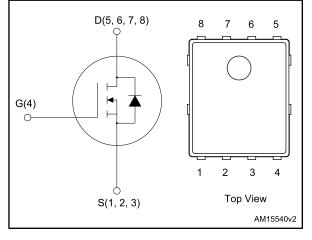

STL160N4F7



N-channel 40 V, 2.1 mΩ typ., 120 A STripFET[™] F7 Power MOSFET in a PowerFLAT[™] 5x6 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V_{DS}	R _{DS(on)} max	ID
STL160N4F7	40 V	2.5 mΩ	120 A

- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

• Switching applications

Description

This N-channel Power MOSFET utilizes STripFET[™] F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STL160N4F7	160N4F7	PowerFLAT [™] 5x6	Tape and reel

DocID027805 Rev 2

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
3	Electric	al curves	6
4	Test cir	cuits	8
5	Packag	e information	9
	5.1	PowerFLAT™ 5x6 type C package information	9
	5.2	PowerFLAT™ 5x6 packing information	11
6	Revisio	n history	13

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V_{GS}	Gate-source voltage	± 20	V
ID ⁽¹⁾⁽²⁾	Drain current (continuous) at T _c = 25 °C	120	А
I _D ⁽²⁾	Drain current (continuous) at T _c = 100 °C	108	А
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	480	А
P _{TOT} ⁽²⁾	Total dissipation at T_C = 25 °C	111	W
I _D ⁽⁴⁾	Drain current (continuous) at T _{pcb} = 25 °C	32	А
۱ _D ⁽⁴⁾	Drain current (continuous) at T _{pcb} = 100 °C	22	А
I _{DM} ⁽³⁾⁽⁴⁾	Drain current (pulsed)	128	А
P _{TOT} ⁽⁴⁾	Total dissipation at T _{pcb} = 25 °C	4.8	W
I _{AV}	Avalanche current	16	А
E _{AS}	Single pulse avalanche energy (T _j = 25 °C, I _D = 16A, V _{DD} = 25V)	260	mJ
T _{stg}	Storage temperature range		°C
Tj	Operating junction temperature range -55 to 17		C

Notes:

⁽¹⁾ Drain current is limited by package

 $^{\rm (2)} {\rm This}$ value is rated according to Rthj-c

 $^{\rm (3)}{\rm Pulse}$ width limited by safe operating area

 $^{\rm (4)} This value is rated according to <math display="inline">R_{thj\text{-}pcb}$

Table	3:	Thermal	data
TUDIC	υ.	monnai	uutu

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max.	31.3	°C/W
R _{thj-case}	R _{thj-case} Thermal resistance junction-case max.		°C/W

Notes:

 $^{(1)}$ When mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 sec

2 Electrical characteristics

(T_c = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 250 μA	40		V	V
I _{DSS} Zero gate voltage drain current Gate-body leakage current		V _{GS} = 0 V V _{DS} = 40 V			1	μA
		V_{GS} = 20 V, V_{DS} = 0 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2		4	V
R _{DS(on)} Static drain-source on-resistance		V _{GS} = 10 V, I _D = 16 A		2.1	2.5	mΩ

Table 4: On /off states

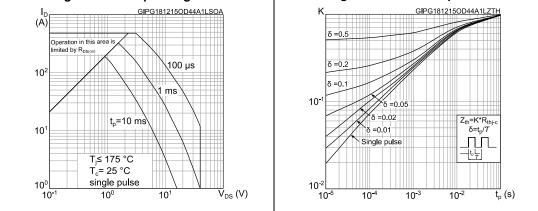
Table 5: Dynamic

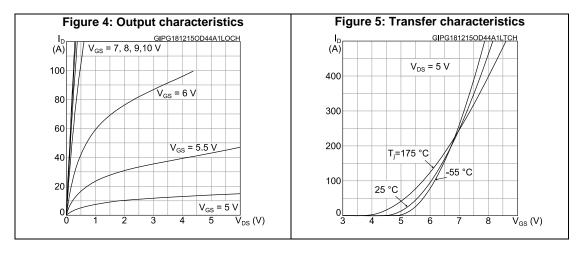
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2300	-	pF
C _{oss}	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0 V		786	I	pF
C _{rss}	Reverse transfer capacitance			43	-	pF
Qg	Total gate charge	V _{DD} = 20 V, I _D = 32 A,	-	29	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	13	-	nC
Q_gd	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	5.6	-	nC

