Features

- IPM 10 A, 600 V, 3-phase MOSFET inverter bridge including 2 control ICs for gate driving
- 3.3 V, 5 V TTL/CMOS inputs with hysteresis
- Internal bootstrap diode
- Undervoltage lockout of gate drivers
- Smart shutdown function
- Short-circuit protection
- Shutdown input/fault output
- Separate open-source outputs
- Built-in temperature sensor
- Comparator for fault protection
- Fast, soft recovery diodes
- 85 kΩ NTC, UL 1434, CA 4 recognized
- Fully isolated package
- Isolation rating of 1500 Vrms/min

Applications

- 3-phase inverters for motor drives
- Linear and BLDC compressor
- Aircon

Description

This new IPM, belonging to the second series of SLLIMM (small low-loss intelligent molded module), provides a compact, high-performance AC motor drive in a simple, rugged design.

It combines new ST proprietary control ICs with the high-voltage N-channel superjunction MDMesh™ DM2, providing fast-recovery diode series to increase efficiency and minimize EMI and overall losses, making it ideal for any high-efficiency converter and 3-phase inverter system. SLLIMM™ is a trademark of STMicroelectronics.
1 Internal schematic and pin description

Figure 1. Internal schematic diagram and pin configuration
<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>VBOOTu</td>
<td>Bootstrap voltage for U phase</td>
</tr>
<tr>
<td>3</td>
<td>VBOOTv</td>
<td>Bootstrap voltage for V phase</td>
</tr>
<tr>
<td>4</td>
<td>VBOOTw</td>
<td>Bootstrap voltage for W phase</td>
</tr>
<tr>
<td>5</td>
<td>HINu</td>
<td>High-side logic input for U phase</td>
</tr>
<tr>
<td>6</td>
<td>HINv</td>
<td>High-side logic input for V phase</td>
</tr>
<tr>
<td>7</td>
<td>HINw</td>
<td>High-side logic input for W phase</td>
</tr>
<tr>
<td>8</td>
<td>VCCH</td>
<td>High-side low voltage power supply</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>10</td>
<td>LINu</td>
<td>Low-side logic input for U phase</td>
</tr>
<tr>
<td>11</td>
<td>LINv</td>
<td>Low-side logic input for V phase</td>
</tr>
<tr>
<td>12</td>
<td>LINw</td>
<td>Low-side logic input for W phase</td>
</tr>
<tr>
<td>13</td>
<td>VCCL</td>
<td>Low-side low voltage power supply</td>
</tr>
<tr>
<td>14</td>
<td>SD /OD</td>
<td>Shutdown logic input (active low) / open-drain (comparator output)</td>
</tr>
<tr>
<td>15</td>
<td>CIN</td>
<td>Comparator input</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>17</td>
<td>TSO</td>
<td>Temperature sensor output</td>
</tr>
<tr>
<td>18</td>
<td>NW</td>
<td>Negative DC input for W phase</td>
</tr>
<tr>
<td>19</td>
<td>NV</td>
<td>Negative DC input for V phase</td>
</tr>
<tr>
<td>20</td>
<td>NU</td>
<td>Negative DC input for U phase</td>
</tr>
<tr>
<td>21</td>
<td>W</td>
<td>W phase output</td>
</tr>
<tr>
<td>22</td>
<td>V</td>
<td>V phase output</td>
</tr>
<tr>
<td>23</td>
<td>U</td>
<td>U phase output</td>
</tr>
<tr>
<td>24</td>
<td>P</td>
<td>Positive DC input</td>
</tr>
<tr>
<td>25</td>
<td>T2</td>
<td>NTC thermistor terminal 2</td>
</tr>
<tr>
<td>26</td>
<td>T1</td>
<td>NTC thermistor terminal 1</td>
</tr>
</tbody>
</table>
2 Absolute maximum ratings

\[T_J = 25 \, ^\circ\text{C} \] unless otherwise noted.

