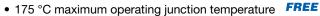


Hyperfast Rectifier, 30 A FRED Pt® G5



PRIMARY CHARACTERISTICS						
I _{F(AV)}	30 A					
V_{R}	1200 V					
V _F at I _F at 125 °C	2.1 V					
t _{rr}	26 ns					
T_J max.	175 °C					
Package	2L TO-220AC					
Circuit configuration	Single					

FEATURES

- Hyperfast and optimized Q_{rr}
- Best in class forward voltage drop and switching losses trade off

Polyimide passivation

 Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

RoHS COMPLIANT HALOGEN

DESCRIPTION / APPLICATIONS

Featuring a unique combination of low conduction and switching losses, this rectifier is the right choice for high frequency converters, both soft switched / resonant. Specifically designed to improve efficiency of PFC and output rectification stages of EV / HEV battery charging stations, booster stage of solar inverters and UPS applications, these devices are perfectly matched to operate with MOSFETs or high speed IGBTs.

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Repetitive peak reverse voltage	V_{RRM}		1200	V			
Average rectified forward current	I _{F(AV)}	T _C = 90 °C, D = 0.50	30				
Non-repetitive peak surge current	I _{FSM}	$T_C = 45$ °C, $t_p = 10$ ms, sine wave	210	Α			
Repetitive peak forward current	I _{FRM}	T _C = 90 °C, D = 0.50, f = 20 kHz	60				
Operating junction and storage temperature	T _J , T _{Stq}		-55 to +175	°C			

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS		
Breakdown voltage, blocking voltage	V _{BR} , V _R	I _R = 100 μA	1200	-	-			
Forward voltage		I _F = 30 A	-	2.6	3.15	V		
	V _F	I _F = 30 A, T _J = 125 °C	-	2.1	=.			
Develop leglenge granent		V _R = V _R rated	-	-	50			
Reverse leakage current	I _R	T _J = 125 °C, V _R = V _R rated	-	=.	500	μΑ		
Junction capacitance	C _T	V _R = 200 V	-	17	-	pF		
Series inductance	L _S	Measured to lead 5 mm from package body	-	8	-	nH		

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CO	MIN.	TYP.	MAX.	UNITS		
		I _F = 1.0 A, dI _F /dt =	$I_F = 1.0 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$		26	-		
Reverse recovery time	t _{rr}	T _J = 25 °C		=	100	-	ns	
		T _J = 125 °C		=	150	-	†	
Dook recovery ourrent		T _J = 25 °C	$I_F = 20 \text{ A}$	=	12	-	A	
Peak recovery current	I _{RRM}	T _J = 125 °C	dI _F /dt = 600 A/μs V _R = 400 V	=	22	-		
Doverso vecessors charge		T _J = 25 °C		=	530	-	nC	
Reverse recovery charge	Q _{rr}	T _J = 125 °C		=	1550	-		
Reverse recovery time		T _J = 25 °C	I _F = 30 A dI _F /dt = 1000 A/μs V _R = 800 V	=	80	-	ns A	
neverse recovery time	t _{rr}	T _J = 125 °C		=	120	-		
Dook recovery ourrent		T _J = 25 °C		-	22	-		
Peak recovery current	I _{RRM}	T _J = 125 °C		=	37	-		
Poverse receivent charge		T _J = 25 °C		-	900	-	nC	
Reverse recovery charge	Q_{rr}	T _J = 125 °C		-	2300	-		

THERMAL - MECHANICAL SPECIFICATIONS								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS		
Thermal resistance, junction-to-case	R _{thJC}		-	-	1.2	°C/W		
\M_=:=l=1			-	2.0	-	g		
Weight			-	0.07	-	oz.		
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)		
Maximum junction and storage temperature range	T _J , T _{Stg}		-55	-	175	°C		
Marking device		Case style: 2L TO-220AC	E5TX3012					

