 20nA of supply current to ensure minimal battery current in low-power applications. The robust switch input (\overline{PB}_{IIN}) handles ±60V levels and is ±25kV ESD protected for use in harsh industrial environments. The latched output can serve as a logic signal to control a pass transistor or regulator, or it can serve as a switch to connect the load directly to the power supply when load current is less than 20mA. A separate INT output provides a system interrupt whenever a valid pushbutton signal is detected. An asynchronous \overline{CLR} input allows an external signal to force the latched output to the off state. Under-voltage lockout circuitry ensures that OUT and INT are de-asserted upon power-up.

The MAX16150A and MAX16150B operate over the -40°C to +125°C temperature range are available in a 1mm x 1.5mm, 6-bump WLP and a 6-pin thin SOT-23 packages.

Applications


- Portable Instruments
- Handheld Consumer Electronics
- Industrial Equipment
- Disposable Low-Power Electronics

Benefits and Features

- Low Power
 - 20nA (Max) Standby Current
 - 50ms and 2s Debounce Timing Options
- 8s and 16s Shutdown Periods
- Latched Output Supplies 20mA Load Current from Battery
- One-shot INT Output on each switch closure
- 32ms INT Duration
- Pushbutton Input Handle Up to ±60V
- ±15kV HMB ESD Protection
- SOT23-6 and 1mm x 1.5mm 6-bump WLP packages

Ordering Information appears at end of data sheet.

Simplified Block Diagram

Nano-Power Pushbutton On/Off Controller and Battery Seal

Absolute Maximum Ratings

VCC to GND	0.3V to +6V
PB_IN to GND	60V to +60V
CLR, INT, OUT to GND	0.3V to 6V
Continuous Power Dissipation	
(Multilayer Board) SOT23-6 (T _A =	+70°C, derate 8.70mW/°C
above +70°C.)	696mW

Continuous Power Dissipation	
(Multilayer Board) WLP (T _A = +70°C, derate	e 10.50mW/°C
above +70°C.)	mW to 840mW
Operating Temperature Range	-40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	-40°C to +150°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

SOT

Package Code	U6-1
Outline Number	21-0058
Land Pattern Number	90-0175
Thermal Resistance, Single-Layer Board:	
Junction to Ambient (θ_{JA})	NA
Junction to Case (θ_{JC})	80°C/W
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ_{JA})	115°C/W
Junction to Case (θ_{JC})	80°C/W

WLP

Package Code	W60C1-2
Outline Number	
Land Pattern Number	Refer to Application Note 1891
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	95.15°C/W
Junction to Case (θ _{JC})	N/A

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

Nano-Power Pushbutton On/Off Controller and Battery Seal

Electrical Characteristics

 $(V_{CC} = V_{MIN} \text{ to } V_{MAX}, T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$, Limits over the operating temperature range and relevant supply voltage range are guaranteed by production and/or characterization. Typical values are at $T_A = +25^{\circ}\text{C}$ and $V_{CC} = +3.3\text{V}$)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Operating Voltage Range	V _{CC}		1.3		5.5	V	
Undervoltage-Lockout Threshold	V _{UVLO}	V _{CC} falling		TBD	TBD (1.2)	V	
Undervoltage Lockout Hysteresis			TBD	50	TBD	mV	
		$V_{CC} = 5V$, OUT not asserted, $\overline{PB_{IN}}$ not connected40°C $\leq T_A \leq$ +70°C			20	- nA	
Power Supply Current	I _{SB}	$V_{CC} = 5V$, OUT not asserted, $\overline{PB_{IN}}$ not connected40°C $\leq T_A \leq$ +125°C		TBD	TBD		
	ICC	During PB_IN detection or INT assertion		25	TBD	μA	
	ISB_UVLO	V _{CC} < 1.,3V, I _{OUT} = 0, PB_IN not connected, CLR not asserted		100	300	nA	
Timing Accuracy		Deviation from nominal value of debounce time (t_{DB}), shutoff time (t_{SO}), and interrupt time (t_{INT})	-20	±TBD	+20	%	
PB_IN Threshold	V _{IL_PB}				0.3 V _{CC}	- V	
	V _{IH_PB}		0.7 V _{CC}				
PB_IN Hysteresis				TBD (100)		mV	
PB_IN Pull-Up Resistance		$0 > V_{\overline{PB}_{IN}} < V_{CC}$	500	1000	1500	kΩ	
PB_IN Input Current	I _{IN}	$V_{\overline{PB}_{IN}} = \pm 60V$	-170		+170	- μΑ	
PB_IN Input Current		$0V \le V_{\overline{PB}_{IN}} \le V_{CC}$	TBD	36	TBD	μΛ	
PB_IN Voltage Range		Continuous; $0V \le V_{CC} \le 5.0V$	-60		+60	- v	
		Transient; $0V \le V_{CC} \le 5.5V$	-60		+60	v	
CLR Threshold	V _{IL_CLR}				0.3 V _{CC}	- V	
	V _{IH_CLR}		0.7 V _{CC}			v	
CLR Input Current	I _{CLR}		-10	1	+10	nA	

