

FSA2467

0.4Ω Low Voltage Dual DPDT Analog Switch

General Description

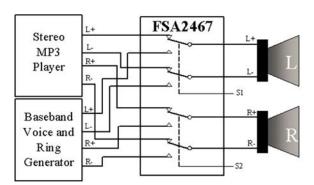
The FSA2467 is a Dual Double Pole Double Throw (DPDT) analog switch. The FSA2467 operates from a single 1.65V to 4.3V supply. The FSA2467 features an ultra-low On Resistance of 0.4Ω at a +2.7V supply and 25°C. This device is fabricated with sub-micron CMOS technology to achieve fast switching speeds and is designed for break-before-make operation.

FSA2467 features very low quiescent current even when the control voltage is lower than the V_{CC} supply. This feature services the mobile handset applications very well allowing for the direct interface with baseband processor general purpose I/Os.

Features

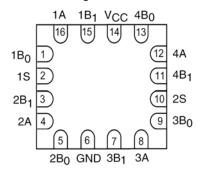
- Typical 0.4Ω On Resistance (R_{ON}) for +2.7V supply
- FSA2467 features less then 12 μ A I_{CCT} current when Sn Input is lower than V_{CC}
- 0.25Ω maximum R_{ON} flatness for +2.7V supply
- 3x3mm 16-lead Pb-Free MLP package
- Broad V_{CC} operating range
- Low THD (0.02% typical for 32Ω load)

Applications

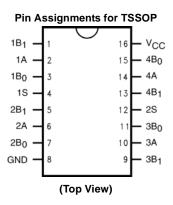

- Cell Phone
- PDA
- Portable Media Player

Ordering Code:

Order Number	Package Number	Package Description
FSA2467MPX	MLP16B	Pb-Free 16-Terminal Molded Leadless Package (MLP) Quad, JEDEC MO-220, 3mm Square
FSA2467MTC (Preliminary)	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide


Pb-Free package per JEDEC J-STD-020B.

Application Diagram



Connection Diagrams

Pad Assignment for MLP

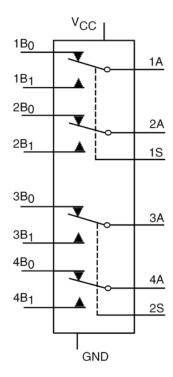
(Top Through View)

Truth Table

 Control Input(s)
 Function

 L
 nB₀ Connected to nA

 H
 nB₁ Connected to nA


H = HIGH Logic Level

L = LOW Logic Level

Pin Descriptions

Pin Names	Function
nA, nB ₀ , nB ₁	Data Ports
nS	Control Input

Analog Symbol

Absolute Maximum Ratings(Note)

Recommended Operating Conditions

Supply Voltage (V_{CC}) -0.5V to +4.6V Supply Voltage (V_{CC}) 1.65V to 4.3V Switch Voltage (V_S) (Note) -0.5V to $V_{CC} + 0.3V$ Control Input Voltage (V_{IN}) (Note 3) 0V to V_{CC} -0.5V to +4.6V Input Voltage (V_{IN}) (Note) Switch Input Voltage (V_{IN}) 0V to V_{CC} Input Diode Current -50 mA Operating Temperature (T_A) -40°C to +85°C Switch Current 350 mA

Peak Switch Current (Pulsed at

1 ms duration, <10% Duty Cycle) 500 mA

Storage Temperature Range (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

Maximum Junction Temperature (T_{.1}) +150°C

Lead Temperature (T_L)

Soldering, 10 seconds +260°C

ESD

Human Body Model 4500V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

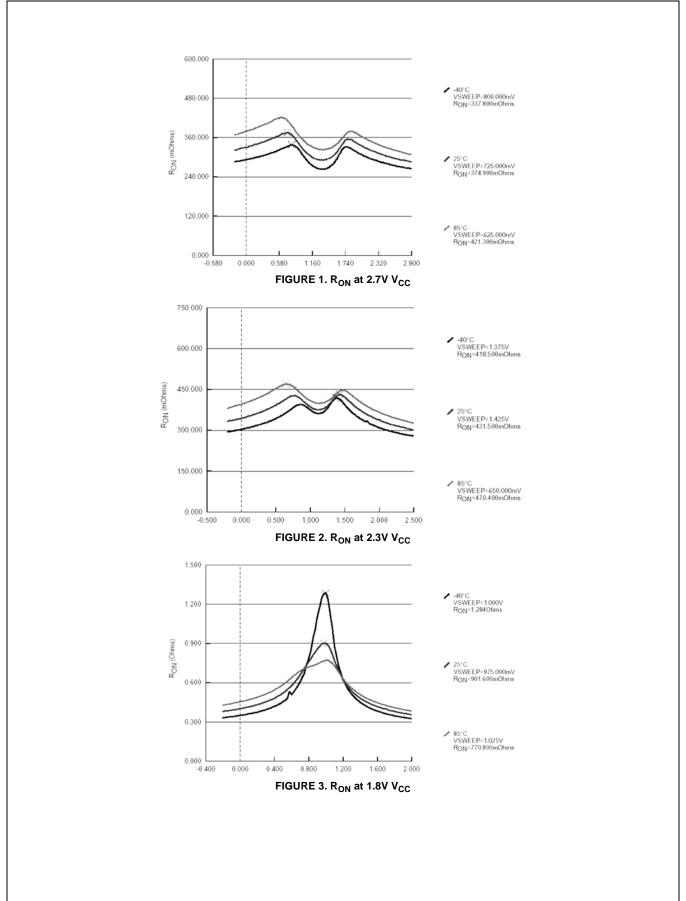
Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics (All typical values are @ 25°C unless otherwise specified)

