

MDE021A104212RBW	104 x 212	3-Wire SPI Interface	E-Ink Module	
Specification				
Version: 1		Date: 13/08/2018		
		Revision		
1 08	01/2018 Fir	st Issue.		

Display	/ Features		
Display Size	2.1"		
Resolution	104 x 212		
Orientation	Portrait		Ϋ́Υ
Appearance	Black, White, Red		
Logic Voltage	3.3V		oHS
Interface	SPI		maliant
Touchscreen	N/A		mphant
Module Size	29.20 x 59.20 x 1.05mm		
Operating Temperature	0°C ~ +30°C		
Pinout	24 - Way FFC	Box Quantity	Weight / Display
Pitch	0.5mm		

* - For full design functionality, please use this specification in conjunction with the SSD1675 specification.(Provided Separately)

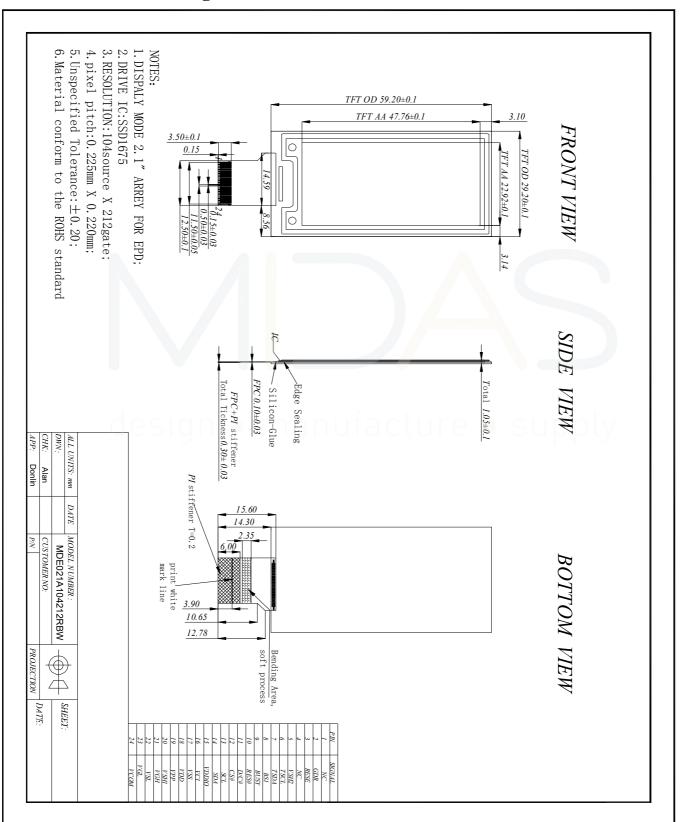
Display Accessories				
Part Number Description				

Optional Variant	S
Appearances	Voltage

General Description

MDE021A104212RBW is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 2.1" active area contains 104×212 pixels, and has 1-bit B/W/R full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC. SRAM.LUT, VCOM and border are supplied with each panel.

Features


- 104×212 pixels display
- White reflectance above 35%
- Contrast ratio above 10:1
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform stored in On-chip OTP
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor/built-in temperature sensor

Application

Electronic Shelf Label System

Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.1	Inch	
Display Resolution	104(H)×212(V)	Pixel	Dpi:112
Active Area	22.92(H)×47.76(V)	mm	
Pixel Pitch	0.225×0.220	mm	
Pixel Configuration	Rectangle		
Outline Dimension	29.2(H)×59.2 (V) ×1.05(D)	mm	
Weight	3.0±0.2	g	

Mechanical Drawing of EPD module

Pin #	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins e	Keep Open
5	VSH2	Positive Source driving voltage	
6	TSCL	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I2C Interface to digital temperature sensor Date pin	
8	BS1	Bus selection pin	Note 6-5
9	BUSY	Busy state output pin	Note 6-4
10	RES #	Reset	Note 6-3
11	D/C #	Data /Command control pin	Note 6-2
12	CS #	Chip Select input pin	Note 6-1
13	SCL	serial clock pin (SPI)	
14	SDA	serial data pin (SPI)	
15	VDDIO	Power for interface logic pins	pply
16	VCI	Power Supply pin for the chip	
17	VSS	Ground	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	Positive Source driving voltage	
21	VGH	Power Supply pin for Positive Gate driving voltage and VSH	
22	VSL	Negative Source driving voltage	
23	VGL	Power Supply pin for Negative Gate driving voltage, VCOM and VSL	
24	VCOM	VCOM driving voltage	

Note 6-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS# is pulled LOW.