Nano-Power Pushbutton On/Off Controller and Battery Seal

Electrical Characteristics (continued)

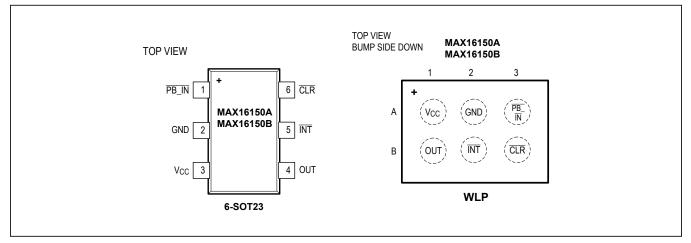
 $(V_{CC} = V_{MIN}$ to V_{MAX} , $T_A = -40^{\circ}$ C to +125°C, Limits over the operating temperature range and relevant supply voltage range are guaranteed by production and/or characterization. Typical values are at $T_A = +25^{\circ}$ C and $V_{CC} = +3.3$ V)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS		
CLR Falling Edge to OUT Low Propagation Delay	t _{CO}	R _L = 10kΩ, C _L =		200		ns			
CLR Lockout Time		Period following which transitions	51.2	64	76.8	ms			
	V _{OL}	I _{SINK} = 1.6mA				0.4	V		
OUT Output Voltage	Vон	V _{CC} = 3.3V, I _{SO}	URCE = 20mA	V _{CC} - 100					
		V _{CC} = 2.0V, I _{OUT} = TBD		V _{CC} - 100			mV		
		V _{CC} = 1.3V, I _{SOURCE} = TBD		V _{CC} - 100					
INT Output Voltage	V _{OL_INT}	I _{SINK} = 1mA				0.2	V		
INT Leakage Current					1	±10	nA		
Interrupt Pulse Duration	tint -	Beginning at t _{DB} .		25.6	32	38.4			
		Beginning at end of t _{SO}		102.4	128	153.6	ms		
ESD Protection		PB_IN Human Body Model			±15		kV		

Nano-Power Pushbutton On/Off Controller and Battery Seal

Typical Operating Characteristics

(MAX16150A/B: V_{DD} =+3.3V, 25°C; T_A = 25°C unless otherwise noted,)