Table 2. Inverter part

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{PN})</td>
<td>Supply voltage between P -N_U, -N_V, -N_W</td>
<td>450</td>
<td>V</td>
</tr>
<tr>
<td>(V_{PN(surge)})</td>
<td>Supply voltage surge among P -N_U, -N_V, -N_W</td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>(V_{DSS})</td>
<td>MOSFET blocking voltage (or drain-source voltage) for each MOSFET ((V_{IN} = 0))</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>(\pm I_D)</td>
<td>Drain current (continuous) at (T_C = 25 , ^\circ\text{C})</td>
<td>12.5</td>
<td>A</td>
</tr>
<tr>
<td>(\pm I_{DP})</td>
<td>Peak drain current each MOSFET (less than 1 ms)</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>(P_{TOT})</td>
<td>Total dissipation at (T_C = 25 , ^\circ\text{C}) each MOSFET</td>
<td>78</td>
<td>W</td>
</tr>
<tr>
<td>(t_{scw})</td>
<td>Short circuit withstand time, (V_{DS} = 300 , \text{V}, T_J = 125 , ^\circ\text{C}, V_{CC} = V_{boot} = 15 , \text{V}, V_{IN} = 0 \to 5 , \text{V})</td>
<td>12</td>
<td>(\mu \text{s})</td>
</tr>
</tbody>
</table>

1. Applied among \(HINx, LINx \) and \(GND \) for \(x = U, V, W \)

Table 3. Control part

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>Supply voltage between (V_{CC})-GND, (V_{CCL})-GND</td>
<td>-0.3</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>(V_{BOOT})</td>
<td>Bootstrap voltage</td>
<td>-0.3</td>
<td>619</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>Output voltage among U, V, W and GND</td>
<td>(V_{BOOT} - 0.3)</td>
<td>(V_{BOOT} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{CIN})</td>
<td>Comparator input voltage</td>
<td>-0.3</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IN})</td>
<td>Logic input voltage applied among (HINx, LINx) and (GND)</td>
<td>-0.3</td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>(V_{SD/OD})</td>
<td>Open-drain voltage</td>
<td>-0.3</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>(I_{SD/OD})</td>
<td>Open-drain sink current</td>
<td>10</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(V_{TSO})</td>
<td>Temperature sensor output voltage</td>
<td>-0.3</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(I_{TSO})</td>
<td>Temperature sensor output current</td>
<td>7</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Total system

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{ISO})</td>
<td>Isolation withstand voltage applied between each pin and heatsink plate ((AC , \text{voltage, } t = 60 , \text{s}))</td>
<td>1500</td>
<td>V\text{rms}</td>
</tr>
<tr>
<td>(T_J)</td>
<td>Power chips operating junction temperature range</td>
<td>-40 to 150</td>
<td>^\circ\text{C}</td>
</tr>
<tr>
<td>(T_C)</td>
<td>Module operation case temperature range</td>
<td>-40 to 125</td>
<td>^\circ\text{C}</td>
</tr>
</tbody>
</table>
2.1 Thermal data

Table 5. Thermal data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{th(j-c)}$</td>
<td>Thermal resistance junction-case single MOSFET</td>
<td>1.59</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
3 Electrical characteristics

$T_J = 25 \, ^{\circ}C$ unless otherwise noted.

3.1 Inverter part

Table 6. Static

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DSS}</td>
<td>Zero gate voltage drain current</td>
<td>$V_{DS} = 600 , V, , V_{CC} = V_{boot} = 15 , V$</td>
<td>100</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>$V_{(BR)DSS}$</td>
<td>Drain-source breakdown voltage</td>
<td>$V_{CC} = V_{boot} = 15 , V, , V_{IN}^{(1)} = 0 , V, , I_{D} = 1 , mA$</td>
<td>600</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$R_{DS(on)}$</td>
<td>Static drain-source turn-on resistance</td>
<td>$V_{CC} = V_{boot} = 15 , V, , V_{IN}^{(1)} = 0$ to $5 , V, , I_{D} = 1.0 , A$</td>
<td>0.188</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = V_{boot} = 15 , V, , V_{IN}^{(1)} = 0$ to $5 , V, , I_{D} = 10 , A$</td>
<td>0.180</td>
<td>0.210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{SD}</td>
<td>Drain-source diode forward voltage</td>
<td>$V_{IN}^{(1)} = 0 , V, , I_{D} = 10 , A$</td>
<td>0.98</td>
<td>1.36</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