Note 6-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH,

the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

Note 6-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 6-4: This pin (BUSY) is Busy state output pin. When Busy is High the operation of chip should not be

interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the

driver IC is working such as:

- Outputting display waveform; or
- Communicating with digital temperature sensor

Note 6-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

MCU Interface

1. MCU interface selection

The MDE021A104212RBW can support 3-wire/4-wire serial peripheral interface. In the Module, the MCU interface is pin selectable by BS1 pins shown in.

	Table 7-1: MCU interface selection		
BS1	MPU Interface		
L	4-lines serial peripheral interface (SPI)		
Н	3-lines serial peripheral interface (SPI) - 9 bits SPI		

2. MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#, The control pins status in 4-wire SPI in writing command/data is shown in Table 7- 2and the write procedure 4-wire SPI is shown in Figue 7-2.

Table 7-2 : Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	↑	Data bit	Н	L

Note:

(1) L is connected to VSS and H is connected to VDDIO

(2) \uparrow stands for rising edge of signal

Table 7-1: MCU interface selection

In the write mode, SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

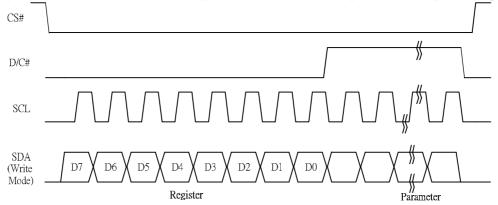


Figure 7-2: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on each falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

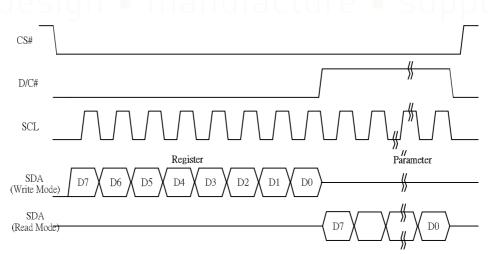


Figure 7-2: Read procedure in 4-wire SPI mode

3. MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 7-3.

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	Tie LOW	L
Write data	Ť	Data bit	Tie LOW	L

Table 7-3 :	Control	pins	status	of 3-w	ire SPI
--------------------	---------	------	--------	--------	---------

Note:

(1)L is connected to V_{SS} and H is connected to V_{DDIO}

(2)↑ stands for rising edge of signal

In the write operation, a 9-bit data will be shifted into the shift register on each clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. shows the write procedure in 3-wire SPI

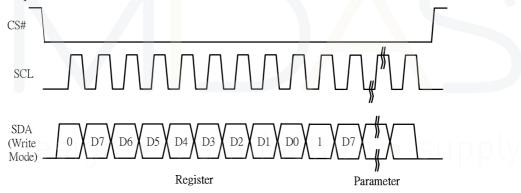


Figure 7-3: Write procedure in 3-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C#=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C#=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on each falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

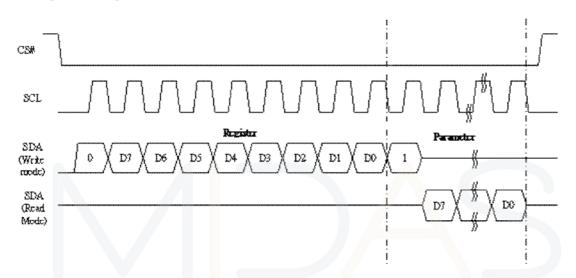


Figure 7-3: Read procedure in 3-wire SPI mode

8. Temperature sensor operation

Following is the way of how to sense the ambient temperature of the module. First, use an external temperature sensor to get the temperature value and converted it into HEX format with below mapping table, then send command 0x1A with the HEX temperature value to the module thru the SPI interface.

The temperature value to HEX conversion is as follow:

1. If the Temperature value MSByte bit D11 = 0, then

The temperature is positive and value (DegC) = + (Temperature value) / 16

2. If the Temperature value MSByte bit D11 = 1, then

The temperature is negative and value (DegC) = \sim (2's complement of Temperature value) / 16

12-bit binary (2's complement)	Hexadecimal Value	Decimal Value	Value [DegC]
0111 1111 0000	7F0	2032	127
0111 1110 1110	7EE	2030	126.875
0111 1110 0010	7E2	2018	126.125
0111 1101 0000	7D0	2000	125
0001 1001 0000	190	400	25
0000 0000 0010	002	2	0.125
0000 0000 0000	000	0	0
1111 1111 1110	FFE	-2	-0.125
1110 0111 0000	E70	-400	-25
1100 1001 0010	C92	-878	-54.875
1100 1001 0000	C90	-880	-55

