

### **NEOPRESS CONNECTORS**



### 1.0 SCOPE

This specification provides guidance for the use of NeoPress connectors, it is not all inclusive and refinements may be needed that are beyond this document. If questions arise, then please contact Molex.

### 2.0 PRODUCT DESCRIPTION

NeoPress is a line of Board to Board Connectors that connect one printed circuit board to another printed circuit board to which it's parallel; this type of connector is also known as a "mezzanine" connector. NeoPress is primarily for high speed Differential signals (i.e. Double-Ended signals), but is also appropriate for Single-Ended signals, sundry Low Speed signals and Power connections.

NeoPress can be made in varying heights to accommodate varying separation distances between two parallel boards in a variety of Grids: 2, 3, 4, 6, 8 & 10 Rows X 4 - 30 Columns. Check with Molex for availability. Larger configurations available upon request.

NeoPress Plug – Compliant Pin Mountable (Series Number: 172801, 173363 & 203341) Part Numbers: 172801\*\*\*\*, 173363\*\*\*\* & 203341\*\*\*\*

NeoPress Receptacle – Compliant Pin Mountable (Series Number: 172832 & 173364) Part Numbers: 172832\*\*\*\*, 173364\*\*\*\* & 203340\*\*\*\*

| REVISION: | ECR/ECN INFORMATION:                            | TITLE:                | NEODDESS          |                    | SHEET No.         |  |
|-----------|-------------------------------------------------|-----------------------|-------------------|--------------------|-------------------|--|
| D         | <u>EC No:</u> 177816<br><u>DATE:</u> 2018/06/07 | MEZZA                 | NINE CONNECTO     | RS                 | 1 of 19           |  |
| DOCUMENT  | NUMBER:                                         | CREATED / REVISED BY: | CHECKED BY:       | <u>APPROV</u>      | ED BY:            |  |
| AS        | AS-172801-0001 PREMO PELOZA KLA                 |                       |                   |                    |                   |  |
|           |                                                 |                       | TEMPLATE FILENAME | : APPLICATION_SPEC | [SIZE_A](V.1).DOC |  |



#### 3.0 DOCUMENTS

| PRODUCT PRINTS |              |             |              |
|----------------|--------------|-------------|--------------|
| Plug:          | 172801-****, | 173363-**** | & 203341**** |
| Receptacle:    | 172832-****, | 173364-**** | & 203340**** |

**SPECIFICATIONS** 

| Product Specification:                   | PS-172801-0001 (100 Ohm) & 2033400001-PS (85 Ohm)     |
|------------------------------------------|-------------------------------------------------------|
| Packaging:                               | PS-173358-0001                                        |
| Application Tooling Specification Sheet: | ATS-622031300 (6x14 Plug Press-in Tool)               |
| Application Tooling Specification Sheet: | ATS-622031310 (6x14 Receptacle Press-in Tool)         |
| Application Tooling Specification Sheet: | ATS-622031330 (6x10 Plug Press-in Tool)               |
| Application Tooling Specification Sheet: | ATS-622031340 (6x10 Receptacle Press-in Tool          |
| Application Tooling Specification Sheet: | ATS-622031350 (6x16 Plug Press-in Tool)               |
| Application Tooling Specification Sheet: | ATS-622031360 (6x16Receptacle Press-in Tool)          |
| Application Tooling Specification Sheet: | ATS-622031370 (8x20 Plug Press-in Tool)               |
| Application Tooling Specification Sheet: | ATS-622031380 (8x20 Receptacle Press-in Tool)         |
| Application Tooling Specification Sheet: | 2002141180 (4x12 Plug Press-in Tool)                  |
| Application Tooling Specification Sheet: | 2002141196 (4x12 Receptacle Press-in Tool)            |
| Application Tooling Specification Sheet: | ATS-622031410 (6x10 Plug and Receptacle Removal Tool) |
| Application Tooling Specification Sheet: | ATS-622031420 (6x14 Plug and Receptacle Removal Tool) |

### 4.0 APPLICATION TOOL RECOMMENDATIONS

An application tool is required to press-in both the plug and receptacle. Refer to Section 3 above for applicable documents. Other configurations available upon request. See Figure 2 below for an example of correct placement of the press-in tool.