1. Applied among HINx, LINx and GND for $x = U, \, V, \, W$.

Table 7. Inductive load switching time and energy

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{on}^{(1)}$</td>
<td>Turn-on time</td>
<td>$V_{DD} = 300 , V, , V_{CC} = V_{boot} = 15 , V,$</td>
<td>-</td>
<td>560</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{c(on)}^{(1)}$</td>
<td>Cross-over time on</td>
<td>$V_{DD} = 300 , V, , V_{CC} = V_{boot} = 15 , V,$</td>
<td>-</td>
<td>160</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{off}^{(1)}$</td>
<td>Turn-off time</td>
<td>$V_{DD} = 300 , V, , V_{CC} = V_{boot} = 15 , V,$</td>
<td>-</td>
<td>1040</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{c(off)}^{(1)}$</td>
<td>Cross-over time off</td>
<td>$V_{DD} = 300 , V, , V_{CC} = V_{boot} = 15 , V,$</td>
<td>-</td>
<td>70</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_{rr}</td>
<td>Reverse recovery time</td>
<td>$V_{IN}^{(2)} = 0$ to $5 , V, , I_{D} = 10 , A$</td>
<td>-</td>
<td>155</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>E_{on}</td>
<td>Turn-on switching energy</td>
<td></td>
<td>-</td>
<td>465</td>
<td>-</td>
<td>μJ</td>
</tr>
<tr>
<td>E_{off}</td>
<td>Turn-off switching energy</td>
<td></td>
<td>-</td>
<td>70</td>
<td>-</td>
<td>μJ</td>
</tr>
<tr>
<td>E_{rr}</td>
<td>Reverse recovery energy</td>
<td></td>
<td>-</td>
<td>23</td>
<td>-</td>
<td>μJ</td>
</tr>
</tbody>
</table>

1. t_{on} and t_{off} include the propagation delay times of the internal drive. $t_{c(on)}$ and $t_{c(off)}$ are the switching times of the MOSFET itself under the internally given gate driving condition.

2. Applied among HINx, LINx and GND for $x = U, \, V, \, W$.

Figure 2. Switching time test circuit

Figure 3. Switching time definition

(a) turn-on
(b) turn-off
3.2 Control/protection parts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{il}</td>
<td>Low logic level voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{ih}</td>
<td>High logic level voltage</td>
<td>2</td>
<td>0.8</td>
<td>2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{INh}</td>
<td>IN logic “1” input bias current</td>
<td>IN_x = 15 V</td>
<td>80</td>
<td>150</td>
<td>200</td>
<td>µA</td>
</tr>
<tr>
<td>I_{INl}</td>
<td>IN logic “0” input bias current</td>
<td>IN_x = 0 V</td>
<td>1</td>
<td>1</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

High-side

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC_hys}</td>
<td>VCC UV hysteresis</td>
<td></td>
<td>1.2</td>
<td>1.4</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>V_{CCH_th(on)}</td>
<td>V_{CCH} UV turn-on threshold</td>
<td>11</td>
<td>11.5</td>
<td>12</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CCH_th(off)}</td>
<td>V_{CCH} UV turn-off threshold</td>
<td>9.6</td>
<td>10.1</td>
<td>10.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{BS_hys}</td>
<td>V_{BS} UV hysteresis</td>
<td>0.5</td>
<td>1</td>
<td>1.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{BS_th(on)}</td>
<td>V_{BS} UV turn-on threshold</td>
<td>10.1</td>
<td>11</td>
<td>11.9</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{BS_th(off)}</td>
<td>V_{BS} UV turn-off threshold</td>
<td>9.1</td>
<td>10</td>
<td>10.9</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{QBSU}</td>
<td>Under voltage V_{BS} quiescent current</td>
<td>V_{BS} = 9 V, HIN_x = 5 V</td>
<td>55</td>
<td>75</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{QBS}</td>
<td>V_{BS} quiescent current</td>
<td>V_{CC} = 15 V, HIN_x = 5 V</td>
<td>125</td>
<td>170</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{qccu}</td>
<td>Under voltage quiescent supply current</td>
<td>V_{CC} = 9 V, HIN_x = 0 V</td>
<td>190</td>
<td>250</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{qcc}</td>
<td>Quiescent current</td>
<td>V_{CC} = 15 V, HIN_x = 0 V</td>
<td>560</td>
<td>730</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>R_{DS(on)}</td>
<td>BS driver ON resistance</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>