COMMAND TABLE

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	01	0	0	0	0	0	0	0	1	Driver Output	Set the number of gate. Setting for 212 gates is:
0	1	-	A7	A6	A5	A4	A3	A2	A1	A0	Control	Set A[8:0] = 0D3h
0	1	-	0	0	0	0	0	0	0	A8		Set $B[7:0] = 00h$
0	1	-	0	0	0	0	0	B2	B1	B0	0 . D	
0	0	03	0	0	0	0	0	0	1	1	Gate Driving	Set Gate driving voltage.
0	1	-	0	0	0	A4	A3	A2	A1	A0	Voltage Control	A[4:0] = 19h [POR], VGH at 21V
0	0	04	0	0	0	0	0	1	0	0	Source	Set Source output voltage.
0	1	-	A7	A6	A5	A4 B4	A3	A2 B2	A1 D1	A0 D0	Driving voltage	A[7:0] = 41h [POR], VSH1 at 15V B[7:0] = A8h [POR], VSH2 at 5V
			B7 C7	B6 C6	В5 С5	Б4 С4	B3 C3	Б2 С2	B1 C1	B0 C0	Control	C[7:0] = 32h [POR], VSL at -15V
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep	Deep Sleep mode Control
0	1	-	0	0	0	0	0	0	Al	A0	Mode	A[1:0] Description
												00 Normal Mode [POR]
												01 Enter Deep Sleep Mode1
												11 Enter Deep Sleep Mode2
0	0	11	0	0	0	1	0	0	0	1	Data Entry	Define data entry sequence.
0	1	-	0	0	0	0	0	A2	A1	A0	mode	A[2:0] = 3h [POR],
											setting	A [1:0] = ID[1:0] Address automatic increment / decrement
												setting
												The setting of incrementing or decrementing of the
												address counter can be made independently in each
												upper and lower bit of the address.
												00 - Y decrement, X decrement,
												01 – Y decrement, X increment,
												10 - Y increment, X decrement,
												11 - Y increment, X increment [POR]
												A[2] = AM
												Set the direction in which the address counter is
			\sim	our	5		\sim	n r	5 1 1	fo	ctur	updated automatically after data is written to the RAM.
		UE	21	41					I U			When $AM=0$, the address counter is updated in the
				\sim								X direction. [POR]
												When $AM = 1$, the address counter is updated in the
												Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to
												their S/W Reset default values except
												R10h-Deep Sleep Mode During operation, BUSY pad will output high.
												Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready	HV ready detection
											Detection	
												The command required CLKEN=1 and
												ANALOGEN=1
												Refer to Register 0x22 for detail.
												After this command initiated, HV Ready detection starts.
												BUSY pad will output high during detection.
												The detection result can be read from the Status Bit
												Read (Command 0x2F).

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	15	0	0	0	1	0	1	0	1	VCI	A[2:0] = 100 [POR], Detect level at 2.3V
0	1		0	0	0	0	0	A2	Aı	A 0	Detection	$ \begin{array}{c c} A[2:0] : VCI \ level \ Detect \\ \hline & A[2:0] : VCI \ level \ Detect \\ \hline & 011 & 2.2V \\ \hline & 100 & 2.3V \\ \hline & 101 & 2.4V \\ \hline & 110 & 2.5V \\ \hline & 111 & 2.6V \\ \hline & Other & NA \\ \hline \\ \hline \\ The command required CLKEN=1 and \\ \end{array} $
												ANALOGEN=1 Refer to Register 0x22 for detail.
												After this command initiated, VCI detection starts.
												BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	1A	0	0	0	1	1	0	1	0	Temperature	Write to temperature register.
0	1	-	A11 A3	A10 A2	A9 A1	A8 A0	A7 0	A6 0	A5 0	A4 0	Sensor Control	A[11:0] =7FFH[POR]
											(Write to temperature	
											register)	
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence.
												The Display Update Sequence Option is located at R22h
												BUSY pad will output high during operation. User should not interrupt this operation to avoid
0	0	21	0	0	1	0	0	0	0	1	Display	corruption of panel images. RAM content option for Display Update
0	1	-	A7	A6	A5	A4	A3	A2	A1	A0	Update Control 1	A[7:0] = 00h [POR]
												A[7:4] Red RAM option
				-						<i>c</i>		0000Normal0100Bypass RAM content as 0
		C	<u>e</u> s	$\left \right $			\cap	ar	ηU	13		1000 Inverse RAM content
				\sim								A[3:0] BW RAM option
												0000Normal0100Bypass RAM content as 0
0	0	22	0	0	1	0	0	0	1	0	Display	1000 Inverse RAM content Display Update Sequence Option:
0	1	-	A7	A6	A5	A4	A3	A2	A1	A0	Update Control 2	Enable the stage for Master Activation A[7:0]=FFh (POR)
												Parameter (in Hex)
												Enable Clock Signal, Then Enable Analog Then DISPLAY C7
												Then Disable Analog Then Disable OSC
												Load LUT from OTP Enable Clock Signal, 91 Then Load LUT 91
0	0	24	0	0	1	0	0	1	0	0	Write	Then Disable OSC After this command, data entries will be written
U	U	24	0	0	1	0	0	1		0	RAM(BW)	into the RAM until another command is written. Address pointers will advance accordingly. For Write pixel:
												Content of Write RAM(BW)=1 For Black pixel: Content of Write RAM(BW)=0
0	0	26	0	0	1	0	0	1	1	0	Write RAM(RED)	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel:
												For Red pixel: Content of Write RAM(RED)=1 For non-Red pixel[Black or White]: Content of Write RAM(RED)=0

