STP260N4F7

N-channel 40 V, 1.8 mΩ typ., 120 A STripFET™ F7 Power MOSFET in a TO-220 package

Datasheet - production data

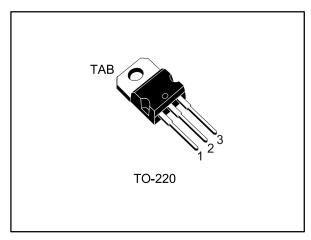
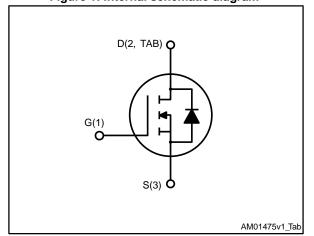



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)max}	l _D	Ртот
STP260N4F7	40 V	2.2 mΩ	120 A	235 W

Features

- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low Crss/Ciss ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packaging
STP260N4F7	260N4F7	TO-220	Tube

Contents STP260N4F7

Contents

1	Electrical ratings				
2	Electric	cal characteristics	4		
	2.1	Electrical characteristics (curves)	6		
3	Test cir	·cuits	8		
4	Packag	e information data	9		
	4.1	TO-220 type A package information	10		
5	Revisio	n history	12		

STP260N4F7 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	40	V	
V _{GS}	Gate source voltage	±20	V	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	120	Α	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	120	Α	
I _{DM} ⁽²⁾	Drain current (pulsed)	480	Α	
Ртот	Total dissipation at T _C = 25 °C	235	W	
TJ	Operating junction temperature range	EE to 17E	°C	
T _{stg}	Storage temperature range			

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.64	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

⁽¹⁾Current limited by package.

 $^{^{(2)}}$ Pulse width limited by safe operating area.

Electrical characteristics STP260N4F7

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	40			٧
		V _{GS} = 0 V, V _{DS} = 40 V			1	μΑ
IDSS	I _{DSS} Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 40 V, T _C = 125 °C ⁽¹⁾			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = 20 V			100	nΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 60 A		1.8	2.2	mΩ

Notes:

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	5600	ı	pF
Coss	Output capacitance	Output capacitance $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V},$ f = 1 MHz		2400	1	pF
C_{rss}	Reverse transfer capacitance			35	-	pF
Qg	Total gate charge	$V_{DD} = 20 \text{ V}, I_D = 120 \text{ A},$	-	67	-	nC
Qgs	Gate-source charge V _{GS} = 10 V		-	31	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	9	-	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 20V, I_D = 60 A,$	-	30	-	ns
t _r	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	21	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13: "Test circuit for resistive load	1	42	-	ns
t _f	Fall time	switching times" and Figure 18: "Switching time waveform")	-	13	-	ns

⁽¹⁾Defined by design, not subject to production test.

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 120 A	ı		1.1	V
t _{rr}	Reverse recovery time	I _{SD} = 120 A, di/dt = 100 A/µs	ı	68		ns
Qrr	Reverse recovery charge	V _{DD} = 32 V, T _J = 150 °C	-	98		nC
I _{RRM}	Reverse recovery current	(see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	2.9		А

Notes:

 $^{^{(1)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.2 Electrical characteristics (curves)

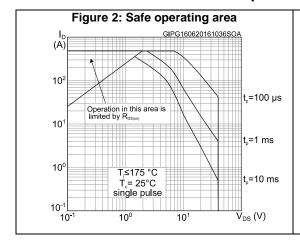
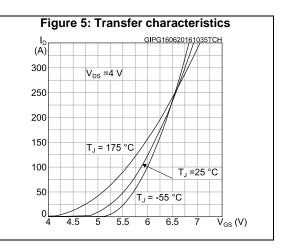
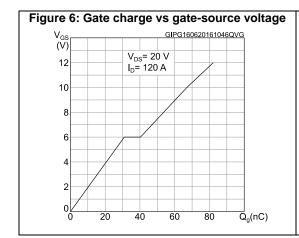
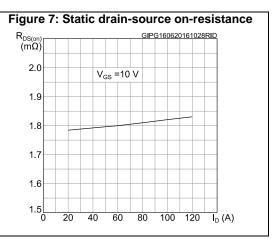





Figure 3: Thermal impedance $K = \frac{GPG160620161036ZTH}{\delta = 0.5}$ $\frac{\delta = 0.2}{\delta = 0.02}$ $\frac{\delta = 0.02}{\delta = 0.01}$ $\frac{\zeta_p = k^*R_{npc}}{\delta = 0.01}$