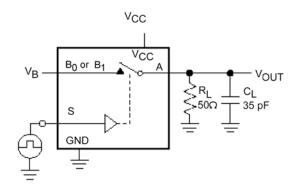
Symbol	Parameter	V _{CC}		T _A = +25°C	;	T _A = -40°	C to +85°C	Units	Conditions
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	Ullits	Conditions
V _{IH}	Input Voltage High	4.3				1.4			
		2.7 to 3.6				1.3		V	
		2.3 to 2.7				1.1		V	
		1.65 to 1.95				0.9			
V _{IL}	Input Voltage Low	4.3					0.7		
		2.7 to 3.6					0.5	V	
		2.3 to 2.7					0.4	V	
		1.65 to 1.95					0.4		
I _{IN}	Control Input Leakage	1.65 to 4.3				-0.5	0.5	μА	V _{IN} = 0V to V _{CC}
I _{NO(OFF)} ,	OFF-Leakage Current	4.05 (5.4.0)	40.0		40.0	50.0	50.0	4	nA = 0.3V, V _{CC} - 0.3V
I _{NC(OFF)}	of Port nB ₀ and nB ₁	1.95 to 4.3	-10.0		10.0	-50.0	50.0	nA	nB_0 or $nB_1 = 0.3V$, $V_{CC} - 0.3V$ or Floating
I _{A(ON)}	ON Leakage Current	4.05 (5.4.0)	40.0		40.0	50.0	50.0	~ ^	nA = 0.3V, V _{CC} - 0.3V
	of Port A	1.95 to 4.3	-10.0		10.0	-50.0	50.0	nA	nB_0 or $nB_1 = 0.3V$, $V_{CC} - 0.3V$ or Floating
R _{ON}	Switch On Resistance	4.3		0.4			0.6		I _{OUT} = 100 mA,
	(Note 4)	2.7		0.4			0.6		nB_0 or $nB_1 = 0V$,
								Ω	0.8V, 1.8V, 2.7V
		2.3		0.55			0.95	22	$I_{OUT} = 100 \text{ mA}, \text{ nB}_0 \text{ or nB}_1 = 0\text{V},$
									0.7V, 1.2V, 2.3V
		1.8		0.8			2.0		I _{OUT} = 100 mA, nB ₀ or nB ₁ = 1.0V
ΔR_{ON}	On Resistance Matching	2.7		0.04			0.1		$I_{OUT} = 100 \text{ mA}, \text{ nB}_0 \text{ or nB}_1 = 0.8 \text{V}$
	Between Channels	2.3		0.03			0.1	Ω	$I_{OUT} = 100 \text{ mA}, nB_0 \text{ or } nB_1 = 0.7 \text{V}$
	(Note 5)								
R _{FLAT(ON)}	On Resistance Flatness	2.7					0.25	Ω	
	(Note 6)	2.3					0.3	22	$I_{OUT} = 100 \text{ mA}, \text{ nB}_0 \text{ or nB}_1 = 0 \text{V to V}_{CC}$
I _{cc}	Quiescent Supply Current	4.3	-100		100	-500	500	nA	V _{IN} = 0V or V _{CC} , I _{OUT} = 0V
I _{CCT}	Quiescent Supply Current	4.3		7.0	12.0		15.0	^	V _{IN} = 1.8
				3.0	6.0		7.0	μА	V _{IN} = 2.6

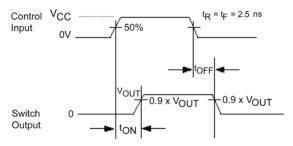
Note 4: On Resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.

Note 5: $\Delta R_{ON} = R_{ONmax} - R_{ONmin}$ measured at identical V_{CC} , temperature, and voltage.