R/W #	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description				
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM	Write VCOM register from MCU interface				
0	1	-	A7	A6	A5	A4	A3	A2	A1	A0	register	A[7:0]=00h[POR]				
												A[7:0] VCOM (V) A[7:0] VCOM (V)				
												08h -0.2 44h -1.7				
												0Bh -0.3 48h -1.8				
												10h -0.4 4Bh -1.9				
												14h -0.5 50h -2				
												17h -0.6 54h -2.1				
												1Bh -0.7 58h -2.2				
												20h -0.8 5Bh -2.3				
												24h -0.9 5Fh -2.4				
												24h -1 64h -2.5				
												2Ch -1.1 68h -2.6				
												$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
												2Fn -1.2 6Cn -2.7 34h -1.3 6Fh -2.8				
												37h -1.4 73h -2.9				
												3Ch -1.5 78h -3				
												40h -1.6 Other NA				
0	0	2D	0	0	1	0	1	1	0	1	OTP Register	Read Register stored in OTP:				
0	1	2D	A7	A6	A5	A4	A3	A2	A1	A0	Read	1. A[7:0]~ B[7:0]: VCOM Information				
0	1		A/	Au	AS	<i>P</i> 1 4	AS	A2	AI	Au	Read	1. A[/:0]~ B[/:0]: VCOM Information 3. C[7:0]~F[7:0]: Reserved				
0	1		H7	 H6	H5	H4	H3	H2	H1	Ho		4. G[7:0]~H[7:0]: Module ID/ Waveform Version				
0	1		Π/	Пб	пз	П4	пз	П2	п	П0		[2bytes]				
0	0	2F	0	0	1	0	1	0	0	1	Status Bit Read	Read IC status Bit [POR 0x21]				
1	1	-	0	0	0	A4	0	0	Å1	A0	Sundo Bhi Houd	A[5]: HV Ready Detection flag [POR=1]				
1	1		Ŭ	Ŭ	Ŭ	114	Ŭ	Ŭ		110		0: Ready				
												1: Not Ready				
												A[4]: VCI Detection flag [POR=0]				
												0: Normal				
												1: VCI lower than the Detect level				
												A[3]: [POR=0]				
												A[2]: Busy flag [POR=0]				
												0: Normal				
												1: BUSY				
												A[1:0]: Chip ID [POR=01]				
			$\cap c$	-17	nn		r r		n r	5 1 1	tactu	Remark:				
		<u> </u>								ГU	Iautu	A[5] and A[4] status are not valid after RESET, they				
												need to be initiated by command 0x14 and command				
	0	22	0	0	1	1	0	0	-		337', TT	0x15 respectively.				
0	0	32	0	0	1	1	0	0	1	0	Write LUT	Write LUT register from MCU interface [70 bytes]				
0	1	-	A7	A6	A5	A4	A3	A2	A1	A0	register	(excluding the analog setting and frame setting)				
0	1	-	B7	B6	B5	B4	B3	B2	B 1	B0						
0	1	-	:	:	:	:	:	:	:	:						
0	1	-							<u> </u>							
0	0	3A	0	0	1	1	1	0	1	0	Set dummy line	$\operatorname{Set} A[7:0] = 0 \operatorname{Fh}$				
0	1	-	0	A6	A5	A4	A3	A2	A1	A0	period					
0	0	3B	0	0	1	1	1	0	1	1	Set Gate line	Set A[3:0] = 0Ch				
0	1	-	0	0	0	0	A3	A2	A1	A0	width					