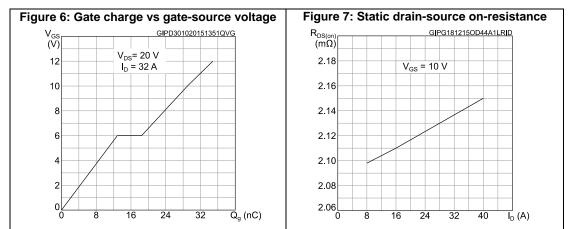
Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 20 V, I _D = 16 A,	-	14	-	ns
tr	Rise time	$R_{G} = 4.7 \Omega, V_{GS} = 10 V$	-	6.6	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13: "Test circuit for resistive load switching times"and Figure 18: "Switching time waveform")	-	19	-	ns
t _f	Fall time	, i i i i i i i i i i i i i i i i i i i	-	5.7	-	ns

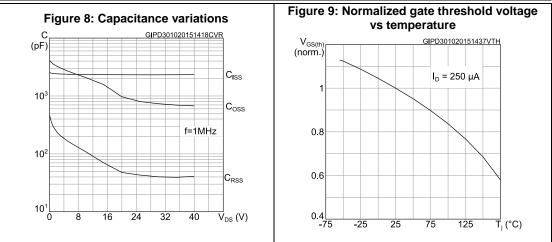
Electrical characteristics

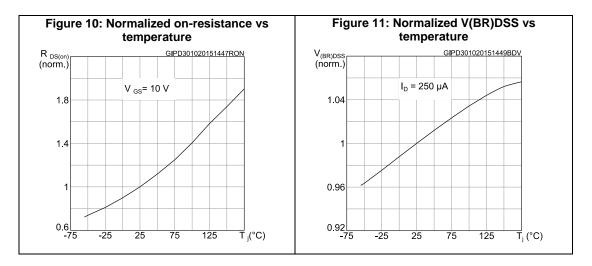

	Table 7: Source-drain diode						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 32 A, V _{GS} = 0 V	-		1.2	V	
t _{rr}	Reverse recovery time	I_D = 32 A, di/dt = 100 A/µs V_{DD} = 32 V (see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	55		ns	
Qrr	Reverse recovery charge		-	67		nC	
I _{RRM}	Reverse recovery current		-	2.4		А	

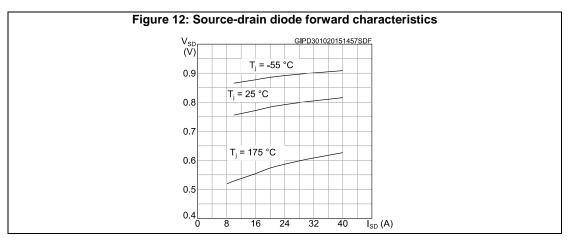

Notes:


 $^{(1)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

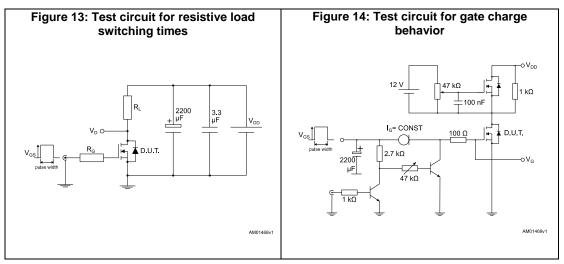
3 Electrical curves Figure 2: Safe operating area Figure 3: Thermal impedance