### 4.1 COMPLIANT PIN PERFORMANCE

Insertion force is 6 lbs. max per compliant pin. This value is intended for press sizing only. Typical peak values are less than 4 lbs. per pin. The peak force value will occur prior to the final seating of the connector. Plating surface finish and PCB materials will impact actual values.

Retention force is .8 lbs. min. per compliant pin. This reflects minimum expected values for retention forces when tested in plated through holes drilled and plated as described in section 6.0. Plating surface finish and PCB materials will impact actual values.

### **5.0 GENERAL REQUIREMENTS**

#### **5.1.1 ASSEMBLY INSTRUCTIONS**

NeoPress as with any mezzanine connector of this type will because of its rigidity and tight mechanical fit, determine the lateral position of the daughter board with respect to the mother board. So any assembly fixture used to mate two boards having NeoPress connectors must allow the mating connectors to seek their natural mated condition without imposing undue side forces. For example: If an assembly fixture enforces a prescribed lateral alignment between the two PCB's based upon criteria such as the board edges, then the connectors may be damaged during the mating process.

There is no connector/connector latching in NeoPress connectors, so the two mated printed circuit boards must be held together by other means such as standoff's and screws. But any device such as a standoff, which is used to fix the daughter board to the mother board must allow for tolerances so that undue side forces don't arise. See images below for recommended standoff placement and height. Placement of standoffs should be as close to the connector as possible. Standoff height should be the stack height plus 0.30mm to allow for PCB flatness and connector tolerances.





### 5.1.2 RECOMMENDED ANGULAR ALIGNMENT FOR MATING

To minimize risk during mating:

- I) Connectors should be parallel with respect to each other during mating.
- I) Use a smooth motion during mating (No mechanical shock).

If necessary to mate at an oblique orientation; then the recommended maximum skew:



If a fixture is used to do the mating, then that fixture should hold the mating connectors parallel to within +/- 2 degrees. Also, the fixture should allow the Connectors to become parallel as the mating process progresses.

| REVISION: | ECR/ECN INFORMATION: | TITLE:                | NEODDESS          |                    | SHEET No.         |
|-----------|----------------------|-----------------------|-------------------|--------------------|-------------------|
| П         | <u>EC No:</u> 177816 | ME77A                 |                   | RS                 | 1 of 10           |
| U         | DATE: 2018/06/07     |                       |                   |                    | 4013              |
| DOCUMENT  | NUMBER:              | CREATED / REVISED BY: | CHECKED BY:       | <u>APPROV</u>      | /ED BY:           |
| AS        | -172801-0001         | PREMO                 | PELOZA            | LAN                | NG                |
|           |                      |                       | TEMPLATE FILENAME | : APPLICATION_SPEC | [SIZE_A](V.1).DOC |



#### 5.1.3 RECOMMENDED LATERAL ALIGNMENT FOR MATING

To minimize risk during mating, the assembly process should target a zero off-set from the exact connector alignment. Also, use a smooth motion (No mechanical shock) during mating. The connector "lead-in's" will correct for linear off-sets as shown below:



#### MAXIMUM MISALIGNMENT FOR MATING (Above two images are not to scale)

### 5.1.4 UN-MATING

Connectors can be un-mated more easily by gently rocking the mated printed circuit boards (back and forth) while simultaneously pulling apart. Recommend that this rocking motion be limited to be within +/- 2 degrees from parallel.

### 5.1.5 MULTIPLE CONNECTORS

All connectors on a given board must be the same gender and be applied in the same orientation as shown (See the applicable prints for foot print dimensions). Also, the connectors must come from the same package (Or successive packages), and have the same manufacturing date.

The below illustration employs four connectors, but this pattern may be extended to incorporate additional connectors. Regardless of the quantity of connectors on these PCB's, the risk of differing thermal coefficients of expansion between the Mother and Daughter Boards must be assessed to avoid overstressing the Compliant Pins.