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	3C	0	0	1	1	1	1	0	0	Border	Select border waveform for VBD
0	1	-	A7	A6	A5	A4	0	0	A1	A0	Waveform	A [7:6] Select VBD
											Control	A[7:6] Select VBD as
												00[POR] GS Transition Define
												A[1:0]
												01 Fix Level Define A
												[5:4]
												10 VCOM
												11 HIZ
												A [5:4] Fix Level Setting for VBD
												A[5:4] VBD level
												00[POR] VSS
												01 VSH1
												10 VSL
												11 VSH2
												11 V0112
												A[1:0]) GS Transition setting for VBD
												A[1:0] VBD Transition
												00 [POR] LUT0
												01 LUT1
												10 LUT2
												10 LUT3
0	0	44	0	1	0	0	0	1	0	0	Set RAM X -	Specify the start/end positions of the
0	1	-	0	0	0	A4 B4	A3 B3	A2 B2	A1 B1	A0 B0	address Start / End	window address in the X direction by an address unit
0	1	-	0	0	0	D4	D3	D 2	DI	D 0	position	A[4:0]: X-Start, POR = 00h
										<i></i>	~ ~ ~ ~ ~	B[4:0]: X-End, POR = 12h
0	0	45	0 A7	1 A6	0 A5	0 A4	0 A3	1 A2	0 A1	1 A0	Set Ram Y- address	Specify the start/end positions of the window address in the Y direction by an
0	1	-	0	0 A6	0 A5	A4 0	A3 0	A2 0	0	A0 A8	Start / End	address unit
0	1	-	B7	B6	B5	B4	B3	B2	B1	B0	position	A[7:0]: Y-Start, POR = 00h
0	1		0	0	0	0	0	0	0	B8	0.0	B[7:0]: Y-End, POR = F9h
0	0	4E	0	1 0	0	0 A4	1 A3	1 A2	1 A1	0 A0	Set RAM X - address	Make initial settings for the RAM X address in the address counter (AC) A[4:0] : POR is 00h
U	1	-	0	U	0	714	~~>	A2	A1	A0	counter	
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y -	Make initial settings for the RAM Y address in the
0	1	-	A7	A6	A5	A4	A3	A2	A1	A0	address	address counter (AC) A[7:0] : POR is 00h
	6	<i></i>	0	0	0	0	0	0	0	A8	counter	A[7:0] = 54h
0	0	74	0	1	1	1	0	1	0	0	Set Analog	<u>[]</u> [] [] [] [] [] [] [] [] [] [] [] [] []
0	1		A_7	A_6	A_5	A_4	A ₃	A_2	A_1	A_0	Block	
											control	A[7:0] = 3Bh
0	0	7E	0	1	1	1	1	1	1	0	Set Digital	$\Delta [I, 0] = 3DII$
0	1		A_7	A ₆	A_5	A_4	A ₃	A_2	A_1	A_0	Block	
											control	

Reference Circuit

CON 24Pin

NC	1	NC
1000	2	GDR
GDR	3	RESE
RESE	4	NC
NC	5	VSH2
VSH2	6	TSCL
TSCL	7	TSDA
TSDA	8	BS1
BS1	9	BUSY
BUSY	10	RES#
RES#	11	D/C#
D/C#	12	CS#
CS#	13	SCL
SCL	14	SDA
SDA	15	VDDIO
VDDIO	16	VCI
VCI	17	VSS
VSS	18	VDD
VDD	19	VPP
VPP	20	VSH1
VSH1	21	VGH
VGH	22	VSL
VSL	23	VGL
VGL VCOM	24	VCOM

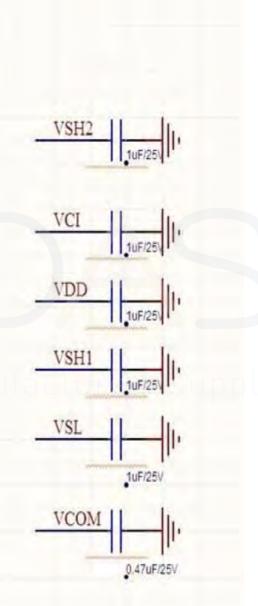


Figure. 10-1

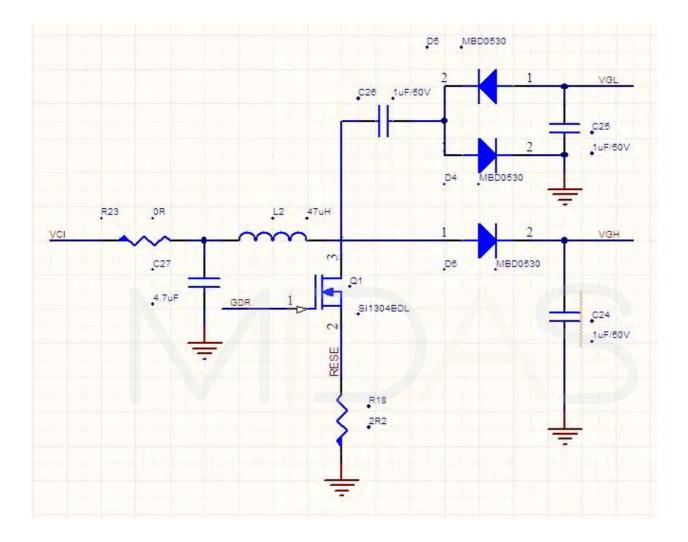


Figure. 10-2

ABSOLUTE MAXIMUM RATING

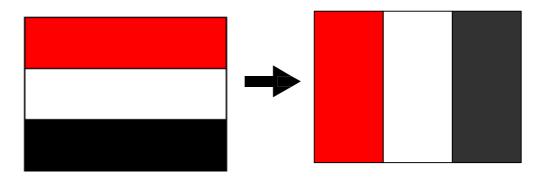
Table 11-1: Maximum Ratings Parameter Symbol Rating Unit -0.5 to +6.0V_{CI} Logic supply voltage V Operation temperature range 0 to 30 °C T_{OPR} Storage temperature range -25 to 60 °C T_{STG}

DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3.3V, T_{OPR} =25°C.