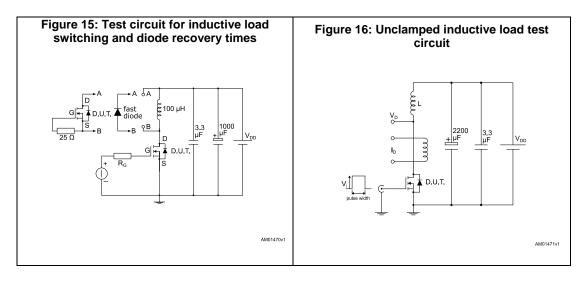


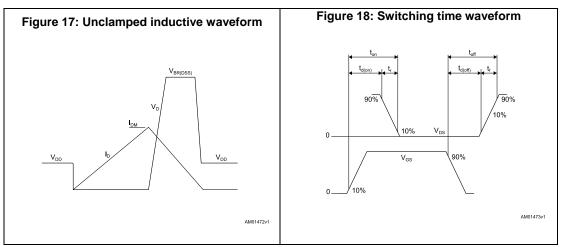



DocID027805 Rev 2

Electrical curves







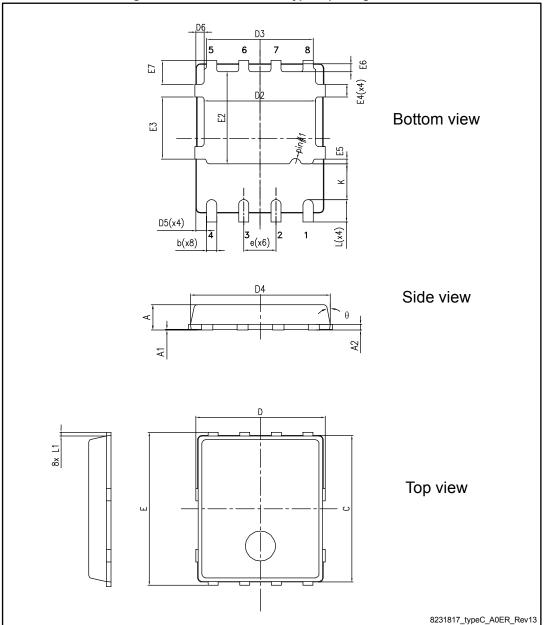
57

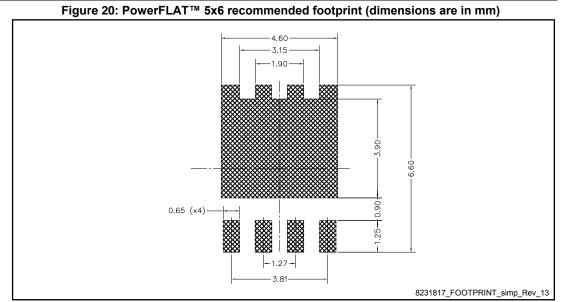
4 Test circuits

DocID027805 Rev 2

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

5.1 PowerFLAT[™] 5x6 type C package information

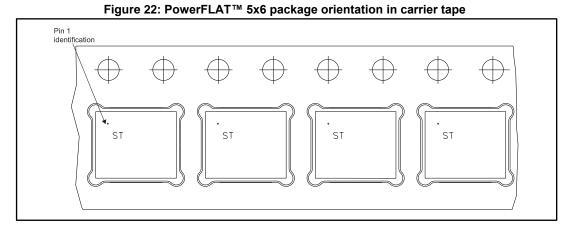



Figure 19: PowerFLAT™ 5x6 type C package outline

STL160N4F7

nformation			STL160N4F7
Tabl	e 8: PowerFLAT™ 5x6 ty	/pe C package mechanic	al data
Dim.		mm	
Dim.	Min.	Тур.	Max.
A	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.20
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.20
D5	0.25	0.40	0.55
D6	0.15	0.30	0.45
е		1.27	
E	5.95	6.15	6.35
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.450
E7	0.75	0.90	1.05
К	1.05		1.35
L	0.715		1.015
L1	0.05	0.15	0.25
θ	0°		12°
θ	0°		12°

57


5.2 PowerFLAT[™] 5x6 packing information

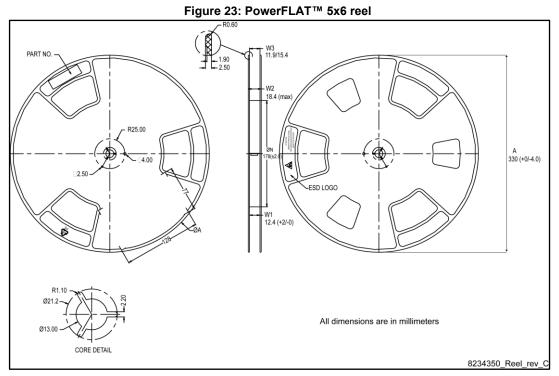


Figure 21: PowerFLAT™ 5x6 tape (dimensions are in mm)

STL160N4F7

57

6 Revision history

Table 9: Document revision history

Date	Revision	Changes
14-May-2015	1	First release.
23-Feb-2016	2	Updated title. Updated <i>Table 2: "Absolute maximum ratings", Table 4: "On /off states",</i> <i>Table 5: "Dynamic", Table 6: "Switching times"</i> and <i>Table 7: "Source- drain diode"</i> Minor text changes.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