| <b>REVISION:</b> | ECR/ECN INFORMATION:    | TITLE:                | NEODDESS          |                    | SHEET No.             |  |  |
|------------------|-------------------------|-----------------------|-------------------|--------------------|-----------------------|--|--|
|                  | <u>EC No:</u> 177816    | ME77A                 |                   | DC                 | 5 . ( 10              |  |  |
| U                | <u>DATE:</u> 2018/06/07 |                       |                   | ĸJ                 | <b>5</b> of <b>19</b> |  |  |
| DOCUMENT         | NUMBER:                 | CREATED / REVISED BY: | CHECKED BY:       | APPRO\             | /ED BY:               |  |  |
| AS               | -172801-0001            | PREMO PELOZA LANG     |                   |                    |                       |  |  |
|                  |                         |                       | TEMPLATE FILENAME | : APPLICATION_SPEC | [SIZE_A](V.1).DOC     |  |  |







### 5.1.5 MULTIPLE CONNECTORS (CONTINUED)

The recommendation for oblique mating for multiple connectors is similar to that for a single mated connector set:





### **5.1.6 REWORK CONSIDERATIONS**

Connectors may be removed from the PCB with Molex Removal Tool 62203-1410 so long as doing so does not cause enough mechanical strain to damage other components. Refer to section 3 and Molex Application Tooling Specification ATS-622031410 and ATS-622031420. Connectors may be repaired a maximum of 3 times. After the damaged connector is removed, it must be discarded; it cannot be reused.





### 6.1 Recommended Via drill Constraints for NeoPress footprint

- 1. The NeoPress Triads are arranged as grid. Refer to applicable sales drawings for more information.
- 2. The connector press-fit via dimension is 0.36mm nominal diameter, with 0.45mm typical drill size. See page 9 for more details.
- 3. Via optimization is key to improved electrical performance, a through via may be back-drilled to achieve this. Refer to Section 6.2 for back-drill information.
- 4. A 0.30mm via stub length is recommended, 0.46mm maximum via stub length is allowed for 28Gbps.
- 5. Tune the additional ground vias to the optimum diameter. Typically, minimum drill diameter is best for 100-ohm impedance and larger drill diameter is best for 85-ohm impedance. Ground shielding vias make board crosstalk small. Refer to Figure 3 for a typical footprint pattern with additional ground vias.
- 6. 1.65mm signal-to-signal via distance
- 7. 1.2mm signal-to-ground via distance
- 8. 1.2mm stagger to reduce crosstalk





The recommended pad stack for the hole size is contained in Table 1. All non-functional pads are to be removed for high speed applications.

| FEATURE           | 0.36mm PTH<br>NOMINAL DIA |
|-------------------|---------------------------|
| Finished hole     | 0.36mm (14.2 mil)         |
| Recommended Drill | 0.45mm (17.7 mil)         |
| Interior Pad      | 0.70mm (27.6 mil)         |
| Top Layer Pad     | 0.70mm (27.6 mil)         |
| Bottom Layer Pad  | 0.70mm (27.6 mil)         |





Notes:

- 1. The finished PCB hole size is the critical feature for proper performance of the compliant pin terminal. The drill sizes listed are recommended based on Molex's qualification to achieve the finished PCB hole size.
- 2. Depending upon the specific manufacturer's plating process, a larger drill size may be used to better target the nominal finished PCB hole size.
- 3. The typical drill hole tolerance is +/-0.013mm.

| REVISION: | ECR/ECN INFORMATION: | TITLE:                | NEODDESS             |                  | SHEET No.         |  |  |  |
|-----------|----------------------|-----------------------|----------------------|------------------|-------------------|--|--|--|
| П         | <u>EC No:</u> 177816 | ME77A                 | MEZZANINE CONNECTORS |                  |                   |  |  |  |
| U         | DATE: 2018/06/07     |                       |                      |                  |                   |  |  |  |
| DOCUMENT  | NUMBER:              | CREATED / REVISED BY: | CHECKED BY:          | <u>APPROV</u>    | <u>'ED BY:</u>    |  |  |  |
| AS        | -172801-0001         | PREMO                 | PELOZA LANG          |                  |                   |  |  |  |
|           |                      |                       | TEMPLATE FILENAME    | APPLICATION_SPEC | [SIZE_A](V.1).DOC |  |  |  |



#### 6.2 Back-drill

The size of back-drill hole should be large enough to remove all the copper of the annular ring that surrounds the via being modified. Molex typically doesn't recommend the exact size, but usually this drill diameter is 0.10mm (0.004") larger than the outside diameter of the annular ring. Figure 4 shows the required minimum via length from top of PCB to be remained after back-drill.