		Table 12-1: DO	C Characteristics				
Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
VCI	VCI operation voltage	-	VCI	2.2	3.3	3.7	V
VIH	High level input voltage		SDA, SCL, CS#, D/C#,	0.8VDDIO	-	-	V
VIL	Low level input voltage	-	RES#, BS1	- (-	0.2VDDIO	V
VOH	High level output voltage	IOH = -100uA	BUSY,	0.9VDDIO	-	-	V
VOL	Low level output voltage	IOL = 100uA		-	-	0.1VDDIO	V
Iupdate	Module operating current	-	-	-	6	-	mA
Isleep	Deep sleep mode	VCI=3.3V	-		0.6	1	uA

- The Typical power consumption is measured using associated 25°C waveform with following


pattern transition: from horizontal scan pattern to vertical scan pattern. (Note 12-1)

- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Midas.

- Vcom value will be OTP before in factory or present on the label sticker.

Note 12-1

The Typical power consumption

Serial Peripheral Interface Timing

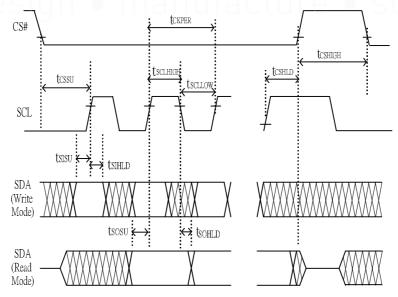
The following specifications apply for: VSS=0V, VCI=2.2V to 3.7V, T_{OPR} =25°C

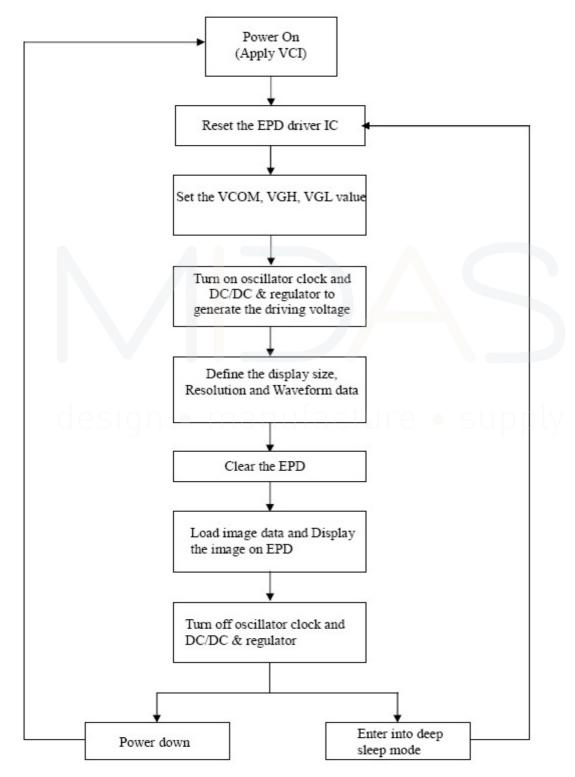
Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	20			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	20			ns
tCSHIGH	Time CS# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns
Read mode					
Symbol	Parameter	Mi	n Ty	p Ma	x Unit
fSCL	SCL frequency (Read Mode)			2.5	5 MH
tCSSU	Time CS# has to be low before the first rising edge of SCLK	10	0		ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	50	0		ns
+CSHIGH	Time CS# has to remain high between two transfers	25	0		ne