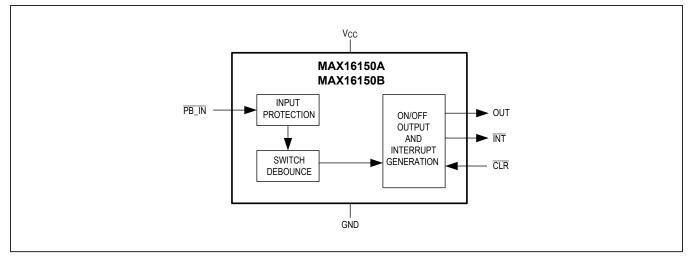

TBD TOC01 TBD TOC02

TBD TOC03 TBD TOC04

TBD TOC05 TBD TOC06

Nano-Power Pushbutton On/Off Controller and Battery Seal

Pin Configurations



Pin Description

PI	N	NAME	FUNCTION	
SOT23-6	WLP	NAME	FUNCTION	
1	A3	PB_IN	Pushbutton input. $\overline{PB_IN}$ is internally pulled up to V _{CC} . Holding $\overline{PB_IN}$ low for a period greater than the debounce time (t _{DB}) forces OUT to latch high and generates a 1-shot pulse at \overline{INT} . For the MAX16150A, holding $\overline{PB_IN}$ low for a period greater than the shutdown period (t _{SO}) de-assert OUT. For the MAX16150B, holding $\overline{PB_IN}$ low for a period greater than shutdown period (t _{SO}) generates an extended interrupt pulse but does not de-assert OUT.	
2	A2	GND	Ground.	
3	A1	VCC	Power supply input. Bypass with a 0.1µF capacitor to ground.	
4	B1	OUT	Active-High, Push-Pull Latch Output. OUT is connected to V_{CC} when high.	
5	B2	ĪNT	Active-Low, Open-Drain Interrupt/Reset Output. \overline{INT} is a one-shot output pulse. \overline{INT} asserts for the interrupt timeout period when $\overline{PB_IN}$ is held low for a period greater than the debounce time (t _{DB}). \overline{INT} is high impedance when de-asserted, even when pulled above V _{CC} .	
6	B3	CLR	Clear input. Pulling CLR low de-asserts the latched OUT signal. If OUT is de-asserted, pulling CLR does not change OUT's state.	

Nano-Power Pushbutton On/Off Controller and Battery Seal

Functional Diagrams

Detailed Description

The MAX16150A and the MAX16150B are pushbutton on/off controllers with a switch debouncer and latched output for controlling system power. A switch closure that is stable for a period greater than or equal to the debounce time, t_{DB} , causes OUT to assert high. Driving CLR low causes OUT to de-assert. For the MAX16150A a switch closure period greater than or equal to the shutdown period, t_{SO} , will cause OUT to de-assert. Each debounced switch closure also causes one-shot INT output.; see Table 1 below for more detail.

MAX16150

The MAX16150A and the MAX16150B operate from supply voltages between +1.3V and 5.5V and consume 20nA of supply current when OUT is in the de-asserted state. Whenever OUT is de-asserted, the state of $\overline{\text{CLR}}$ is ignored. After asserting OUT, $\overline{\text{CLR}}$ continues to be

ignored for a period of 2x the $\overline{\text{INT}}$ period. For low-power applications (up to about 20mA output current), OUT can drive the load directly. Each debounced switch closure causes $\overline{\text{INT}}$ to assert. A switch closure longer than t_{SO} results in $\overline{\text{INT}}$ asserting for a period that is 4x longer than the nominal $\overline{\text{INT}}$ period. This longer $\overline{\text{INT}}$ can be used to signal the system to perform a specific function, or to initiate a shutdown process. Closing the switch longer than this extended $\overline{\text{INT}}$ period will not cause further assertion of $\overline{\text{INT}}$.

The MAX16150A de-asserts OUT when $\overline{PB_{IN}}$ is held low for a period equal to or greater than the shutdown period, t_{SO} . In the MAX16150B, holding $\overline{PB_{IN}}$ low for a duration equal to or greater than the shutdown period (t_{SO}) does not de-assert OUT. Instead the MAX16150B outputs a longer interrupt signal.

Table 1. Available MAX16150/MAX16151 versions

VERSION	SUPPLY VOLTAGE RANGE	DEBOUNCE TIME (t _{DB})	SHUTDOWN PERIOD (t _{SO})	INTERRUPT PERIOD (SWITCH CLOSURE > t _{DB}	INTERRUPT PERIOD (SWITCH CLOSURE > t _{SO}	SWITCH CLOSURE > t _{SO}
MAX16150A	1.3V - 5.5V	50ms	8s	32ms	TBD	OUT De-asserts
MAX16150B	1.3V - 5.5V	2s	16s	32ms	TBD	OUT Stays Asserted

Nano-Power Pushbutton On/Off Controller and Battery Seal

Figure 1 above shows the timing diagram of the MAX16150A. A switch closure of a duration greater than t_{DB} causes OUT to assert. A switch closure of a duration greater than t_{SO} causes OUT to de-assert. Typically, \overline{INT} and \overline{CLR} are pulled up either to OUT or to a regulated voltage controlled by OUT as depicted in the figure above. As such, \overline{INT} and \overline{CLR} are pulled up to a constant supply voltage, \overline{INT} and \overline{CLR} will behave as shown by the horizontal dashed lines while OUT is de-asserted.

Figure 2 above shows the timing diagram for the MAX16150B. A switch closure of a duration greater than t_{DB} causes OUT to assert. A switch closure of a duration greater than t_{SO} does not cause OUT to de-assert. Instead, it causes an extended interrupt. Typically, INT and CLR are pulled up either to OUT or to a regulated voltage controlled by OUT as depicted in the figure above. As such, INT and CLR are pulled low while OUT is deasserted. If pulled up to a constant supply voltage, INT and CLR will behave as shown by the horizontal dashed lines while OUT is de-asserted.