Low-side

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC_hys}</td>
<td>VCC UV hysteresis</td>
<td></td>
<td>1.1</td>
<td>1.4</td>
<td>1.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{CCL_th(on)}</td>
<td>V_{CCL} UV turn-on threshold</td>
<td>10.4</td>
<td>11.6</td>
<td>12.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CCL_th(off)}</td>
<td>V_{CCL} UV turn-off threshold</td>
<td>9.0</td>
<td>10.3</td>
<td>11</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{qccu}</td>
<td>Under voltage quiescent supply current</td>
<td>V_{CC} = 10 V, SD pulled to 5 V through R_{SD} = 10 kΩ, CIN = LIN_x = 0</td>
<td>600</td>
<td>800</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{qcc}</td>
<td>Quiescent current</td>
<td>V_{CC} = 15 V, SD = 5 V, CIN = LIN_x = 0</td>
<td>700</td>
<td>900</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>V_{SSD}</td>
<td>Smart SD unlatch threshold</td>
<td></td>
<td>0.5</td>
<td>0.6</td>
<td>0.75</td>
<td>V</td>
</tr>
<tr>
<td>I_{SDh}</td>
<td>SD logic “1” input bias current</td>
<td>SD = 5 V</td>
<td>25</td>
<td>50</td>
<td>70</td>
<td>µA</td>
</tr>
<tr>
<td>I_{SDI}</td>
<td>SD logic “0” input bias current</td>
<td>SD = 0 V</td>
<td>1</td>
<td></td>
<td>1</td>
<td>µA</td>
</tr>
</tbody>
</table>

1. Applied among HIN_x, LIN_x and GND for x = U, V, W

Table 9. Temperature sensor output

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TSO}</td>
<td>Temperature sensor output voltage</td>
<td>T_J = 25 °C</td>
<td>0.974</td>
<td>1.16</td>
<td>1.345</td>
<td>V</td>
</tr>
<tr>
<td>I_{TSO_SNK}</td>
<td>Temperature sensor sink current capability</td>
<td></td>
<td>0.1</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{TSO_SRC}</td>
<td>Temperature sensor source current capability</td>
<td></td>
<td>4</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>
Table 10. Sense comparator ($V_{CC} = 15$ V, unless otherwise is specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{CIN}</td>
<td>CIN input bias current</td>
<td>$V_{CIN} = 1$ V</td>
<td>-0.2</td>
<td>0.2</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>V_{ref}</td>
<td>Internal reference voltage</td>
<td></td>
<td>460</td>
<td>510</td>
<td>560</td>
<td>mV</td>
</tr>
<tr>
<td>V_{OD}</td>
<td>Open-drain low level output voltage</td>
<td>$I_{od} = 5$ mA</td>
<td></td>
<td></td>
<td>500</td>
<td>mV</td>
</tr>
<tr>
<td>$I_{CIN_{SD}}$</td>
<td>C_{IN} comparator delay to SD</td>
<td>SD pulled to 5 V through $R_{SD} = 10$ kΩ; measured applying a voltage step 0-1 V to pin CIN; 50 % CIN to 90 % SD</td>
<td>240</td>
<td>320</td>
<td>410</td>
<td>ns</td>
</tr>
<tr>
<td>SR_{SD}</td>
<td>SD fall slew rate</td>
<td>SD pulled to 5 V through $R_{SD} = 10$ kΩ; $C_L = 1$ nF through SD and ground; 90 % SD to 10 % SD</td>
<td></td>
<td></td>
<td>25</td>
<td>V/µs</td>
</tr>
</tbody>
</table>

The comparator stays enabled even if V_{CC} is in the UVLO condition but higher than 4 V.
Fault management

The device integrates an open-drain output connected to the SD pin. As soon as a fault occurs, the open-drain is activated and the LVGx outputs are forced low. Two types of fault can be identified:

- Overcurrent (OC) sensed by the internal comparator (see more detail in Section 4.1 Smart shutdown function);
- Undervoltage on supply voltage (V_{CC})

Each fault enables the SD open drain for a different time, as described in the following table.