Note 6: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

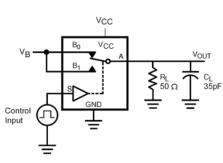
AC Electrical Characteristics (All typical value are @ 25°C unless otherwise specified)

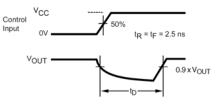

Symbol	Barrantan	v _{cc}		T _A = +25°C	;	T _A = -40°	C to +85°C	Units	O and distance	Figure	
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number	
t _{ON}	Turn ON Time	3.6 to 4.3			50.0		60.0		$nB_0 \text{ or } nB_1 = 1.5V,$		
		2.7 to 3.6			65.0		75.0	ns	$R_L = 50\Omega, C_L = 35 \text{ pF}$	Figure 4	
		2.3 to 2.7			80.0		90.0				
t _{OFF}	Turn OFF Time	3.6 to 4.3			32.0		40.0		$nB_0 \text{ or } nB_1 = 1.5V,$		
		2.7 to 3.6			42.0		50.0	ns	$R_L = 50\Omega$, $C_L = 35 pF$	Figure 4	
		2.3 to 2.7			52.0		60.0				
t _{B-M}	Break-Before-Make	3.6 to 4.3		12.0					$nB_0 \text{ or } nB_1 = 1.5V,$		
	Time	2.7 to 3.6		15.0				ns	$R_L = 50\Omega$, $C_L = 35 pF$	Figure 5	
		2.3 to 2.7		20.0							
Q	Charge Injection	3.6 to 4.3		15.0					$C_L = 100 \text{ pF}, V_{GEN} = 0V, R_{GEN} = 0\Omega$		
		2.7 to 3.6		10.0				pC	$C_L = 100 \text{ pF}, V_{GEN} = 0V, R_{GEN} = 0\Omega$	Figure 7	
		2.3 to 2.7		8.0					$C_L = 100 \text{ pF}, V_{GEN} = 0V, R_{GEN} = 0\Omega$		
OIRR	OFF-Isolation	3.6 to 4.3		-75.0							
		2.7 to 3.6		-75.0				dB	$f = 100kHz, R_L = 50\Omega, C_L = 5 pF (Stray)$	Figure 6	
		2.3 to 2.7		-75.0							
Xtalk	Crosstalk	3.6 to 4.3		-75.0							
		2.7 to 3.6		-75.0				dB	$f = 100kHz, R_L = 50\Omega, C_L = 5 pF (Stray)$	Figure 6	
		2.3 to 2.7		-75.0							
BW	-3db Bandwidth	2.3 to 4.3		85.0				MHz	$R_L = 50\Omega$	Figure 9	
THD	Total Harmonic	3.6 to 4.3		0.02					$R_L = 32\Omega$, $V_{IN} = 2V$ P.P, $f = 20$ Hz to 20 kHz		
	Distortion	2.7 to 3.6	2.7 to 3.6 0.02				%	$R_L = 32\Omega$, $V_{IN} = 1.5V$ P.P, $f = 20$ Hz to 20 kHz	Figure 10		
		2.3 to 2.7		0.02					$R_L = 32\Omega$, $V_{IN} = 1.2V$ P.P, $f = 20$ Hz to 20 kHz	1	


Capacitance

Symbol	Parameter	v _{cc}	T _A = +25°C			T _A = 40°C to +85°C		Units	Conditions	
Symbol	r ai ailletei	(V)	Min	Тур	Max	Min	Max	Offics	Conditions	
C _{IN}	Control Pin Input Capacitance	0.0		1.5				pF	f = 1MHz (see Figure 8)	
C _{OFF}	B Port OFF Capacitance	3.3		32.0				pF	f = 1MHz (see Figure 8)	
C _{ON}	A Port ON Capacitance	3.3		118				pF	f = 1MHz (see Figure 8)	

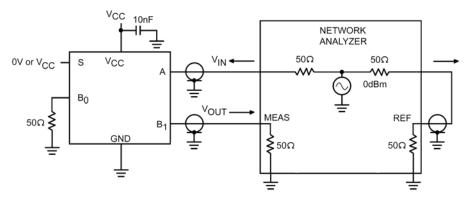
AC Loading and Waveforms





Logic Input Waveforms Inverted for Switches that have the Opposite Logic Sense

C_L includes Fixture and Stray Capacitance


FIGURE 4. Turn-On/Turn-Off Timing

C_{I.} Includes Fixture and Stray Capacitance

FIGURE 5. Break-Before-Make Timing

OFF-ISOLATION = 20 log
$$\frac{V_{OUT}}{V_{IN}}$$
ON-LOSS = 20 log $\frac{V_{OUT}}{V_{IN}}$
CROSSTALK - 20 log $\frac{V_{OUT}}{V_{IN}}$