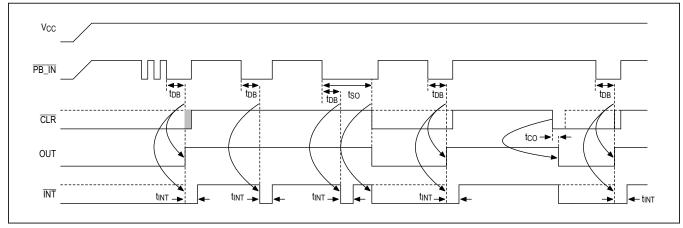


Figure 1. MAX16150A Timing Diagram

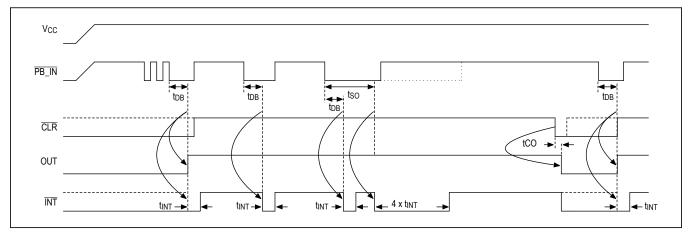


Figure 2. MAX16150B Timing Diagram

Nano-Power Pushbutton On/Off Controller and Battery Seal

Undervoltage Lockout

The undervoltage-lockout circuitry ensures that the outputs are at the correct state on power-up. While V_{CC} is less than the **TBD**V (typ) undervoltage threshold and greater than 1.0V, OUT remains low and transitions at PB_IN are ignored.

Robust Switch Input

The switch input (\overline{PB}_{IN}) has overvoltage clamping diodes to protect against damaging fault conditions. Switch input voltages can safely swing ±60V to ground.

±15kV ESD Protection

ESD-protection structures are incorporated on all pins o protect against electrostatic discharges encountered during handling and assembly. The MAX16150A and the MAX16150B have extra protection against static electric-

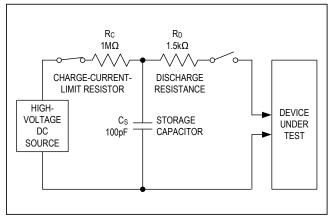


Figure 3. Human Body ESD Test Model

ity to protect against ESD of ± 15 kV at the switch input without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. A design advantage of these devices is that they continue working without latchup after an ESD event, which eliminates the need to power-cycle the device. ESD protection can be tested in various ways; this product is characterized for protection to ± 15 kV using the Human Body Model.

Human Body Model

<u>Figure 3</u> shows the Human Body Model, and <u>Figure 4</u> shows the current waveform it generates when discharged into a low impedance. This model consists of a100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5 k\Omega$ resistor.

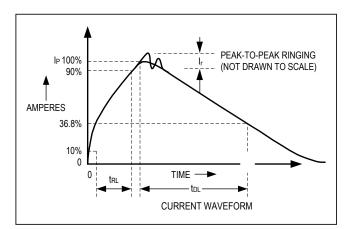
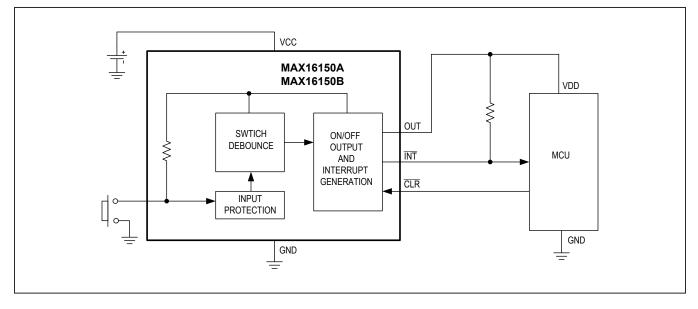



Figure 4. Human Body Current Waveform

Nano-Power Pushbutton On/Off Controller and Battery Seal

Typical Application Circuits

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE
MAX16150AWT+T	-40°C to +125°C	6 WLP
MAX16150AUT+T*	-40°C to +125°C	6 SOT23
MAX16150BWT+T*	-40°C to +125°C	6 WLP
MAX16150BUT+T*	-40°C to +125°C	6 SOT23

+ Denotes a lead(Pb)-free/RoHS-compliant package.

T Denotes tape-and-reel.

* Denotes future products

Nano-Power Pushbutton On/Off Controller and Battery Seal

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	6/18	Initial release	—

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.