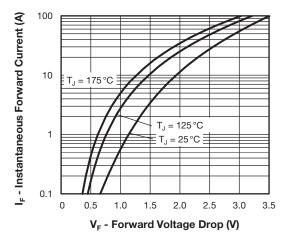


Fig. 1 - Typical Forward Voltage Drop Characteristics

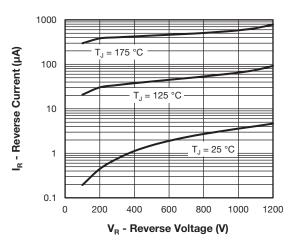


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

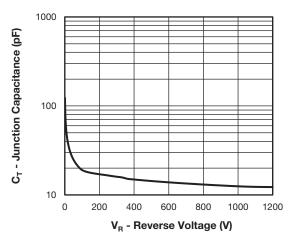


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

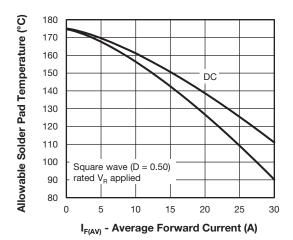


Fig. 4 - Maximum Allowable Case Temperature vs.
Average Forward Current

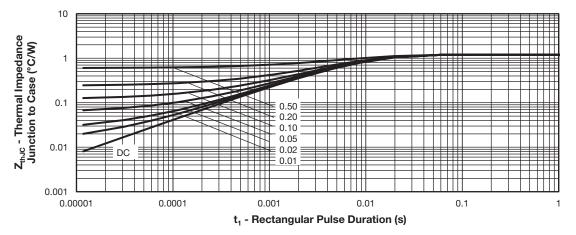


Fig. 5 - Thermal Impedance Z_{thJC} Characteristics

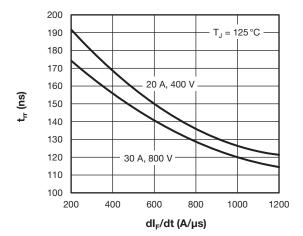


Fig. 6 - Typical Reverse Recovery Time vs. dI_F/dt

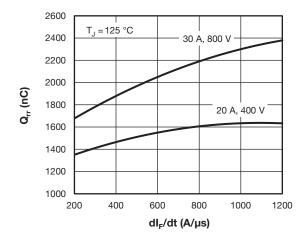


Fig. 7 - Typical Stored Charge vs. dl_F/dt

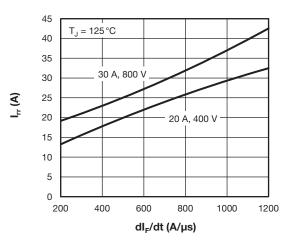


Fig. 8 - Typical Recovery Current vs. dl_F/dt

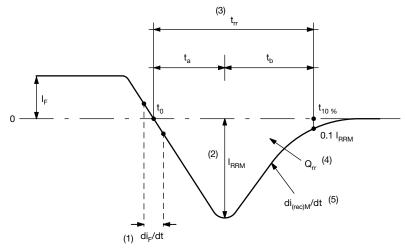


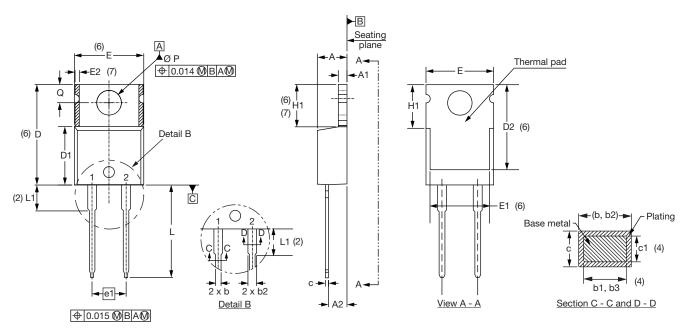
Fig. 9 - Reverse Recovery Waveform and Definitions

Notes

- $^{(1)}$ di_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- $^{(3)}$ t_{rr} reverse recovery time measured from t_0 , crossing point of negative going I_F , to point $t_{10\%}$, 0.1 I_{RRM}
- $^{(4)}$ $\,$ Q_{rr} area under curve defined by t_0 and t_{10} $_{\%}$

$$Q_{rr} = \int_{t_0}^{t_{10}\%} I(t)dt$$

 $^{(5)}$ di_(rec)M/dt - peak rate of change of current during t_b portion of t_{rr}


ORDERING INFORMATION (Example)							
PREFERRED P/N QUANTITY PER TUBE MINIMUM ORDER QUANTITY PACKAGING DESCRIPTION							
VS-E5TX3012-N3	50	1000	Antistatic plastic tube				

LINKS TO RELATED DOCUMENTS					
Dimensions <u>www.vishay.com/doc?96069</u>					
Part marking information	www.vishay.com/doc?95391				

2L TO-220AC

DIMENSIONS in millimeters and inches

SYMBOL	MILLIN	MILLIMETERS		INCHES		
STIVIBUL	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	4.25	4.65	0.167	0.183		
A1	1.14	1.40	0.045	0.055		
A2	2.56	2.92	0.101	0.115		
b	0.69	1.01	0.027	0.040		
b1	0.38	0.97	0.015	0.038	4	
b2	1.20	1.73	0.047	0.068		
b3	1.14	1.73	0.045	0.068	4	
С	0.36	0.61	0.014	0.024		
c1	0.36	0.56	0.014	0.022	4	
D	14.85	15.25	0.585	0.600	3	
D1	8.38	9.02	0.330	0.355		
D2	11.68	12.88	0.460	0.507	6	
Е	10.11	10.51	0.398	0.414	3, 6	

SYMBOL	MILLIMETERS		INCHES		NOTES
STIVIDUL	MIN.	MAX.	MIN.	MAX.	NOTES
E1	6.86	8.89	0.270	0.350	6
E2	-	0.76	-	0.030	7
е	2.41	2.67	0.095	0.105	
e1	4.88	5.28	0.192	0.208	
H1	6.09	6.48	0.240	0.255	6, 7
L	13.52	14.02	0.532	0.552	
L1	3.32	3.82	0.131	0.150	2
ØΡ	3.54	3.73	0.139	0.147	
Q	2.60	3.00	0.102	0.118	

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Lead dimension and finish uncontrolled in L1
- (3) Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Dimension b1, b3 and c1 apply to base metal only
- (5) Controlling dimension: inches
- (6) Thermal pad contour optional within dimensions E, H1, D2 and E1
- (7) Dimension E2 x H1 define a zone where stamping and singulation irregularities are allowed
- (8) Outline conforms to JEDEC® TO-220, except D2, where JEDEC® minimum is 0.480".

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.