| <b>REVISION:</b> | ECR/ECN INFORMATION: | TITLE:                | NEODDEOO          |                  | SHEET No.         |
|------------------|----------------------|-----------------------|-------------------|------------------|-------------------|
| П                | <u>EC No:</u> 177816 | MF774                 | NEOPRESS          | RS               | 11 of 10          |
|                  | DATE: 2018/06/07     |                       |                   |                  |                   |
| DOCUMENT         | NUMBER:              | CREATED / REVISED BY: | CHECKED BY:       | <u>APPROV</u>    | /ED BY:           |
| AS               | -172801-0001         | PREMO                 | PELOZA            | LAN              | NG                |
|                  |                      |                       | TEMPLATE FILENAME | APPLICATION_SPEC | [SIZE_A](V.1).DOC |



molex



Figure 5: Example pinout Pattern

#### 6.4 Recommended Anti-pad dimensions for NeoPress footprint:

- 1. The anti-pad is rectangular in shape and one type of anti-pad can be used for all layers.
- 2. The size of the rectangle and the distance of the additional ground vias are tuned to get 85 or 100 Ohm impedance.
- 3. Recommended anti-pad dimensions are shown in Table 2.





Figure 6: Anti-pad with trace and Ground strip

Figure 7: Anti-pad with only Ground Plane

| <u>REVISION:</u><br>D | ECR/ECN INFORMATION:<br>EC No: <b>177816</b><br>DATE: <b>2018/06/07</b> | TITLE:<br>MEZZA                | NEOPRESS<br>NINE CONNECTO | RS                 | <u>SHEET No.</u><br>12 of 19 |
|-----------------------|-------------------------------------------------------------------------|--------------------------------|---------------------------|--------------------|------------------------------|
| DOCUMENT              | <u>-NUMBER:</u><br>-172801-0001                                         | CREATED / REVISED BY:<br>PREMO | CHECKED BY:<br>PELOZA     | APPROV<br>LAI      | / <u>ed by:</u><br><b>Ng</b> |
|                       |                                                                         |                                | TEMPLATE FILENAME         | : APPLICATION_SPEC | [SIZE_A](V.1).DOC            |



Figure 8: Anti-pad for 100-ohm

Figure 9: Anti-pad for 85-ohm

| Feature                              | 85-ohms                     | 100-ohms                           |
|--------------------------------------|-----------------------------|------------------------------------|
| Gnd via diameter                     | 0.50mm                      | 0.25mm                             |
| Antipad_h                            | 1.6mm                       | 1.6mm                              |
| Antipad_w                            | 2.7mm                       | 2.7mm                              |
| Short SE trace                       | 4 mils                      | 4 mils                             |
| Diff trace w                         | 5 mils                      | 4 mils                             |
| Diff trace space                     | 5 mils                      | 8 mils                             |
| Ground strip w                       | 0.8mm                       | 0.8mm                              |
| *Note: These dimensions are for refe | rence purpose. Perform opti | mization as per the stack-up used. |

 Table 2: Summary for recommended dimensions

| REVISION:      | ECR/ECN INFORMATION:    | TITLE:                | NEODDESS             |                    | SHEET No.         |  |  |  |
|----------------|-------------------------|-----------------------|----------------------|--------------------|-------------------|--|--|--|
| Л              | <u>EC No:</u> 177816    | ME77A                 | MEZZANINE CONNECTORS |                    |                   |  |  |  |
| U              | <u>DATE:</u> 2018/06/07 |                       | 13 01 19             |                    |                   |  |  |  |
| DOCUMENT       | NUMBER:                 | CREATED / REVISED BY: | CHECKED BY:          | APPROV             | /ED BY:           |  |  |  |
| AS-172801-0001 |                         | PREMO                 | PELOZA LANG          |                    |                   |  |  |  |
|                |                         |                       | TEMPLATE FILENAME    | : APPLICATION_SPEC | [SIZE_A](V.1).DOC |  |  |  |



### 6.5 Recommended routing for high speed differential signal trace.

- 1. Use symmetric signal traces.
- 2. Use zero skew traces.
- 3. Signal trace width is increased to tune impedance within the anti-pad. On signal reference layers, a ground strip is used for impedance control and good ground return.
- 4. Routing can be done with through vias, or with back drilled vias.
- 5. Stair-step signal layers with back-drill can provide improved electrical performance.
- 6. Short section of single-ended trace from via break-out may need to be tuned for impedance control.
- 7. Trace bending angle,  $\alpha \ge 45$  degrees. Refer to Figure 10.
  - i. Spacing between the same pair,  $A \ge 5 \times 10^{-10}$  x of distance to reference plane.
  - ii. Length segment B,  $C \ge 5 \times Trace$  Width.