Table 11. Fault timing

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Event time (1)</th>
<th>SD open-drain enable time result (1)(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC</td>
<td>Over-current event</td>
<td>≤ 24 μs</td>
<td>24 μs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 24 μs</td>
<td>OC time</td>
</tr>
<tr>
<td>UVLO</td>
<td>Under-voltage lockout event</td>
<td>≤ 70 μs</td>
<td>70 μs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 70 μs</td>
<td>UVLO time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>until the VCC_{LS} exceeds the VCC_{LS} UV turn ON threshold</td>
<td></td>
</tr>
</tbody>
</table>

1. **Typical value** (-40 °C ≤ T_{J} ≤ +125 °C)
2. **Without contribution of the RC network on SD**

Actually, the device remains in a fault condition (SD at low logic level and LVGx outputs disabled) for a time also depending on the RC network connected to the SD pin. The network generates a time contribution that is added to the internal value.

Figure 4. Overcurrent timing (without contribution of the RC network on SD)
Figure 5. UVLO timing (without contribution of the RC network on SD)
4.1 Smart shutdown function

The device integrates a comparator committed to the fault sensing function. The comparator input can be connected to an external shunt resistor in order to implement a simple overcurrent detection function.

The output signal of the comparator is fed to an integrated MOSFET with the open drain output available on the SD input. When the comparator triggers, the device is set in shutdown state and its outputs are all set to low level.

Figure 6. Smart shutdown timing waveforms in case of overcurrent event

Fast shutdown:

the driver outputs are set in SD state immediately after comparator triggering even if the SD signal has not yet reached the lower input threshold

where:

- \(t_1 = \frac{1}{R_{ON,OD}} \cdot \frac{C_{SD}}{V_{ON}} \)
- \(t_2 = \frac{1}{R_{PD,SD} + R_{SD}} \cdot \frac{C_{SD}}{V_{ON}} \)

\(R_{ON,OD} = V_{OD}/5 \text{ mA} \), see Table 10. Sense comparator (\(V_{CC} = 15 \text{ V} \), unless otherwise is specified);

\(R_{PD,SD} \text{ (typ.)} = 5 \text{ V} / I_{SDH} \)
In common overcurrent protection designs, the comparator output is usually connected to the SD input and an RC network is connected to this SD line in order to provide a mono-stable circuit which implements a protection time that follows the fault condition.

As opposed to common fault detection systems, the device smart shutdown architecture allows the immediate turn-off of output gates driver in case of fault, by minimizing the propagation delay between the fault detection event and the actual switching off of the outputs. In fact, the time delay between the fault and the turning off of the outputs is no longer dependent on the RC value of the external network connected to the pin.

In the smart shutdown circuitry, the fault signal has a preferential path which directly switches off the outputs after the comparator triggering.

At the same time, the internal logic turns on the open-drain output and holds it on until the SD voltage goes below the V_{SSD} threshold and the t_{oc} time is elapsed.

The driver outputs restart following the input pins as soon as the voltage at the SD pin reaches the higher threshold of the SD logic input.

The smart shutdown system provides the possibility to increase the time constant of the external RC network (i.e., the disable time after the fault event) up to very high values without increasing the delay time of the protection.
5 Temperature monitoring solutions

5.1 TSO output

The device integrates a temperature sensor. A voltage proportional to the die temperature is available on the TSO pin. When this function is not used, the pin can be left floating.

![Figure 7. V_{TSO} output characteristics vs LVIC temperature](image)

5.2 NTC thermistor

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{25}</td>
<td>Resistance</td>
<td>$T = 25 , ^\circ C$</td>
<td>85</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R_{125}</td>
<td>Resistance</td>
<td>$T = 125 , ^\circ C$</td>
<td>2.6</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>B</td>
<td>B-constant</td>
<td>$T = 25 \text{ to } 100 , ^\circ C$</td>
<td>4092</td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>T</td>
<td>Operating temperature range</td>
<td></td>
<td>-40</td>
<td>125</td>
<td></td>
<td>℃</td>
</tr>
</tbody>
</table>
Figure 8. NTC resistance vs temperature

Figure 9. NTC resistance vs temperature - zoom
Application designers are free to use a different scheme according to the device specifications.
6.1 Guidelines

1. Input signals HIN, LIN are active-high logic. A 100 kΩ (typ.) pull-down resistor is built-in for each input pin. To prevent input signal oscillations, the wiring of each input should be as short as possible and the use of RC filters (R1, C1) on each input signal is suggested. The filters should be with a time constant of about 100 ns and placed as close as possible to the IPM input pins.