FIGURE 6. OFF Isolation and Crosstalk

AC Loading and Waveforms (Continued)

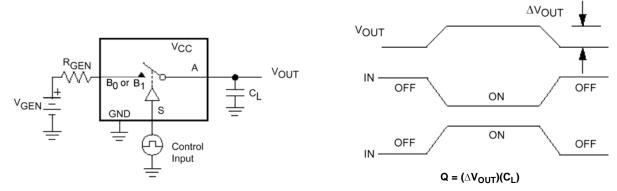


FIGURE 7. Charge Injection

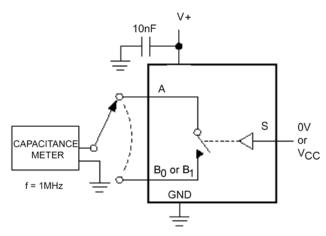


FIGURE 8. ON/OFF Capacitance Measurement Setup

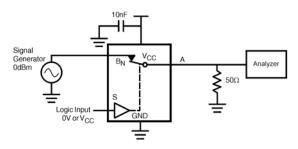
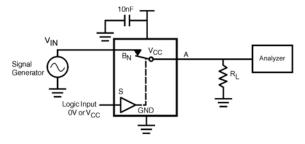



FIGURE 9. Bandwidth

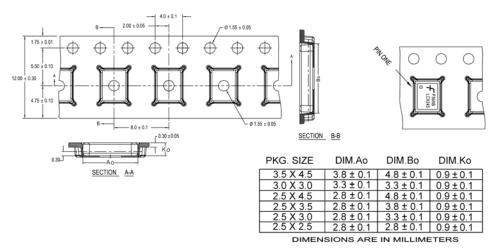
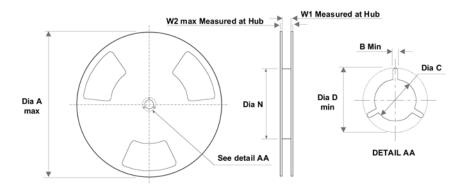


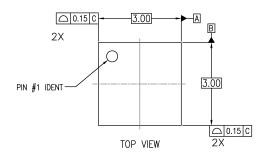
FIGURE 10. Harmonic Distortion

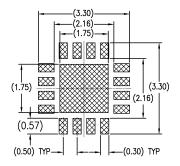
Tape and Reel Specification

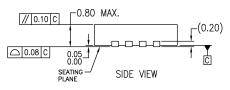
Tape Format For MLP

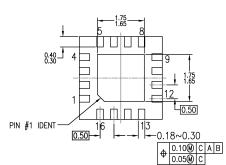

Package	Tape	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
MPX	Carrier	2500/3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

NOTES: unless otherwise specified


- 1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed 0.008[0.20] over 10 pitch span.
- 2. Smallest allowable bending radius.
- Thru hole inside cavity is centered within cavity.
 Tolerance is ±0.002[0.05] for these dimensions on all 12mm tapes.
- 5. Ao and Bo measured on a plane 0.120[0.30] above the bottom of the pocket.
- 6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
 Controlling dimension is millimeter. Diemension in inches rounded.

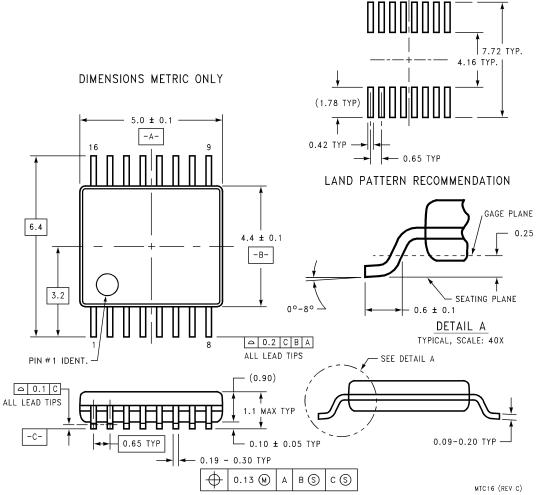

REEL DIMENSIONS inches (millimeters)


Tape Size	Α	В	С	D	N	W1	W2
12 mm	13.0	0.059	0.512	0.795	7.008	0.488	0.724
12 111111	(330)	(1.50)	(13.00)	(20.20)	(178)	(12.4)	(18.4)


Physical Dimensions inches (millimeters) unless otherwise noted

RECOMMENDED LAND PATTERN

BOTTOM VIEW


NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-220, VARIATION WEED-Pending, DATED pending
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
- D. DIMENSIONS ARE EXCLUSIVE OF BURS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

MLP16BrevB

Pb-Free 16-Terminal Molded Leadless Package (MLP) Quad, JEDEC MO-220, 3mm Square Package Number MLP16B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use

provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.