SMD thermal fuse for high currents

RTS-AS500

60 VDC · up to 130 A · >210 °C · PCB, SMT

Description
- Patented surface mount thermal fuse to protect against thermal runaway of power semiconductors such as: MOSFET’s, IC’s, IGBT’s, Triac’s, SCR’s, etc.
- Highest reliability thanks to complete galvanic Separation.

Unique Selling Proposition
- Separates rated voltages up to 60 VDC
- Reflow compatible through mechanical activation procedure
- Galvanic separation happens inside the RTS housing
- Space-saving thanks to integrated shunt

Applications
- Wherever power transistors are used
- Automotive: Cooling fan applications, ABS power steering, PTC heaters, HVAC, Glow plugs, Diesel fuel heaters
- Industrial: Battery Protection, Power supplies, Lighting ballasts, H-Bridge circuits, Motor drivers

Other versions on request
- Thermal protection with integrated fuse
- Thermal protection with customer specific resistance
- Thermal protection with customer specific tripping temperature

Technical Data
- Rated Voltage: 60 VDC
- Breaking Capacity: 400 A
- Operating current: up to 130 A
- Mounting: PCB, SMT
- Allowable Operation Temperature: -40 °C to +150 °C
- Tripping temperature: >210 °C
- Material: Housing: Plastics
- Material: Terminals: Tin-Plated Copper Alloy
- Unit Weight: 0.75 g
- Storage Conditions: 0 °C to 40 °C, max. 70% r.h.
- Activation force: Fa = max. 50 N
- Activation distance: Sa = 1.1 +0.3/-0.1 mm
- Maximum reflow temperature: 260 °C (peak)

Soldering Methods
- Reflow: JESD22-B102E, Method 1
- Solderability: JEDEC J-STD-020
- Operational Life: MIL-STD-202, Method 108 Condition D
- Vibration, High Frequency: MIL-STD-202, Method 204 Condition D
- Temperature Cycling: JESD22 Method JA-104 Test Conditions G
- Flame Retardance: AEC-Q200-001 + SAG Specification
- Board Flex: AEC-Q200-005
- Terminal Strength: AEC-Q200-006

Approvals and Compliances

Detailed information on product approvals, code requirements, usage instructions and detailed test conditions can be looked up in Details about Approvals.

SCHURTER products are designed for use in industrial environments. They have approvals from independent testing bodies according to national and international standards. Products with specific characteristics and requirements such as required in the automotive sector according to IATF 16949, medical technology according to ISO 13485 or in the aerospace industry can be offered exclusively with customer-specific, individual agreements by SCHURTER.

Application standards
Application standards where the product can be used

<table>
<thead>
<tr>
<th>Organization</th>
<th>Design</th>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC</td>
<td></td>
<td>IEC/UL 60950</td>
<td>IEC 60950-1 includes the basic requirements for the safety of information technology equipment.</td>
</tr>
</tbody>
</table>
Compliances
The product complies with following Guide Lines

<table>
<thead>
<tr>
<th>Identification</th>
<th>Details</th>
<th>Initiator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoHS</td>
<td>SCHURTER AG</td>
<td>Directive RoHS 2011/65/EU, Amendment (EU) 2015/838</td>
<td></td>
</tr>
<tr>
<td>Automotive</td>
<td>SCHURTER AG</td>
<td>AEC-Q200 is a test standard for passive components used in automotive applications. SCHURTER tests components according to the customer’s agreement and is certified according to IATF 16949.</td>
<td></td>
</tr>
</tbody>
</table>

Dimension [mm]

Reflow soldering pads

Deactivated:
Before reflow the activation button should not be manipulated with a force greater 5 newton.

Activated:
Activation after reflow is necessary for the tripping functionality of the RTS. This activation is done by mechanically pressing the activation button with max 50 newton.

Activation status
Activation specification

Fa = max. 50 N

Diagrams

Thermofuse heat source (e.g. failed Power-FET)

Thermal Coupling
Derating Curves

Derating Curve without Shunt

![Derating Curve without Shunt](image)

Derating Curve with Shunt

![Derating Curve with Shunt](image)

Temperature Uniformity of Resistance

![Temperature Uniformity of Resistance](image)

Design-In Principles

- The RTS should be placed as close as possible to the heat source (power semiconductor).
- Max. nominal current depends on ambient temperature and on the PCB track implementation (see Derating Curves).
- The derating curves were generated using a PCB acc. to IEC 60127-4 with a layer width of 20 mm.
- If operating current is higher than allowed, consider using two RTS in parallel. This doubles the max. current value in the derating curve.

All Variants

<table>
<thead>
<tr>
<th>Variant Code</th>
<th>Shunt</th>
<th>Cold Resistance [µΩ]</th>
<th>Packaging unit [PCS]</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTS-AC100</td>
<td></td>
<td>90 - 110</td>
<td>100</td>
<td>3-104-513</td>
</tr>
<tr>
<td>RTS-AC100</td>
<td></td>
<td>90 - 110</td>
<td>750</td>
<td>3-104-514</td>
</tr>
<tr>
<td>RTS-AS500</td>
<td>●</td>
<td>500 - 580</td>
<td>100</td>
<td>3-119-589</td>
</tr>
<tr>
<td>RTS-AS500</td>
<td>●</td>
<td>500 - 580</td>
<td>750</td>
<td>3-119-590</td>
</tr>
</tbody>
</table>

Availability for all products can be searched real-time: https://www.schurter.com/en/Stock-Check/Stock-Check-SCHURTER

Breaking Capacity: 400 A @ 24 VDC (> 18 µH) / 200 A @ 50 VDC (> 27 µH) / 170 A @ 60 VDC (> 32 µH)

Packaging Unit

Blister Tape 33 cm Reel in ESD Plastic Bag

The specifications, descriptions and illustrations indicated in this document are based on current information. All content is subject to modifications and amendments. Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability and test each product selected for their own applications.