2. The use of a bypass capacitor CVCC (aluminum or tantalum) can reduce the transient circuit demand on the power supply. Besides, to reduce any high-frequency switching noise distributed on the power lines, a decoupling capacitor C2 (100 to 220 nF, with low ESR and low ESL) should be placed as close as possible to each Vcc pin and in parallel with the bypass capacitor.

3. The use of an RC filter (Rsf, Csf) prevents protection circuit malfunctions. The time constant (Rsf x Csf) should be set to 1 µs and the filter must be placed as close as possible to the CIIN pin.

4. The SD is an input/output pin (open-drain type if it is used as output). It should be pulled up to a power supply (i.e., MCU bias at 3.3/5 V) by a resistor value, which can keep the IDNo lower than 5 mA (VOD ≤ 500 mV when open-drain MOSFET is ON). The filter on SD should be sized to get a desired re-starting time after a fault event and placed as close as possible to the SD pin.

5. A decoupling capacitor CTSO between 1 nF and 10 nF can be used to increase the noise immunity of the TSO thermal sensor; a similar decoupling capacitor COT (between 10 nF and 100 nF) can be implemented if the NTC thermistor is available and used. In both cases, their effectiveness is improved if these capacitors are placed close to the MCU.

6. The decoupling capacitor C3 (100 to 220 nF with low ESR and low ESL) in parallel with each Cboot filters high-frequency disturbances. Both Cboot and C3 (if present) should be placed as close as possible to the U,V,W and Vboot pins. Bootstrap negative electrodes should be connected to the U,V,W terminals directly and separated from the main output wires.

7. To prevent overvoltage on the Vcc pin, a Zener diode (Dz1) can be used. Similarly on the Vboot pin, a Zener diode (Dz2) can be placed in parallel with each Cboot.

8. The use of the decoupling capacitor C4 (100 to 220 nF, with low ESR and low ESL) in parallel with the electrolytic capacitor CVdc prevents surge destruction. Both capacitors C4 and CVdc should be placed as close as possible to the IPM (C4 has priority over CVdc).

9. By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an optocoupler is possible.

10. Low inductance shunt resistors should be used for phase leg current sensing.

11. In order to avoid malfunctions, the wiring on N pins, the shunt resistor and PWR_GND should be as short as possible.

12. The connection of the SGN_GND to the PWR_GND at one point only (close to the shunt resistor terminal) can reduce the impact of power ground fluctuation.

These guidelines ensure the device specifications for application designs. For further details, please refer to the relevant application note.

Table 13. Recommended operating conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPIN</td>
<td>Supply voltage</td>
<td>Applied among P-Nu, Nu, Nw</td>
<td>300</td>
<td>400</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VCC</td>
<td>Control supply voltage</td>
<td>Applied to VCC-GND</td>
<td>13.5</td>
<td>15</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>VBBS</td>
<td>High-side bias voltage</td>
<td>Applied to VBOOTj-OUTi for j = U, V, W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tdead</td>
<td>Blanking time to prevent arm-short</td>
<td>For each input signal</td>
<td>1.5</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>tfPWM</td>
<td>PWM input signal</td>
<td>-40 °C < Tc < 100 °C</td>
<td></td>
<td></td>
<td>20</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40 °C < Tj < 125 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>Case operation temperature</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>°C</td>
</tr>
</tbody>
</table>
7 Electrical characteristics (curves)

Figure 11. Output characteristics

Figure 12. Diode V_{SD} vs drain current

Figure 13. I_D vs temperature

Figure 14. E_{ON} switching energy vs drain current

Figure 15. E_{OFF} switching energy vs drain current

Figure 16. Thermal impedance for SDIP2B-26L MOSFET
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