#### 6.6 Example of signal integrity performance plots for via crosstalk and TDR response.

These plots are for board-only simulation results. The simulation uses 18-layer stack-up with D<sub>k</sub> = 3.35,  $D_f$  = 0.005 and signals on layer 7,12,14,16. The signal vias in the footprint are having back-drill. The 85 and 100 ohm tuning uses the dimensions in Table 2 from section 6.4.

#### Crosstalk port mapping table

|             | P1 end                                  |                                                      |                          |                      | P2end        |             | P1 FE)   | T Mappin  | g Table     | ] [          | P2 FE)     | T Mapping | g Table  | 1      | P2 NEX   | T Mappin | g Table       |
|-------------|-----------------------------------------|------------------------------------------------------|--------------------------|----------------------|--------------|-------------|----------|-----------|-------------|--------------|------------|-----------|----------|--------|----------|----------|---------------|
| Diff port # | Footprint                               | SE Port #                                            | Pin name                 | SE Port #            | Trace fanout | Diff port # | Column 1 | Column 2  | Column 3    |              | Column 1   | Column 2  | Column 3 | 3      | Column 1 | Column 2 | Column 3      |
| Dill port # | Layers                                  | 32 FUIL#                                             | Fininanie                | 3E FOIL#             | Layers       | Dill port # | A1       | GND       | A5          |              | A1         | GND       | A5       |        | A1       | GND      | A5            |
| 1           | Top                                     | 1                                                    | A1                       | 31                   | Lv-7         | 16          | A2       | GND       | A6          |              | A2         | GND       | A6       |        | A2       | GND      | A6            |
|             | •                                       | 2                                                    | A2                       | 32                   | -            |             | GND      | A3        | GND         |              | GND        | A3        | GND      |        | GND      | A3       | GND           |
| 2           | Тор                                     | 3                                                    | C1                       | 33                   | Ly-12        | 17          | GND      | A4        | GND         |              | GND        | A4        | GND      |        | GND      | A4       | GND           |
|             |                                         | 4                                                    | C2                       | 34                   |              |             | C1       | GND       | C5          |              | C1         | GND       | C5       |        | C1       | GND      | C5            |
| 3           | Тор                                     | 5                                                    | E1<br>F2                 | 36                   | Ly-14        | 18          | C2       | GND       | 00          |              | C2         | GND       | 00       |        | C2       | GND      | a0            |
| 1           |                                         | 7                                                    | G1                       | 37                   |              |             | CND      | 0110      | CND         |              | CND        | 0110      | CND      | -      | CND      | COND     | CND           |
| 4           | Тор                                     | 8                                                    | G2                       | 38                   | Ly-16        | 19          | GND      | 64        | GND         |              | GND        | 03        | GND      |        | GND      | 0.4      | GND           |
| _           | _                                       | 9                                                    | J1                       | 39                   |              |             | GND      | 04        | GND         |              | GND        | 04        | GND      | _      | GND      | 04       | GND           |
| 5           | Тор                                     | 10                                                   | J2                       | 40                   | Ly-16        | 20          | El       | GND       | E5          |              | El         | GND       | E5       |        | El       | GND      | E5            |
| 6           | Top                                     | 11                                                   | A3                       | 41                   | Ly. <b>7</b> | 21          | E2       | GND       | E6          |              | E2         | GND       | E6       |        | E2       | GND      | E6            |
| б           | тор                                     | 12                                                   | A4                       | 42                   | Ly-7         | 21          | GND      | E3        | GND         |              | GND        | E3        | GND      |        | GND      | E3       | GND           |
| 7           | Top                                     | 13                                                   | C3                       | 43                   | Lv-12        | 22          | GND      | E4        | GND         |              | GND        | E4        | GND      |        | GND      | E4       | GND           |
| ,           | юр                                      | 14                                                   | C4                       | 44                   | Ly 12        |             | G1       | GND       | G5          |              | G1         | GND       | G5       |        | G1       | GND      | G5            |
| 8           | Top                                     | 15                                                   | E3                       | 45                   | Lv-14        | 23          | G2       | GND       | G6          |              | G2         | GND       | G6       |        | G2       | GND      | G6            |