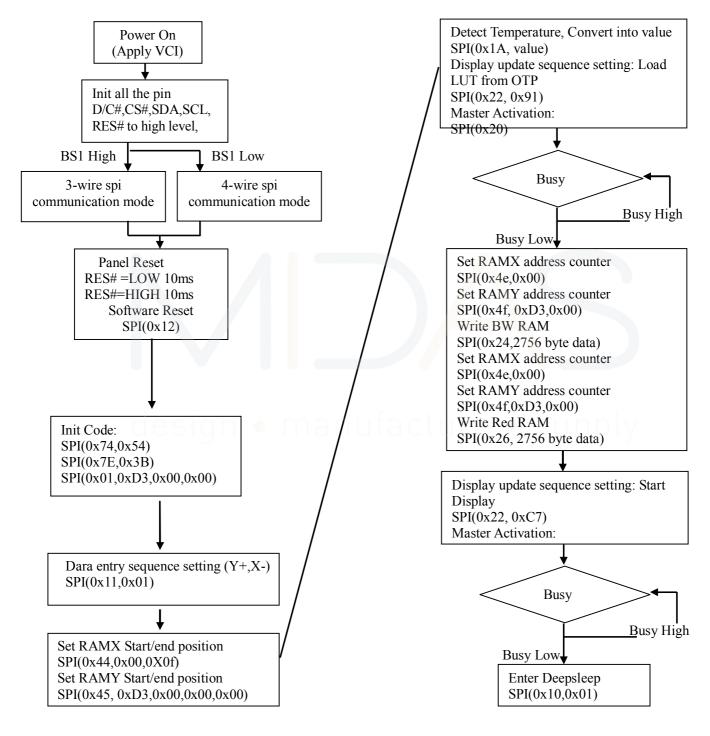
IC SHLD	Time CS# has to remain low after the last failing edge of SCLK	50		ns
tCSHIGH	Time CS# has to remain high between two transfers	250		ns
tSCLHIGH	Part of the clock period where SCL has to remain high	180		ns
tSCLLOW	Part of the clock period where SCL has to remain low	180		ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50	ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS




Figure 13-1 : Serial peripheral interface characteristics

Power Consumption


Parameter	Symbol	Conditions	ТҮР	Max	Unit	Remark
Panel power consumption during update	-	25℃	62	-	mAs	-
Deep sleep mode	-	25℃	0.6	-	uA	_

Typical Operating Sequence

1. Normal Operation Flow

2. Reference Program Code

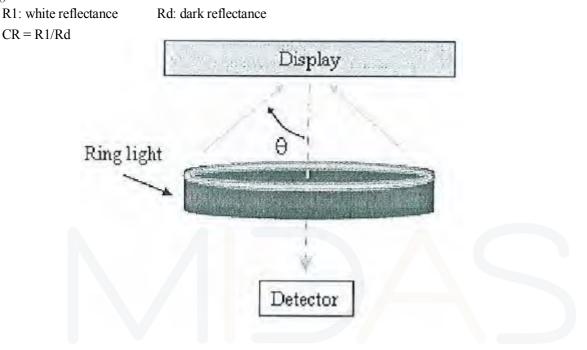
Optical characteristics

1. Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

T=25℃

SYMBOL	PARAMETER	CONDITIO NS	MIN	ТҮРЕ	MAX	UNIT	Note
R	Reflectance	White	30	35	-	%	Note 16-1
Gn	2Grey Level	-	-	DS+(WS-DS)×n(m-1)	-	L*	-
RS_a*	Red State a* value	Red	35	45	48	-	Note 16-1
CR	Contrast Ratio	indoor	-	10	-	-	-
Panel's life	-	0°C∼30°C		5years or 1000000 times	-	-	-
	Image Update	Storage and transportation	-	Update the white screen	-	-	-
Panel	Update Time	Operation	-	at least update 1 time per day	-	-	-

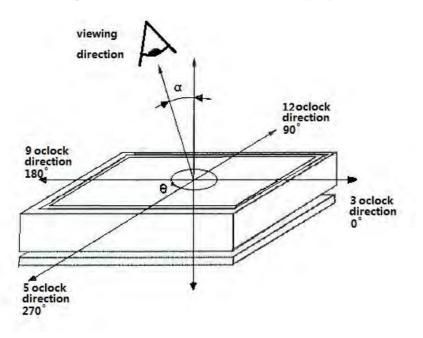

WS : White state, DS : Dark state

m:2

Note 16-1 : Luminance meter : Eye - One Pro Spectrophotometer

2. Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (R1) and the reflectance in a dark area (Rd)() :



3. Reflection Ratio

The reflection ratio is expressed as :

 $R = Reflectance \ Factor \ _{white \ board} \qquad x \ (L \ _{center} \ / \ L \ _{white \ board} \)$

 L_{center} is the luminance measured at center in a white area (R=G =B=1) . $L_{white board}$ is the luminance of a standard white board . Both are measured with equivalent illumination source . The viewing angle shall be no more than 2 degrees .

HANDLINGSAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged . Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

(1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.

(2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.

(3) You should adopt radiation structure to satisfy the temperature specification.

(4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.

(5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)

(6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.

(7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Product specification The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

ROHS

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

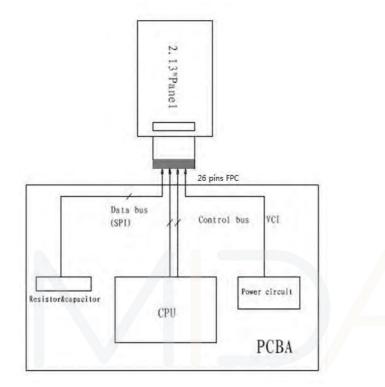
design • manufacture • supply

Reliability test

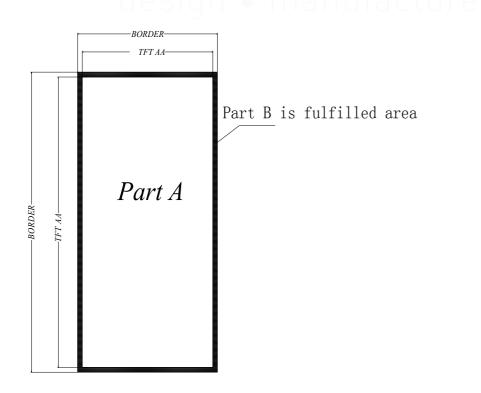
	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	T=40°C, RH=35%RH, For 240Hr	IEC 60 068-2-2Bb	
2	Low-Temperature Operation	$T = 0^{\circ}C$ for 240 hrs	IEC 60 068-2-2Ab	
3	High-Temperature Storage	T=60°C RH=35%RH For 240Hr Test in white pattern	IEC 60 068-2-2Bb	
4	Low-Temperature Storage	T = -25°C for 240 hrs Test in white pattern	IEC 60 068-2-2Ab	
5	High Temperature, High- Humidity Operation	T=40°C, RH=80%RH, For 168Hr	IEC 60 068-2-3CA	
6	High Temperature, High- Humidity Storage	T=50°C, RH=80%RH, For 240Hr Test in white pattern	IEC 60 068-2-3CA	
7	Temperature Cycle	-25°C(30min)~60°C(30min) , 50 Cycle Test in white pattern	IEC 60 068-2-14NB	
8	Package Vibration	1.04G,Frequency : 10~500Hz Direction : X,Y,Z Duration:1hours in each direction	Full packed for shipment	oly
9	Package Drop Impact	Drop from height of 122 cm on Concrete surface Drop sequence:1 corner, 3edges,6face One drop for each.	Full packed for shipment	
10	UV exposure Resistance	765 W/m² for 168hrs,40℃	IEC 60068-2-5 Sa	
11	Electrostatic discharge	Machine model: +/-250V,0Ω,200pF	IEC61000-4-2	

Actual EMC level to be measured on customer application.

Note1: The protective film must be removed before temperature test.

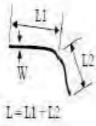

Note2: Stay white pattern for storage and non-operation test.

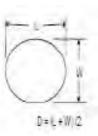
Note3: Operation is black/white/red pattern, hold time is 150S.


Note4: The function, appearence, opticals should meet the requirements of the test before and after the test.

Note5: Keep testing after 2 hours placing at 20°C-25°C.

Block Diagram




PartA/PartB specification

Point and line standard

	Ship	ment Inspect	ion Standard				
	Equipme	ent: Electrical test	t fixture, Point gau	ge			
Outline dimension	29.2(H) × 59.2(V) × 1.05(D)	Unit: mm	Part-A	Active area	Part-B	Border area	
Environment	Temperature	Humidity	Illuminance	Distance	Time	Angle	
Environment	19°C~25°C	55%±5%RH	800~1300Lux	300 mm	35Sec		
Defet type	Inspection method	Star	ıdard	Part-A	A	Part-B	
		D≤0	.25 mm	Ignor	e	Ignore	
Spot	Electric Display	0.25 mm <	D≤0.4 mm	N≤4	ł	Ignore	
		D>().4 mm	Not All	ow	Ignore	
Display unwork	Electric Display	Not A	Allow	Not All	ow	Ignore	
Display error	Electric Display	Not 2	Allow	Not All	Ignore		
		L \leqslant 2 mm,	W \leqslant 0.2 mm	Ignor	Ignore		
Scratch or line defect(include dirt)	Visual/Film card		0mm, 0.2 <w≤ mm,</w≤ 	N≤2	Ignore		
		$L{>}5$ mm,	$W{>}0.3 \text{ mm}$	Not All	Ignore		
		D≤0	0.2mm	Ignor	e	Ignore	
PS Bubble	Visual/Film card	0.2mm≤D≤0	0.35mm & N≤4	N≤4	Ignore		
			.35 mm	Not All		Ignore	
		X≤5mm, Y≤	≤0.5mm, Do not a		ode circuit		
Side Fragment	Visual/Film card	Visual/Film card					
Remark	1.C	annot be defect &	failure cause by ap	ppearance defec	et;		
I CHIMIK	2	2.Cannot be larger	size cause by appe	arance defect;			
		L=long W=wid	le D=point size	N=Defects NO			

Line Defect

Spot Defect

L=long W=wide D=point size