8.1 SDIP2B-26L type L package information

Figure 17. SDIP2B-26L type L package outline
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Dimensions (mm)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>A</td>
<td>37.50</td>
<td>38.00</td>
<td>38.50</td>
</tr>
<tr>
<td>A1</td>
<td>0.97</td>
<td>1.22</td>
<td>1.47</td>
</tr>
<tr>
<td>A2</td>
<td>0.97</td>
<td>1.22</td>
<td>1.47</td>
</tr>
<tr>
<td>A3</td>
<td>34.70</td>
<td>35.00</td>
<td>35.30</td>
</tr>
<tr>
<td>c</td>
<td>1.45</td>
<td>1.50</td>
<td>1.55</td>
</tr>
<tr>
<td>B</td>
<td>23.50</td>
<td>24.00</td>
<td>24.50</td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>28.90</td>
<td>29.40</td>
<td>29.90</td>
</tr>
<tr>
<td>C</td>
<td>3.30</td>
<td>3.50</td>
<td>3.70</td>
</tr>
<tr>
<td>C1</td>
<td>5.00</td>
<td>5.50</td>
<td>6.00</td>
</tr>
<tr>
<td>C2</td>
<td>13.50</td>
<td>14.00</td>
<td>14.50</td>
</tr>
<tr>
<td>D</td>
<td>28.70</td>
<td>29.30</td>
<td>29.80</td>
</tr>
<tr>
<td>D1</td>
<td>2.55</td>
<td>2.85</td>
<td>3.15</td>
</tr>
<tr>
<td>e</td>
<td>3.356</td>
<td>3.556</td>
<td>3.756</td>
</tr>
<tr>
<td>e1</td>
<td>1.578</td>
<td>1.778</td>
<td>1.978</td>
</tr>
<tr>
<td>e2</td>
<td>7.42</td>
<td>7.62</td>
<td>7.82</td>
</tr>
<tr>
<td>e3</td>
<td>4.88</td>
<td>5.08</td>
<td>5.28</td>
</tr>
<tr>
<td>e4</td>
<td>2.34</td>
<td>2.54</td>
<td>2.74</td>
</tr>
<tr>
<td>E</td>
<td>11.90</td>
<td>12.40</td>
<td>12.90</td>
</tr>
<tr>
<td>E1</td>
<td>3.45</td>
<td>3.75</td>
<td>4.05</td>
</tr>
<tr>
<td>E2</td>
<td></td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>0.45</td>
<td>0.60</td>
<td>0.75</td>
</tr>
<tr>
<td>f1</td>
<td>0.35</td>
<td>0.50</td>
<td>0.65</td>
</tr>
<tr>
<td>F</td>
<td>1.95</td>
<td>2.10</td>
<td>2.25</td>
</tr>
<tr>
<td>F1</td>
<td>0.95</td>
<td>1.10</td>
<td>1.25</td>
</tr>
<tr>
<td>R</td>
<td>1.55</td>
<td>1.575</td>
<td>1.60</td>
</tr>
<tr>
<td>T</td>
<td>0.375</td>
<td>0.40</td>
<td>0.425</td>
</tr>
<tr>
<td>V</td>
<td>0°</td>
<td></td>
<td>5°</td>
</tr>
</tbody>
</table>
Revision history

Table 15. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>02-May-2017</td>
<td>1</td>
<td>Initial release</td>
</tr>
<tr>
<td>24-Sep-2018</td>
<td>2</td>
<td>Updated title, features and description on cover page.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Table 2. Inverter part, Table 5. Thermal data and Table 11. Fault timing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Section 3 Electrical characteristics, Section 7 Electrical characteristics (curves) and Section 8.1 SDIP2B-26L type L package information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor text changes</td>
</tr>
</tbody>
</table>
Contents

1 Internal schematic diagram and pin configuration ... 2
2 Absolute maximum ratings .. 4
2.1 Thermal data .. 4
3 Electrical characteristics ... 6
3.1 Inverter part ... 6
3.2 Control/protection part ... 7
4 Fault management .. 10
4.1 Smart shutdown function .. 12
5 Temperature monitoring solutions ... 14
5.1 TSO output ... 14
5.2 NTC thermistor .. 14
6 Application circuit example ... 16
6.1 Guidelines .. 16
7 Electrical characteristics (curves) .. 18
8 Package information .. 19
8.1 SDIP2B-26L type L package information .. 19

Revision history .. 21