| -           | 46.                                     | 16                                                   | E4                       | 46                   | _,           |             | GND      | G3        | GND         |              | GND        | G3        | GND      |        | GND      | G3       | GND           |
| 9           | Тор                                     | 17                                                   | G3                       | 47                   | Ly-16        | 24          | GND      | G4        | GND         |              | GND        | G4        | GND      | 1      | GND      | G4       | GND           |
|             |                                         | 18                                                   | G4                       | 48                   | -            |             | ,11      | GND       | J5          |              | J1         | GND       | J5       | 1      | J1       | GND      | J5            |
| 10          | Тор                                     | 19                                                   | ]3                       | 49                   | Ly-16        | 25          | 12       | GND       | 16          |              | 12         | GND       | 30       |        | 12       | GND      | 16            |
|             |                                         | 20                                                   | J4                       | 50                   |              |             |          | UND       |             |              |            | GND       | JU       |        |          | GND      |               |
| 11          | Тор                                     | 21                                                   | A5                       | 51                   | Ly-7         | 26          | GND      | J3        | GND         |              | GND        | J3        | GND      | -      | GND      | J3       | GND           |
|             |                                         | 22                                                   | <br>                     | 53                   |              |             | GND      | J4        | GND         |              | GND        | J4        | GND      | ļ      | GND      | J4       | GND           |
| 12          | Тор                                     | 24                                                   | C6                       | 54                   | Ly-12        | 27          |          |           |             |              |            |           |          |        |          |          |               |
|             |                                         | 25                                                   | E5                       | 55                   |              |             |          |           |             |              |            |           |          |        |          |          |               |
| 13          | Тор                                     | 26                                                   | E6                       | 56                   | Ly-14        | 28          |          |           |             |              |            |           |          |        |          |          |               |
| 44          | Tee                                     | 27                                                   | G5                       | 57                   | 1            |             |          |           |             |              |            |           |          |        |          |          |               |
| 14          | тор                                     | 28                                                   | G6                       | 58                   | Ly-16        | 29          |          |           |             |              |            |           |          |        |          |          |               |
| 15          | Top                                     | 29                                                   | J5                       | 59                   | Lv 16        | 20          |          |           |             |              |            |           |          |        |          |          |               |
|             |                                         | 30                                                   | J6                       | 60                   | , ,          |             | ļ        |           |             |              |            |           |          |        |          |          |               |
|             |                                         |                                                      |                          |                      |              |             |          |           |             |              |            |           |          |        |          |          |               |
|             | <u>: ECR</u><br><u>EC1</u><br><u>DA</u> | <u>/ECN IN</u><br><u>No:</u> 1778<br><u>FE:</u> 2018 | FORMAT<br>316<br>3/06/07 | <u>10n:</u> <u>T</u> | <u>ITLE:</u> | М           | EZZ      | N<br>ANII | EOF<br>NE ( | PR<br>CC     | ESS<br>DNN | S<br>ECT  | OR       | S      |          |          | <u>6 of 1</u> |
| OCUME       |                                         | BER                                                  |                          |                      | CREATED      |             | D BY     |           | C⊦          | IEC          | KEDF       | 3Y:       |          |        | APPR     |          | D BY.         |
| <u></u>     | C 170                                   | 004 0                                                | 004                      |                      |              |             |          |           | <u></u>     | . <u>_</u> _ | 074        |           |          |        | <u>,</u> |          | <u></u>       |
| A           | 3-172                                   | 001-0                                                |                          |                      | 75           |             |          |           |             |              |            |           |          | ספו ור |          |          |               |



#### **Frequency Domain Plots**

#### **Differential NEXT (100ohms)**



#### **Differential FEXT (100ohms)**





#### Frequency Domain Plots (Continued)

#### Differential NEXT (85ohms)



#### **Differential FEXT (85ohms)**





#### **Time Domain Plots**

#### **Differential TDR Response (100ohms)**

20ps (20%-80%) rise-time



### Differential TDR Response (85ohms)

20ps (20%-80%) rise-time