STP260N4F7 Electrical characteristics

Figure 8: Capacitance variations

C GIPG1012150D48A1LCVR

(pF)

10⁴

C_{ISS}

C_{OSS}

10³

f = 1 MHz

10²

C_{RSS}

10¹

0 10 20 30 40 V_{DS} (V)

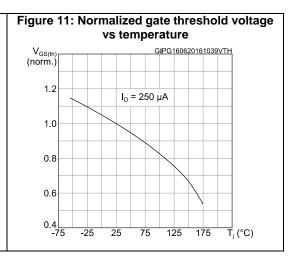
Figure 9: Normalized on-resistance vs temperature R_{DS(on)} (norm.) GIPG160620161040RON 1.8 V_{GS} = 10 V I_D = 60 A 1.6 1.4 1.2 1.0 0.8 0.6 -75 175 125 T_i (°C) 75

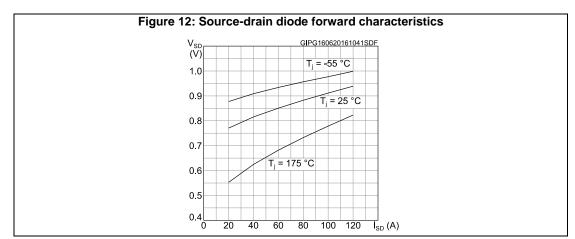
Figure 10: Normalized V_{(BR)DSS} vs temperature

V_{(BR)DSS} (norm.)

1.04

1.02

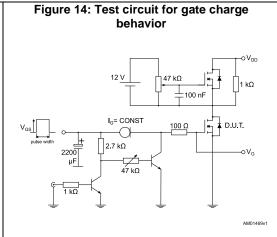

1.00

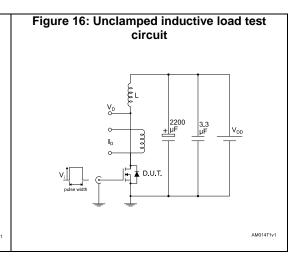

0.98

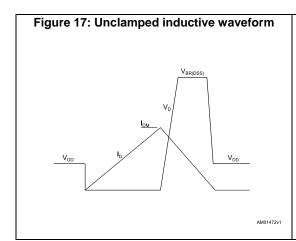
0.96

0.94

-75 -25 25 75 125 175 T_j (°C)






Test circuits STP260N4F7

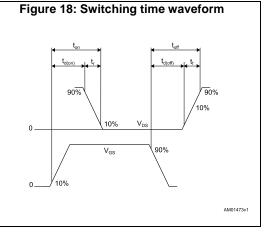

3 Test circuits

Figure 13: Test circuit for resistive load switching times

4 Package information data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220 type A package information

Figure 19: TO-220 type A package outline

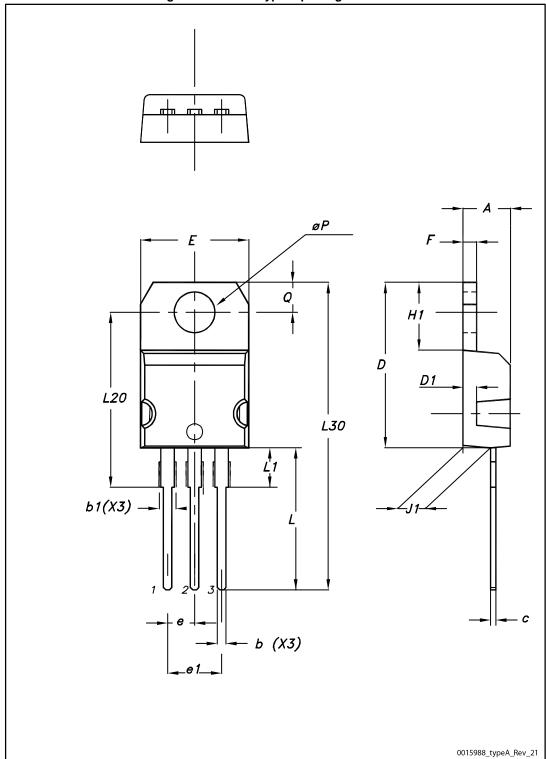


Table 8: TO-220 type A mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

Revision history STP260N4F7

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
21-Sep-2015	1	First release.
16-Jun-2016	2	Modified: title anf features in cover page Modified: Table 2: "Absolute maximum ratings", Table 3: "Thermal data", Table 4: "On /off states", Table 5: "Dynamic", Table 6: "Switching times" and Table 7: "Source-drain diode" Added: Section 5.1: "Electrical characteristics (curves)" Minortext changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved