

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

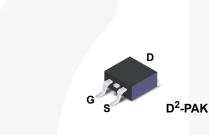
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

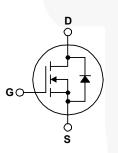
SEMICONDUCTOR

November 2013

FQB44N10 N-Channel QFET® MOSFET

100 V, 43.5 A, 39 m Ω


Description


This N-Channel enhancement mode power MOSFET is • 43.5 A, 100 V, $R_{DS(on)}$ = 39 m Ω (Max.) @ V_{GS} = 10 V, produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state $I_D = 21.75 \text{ A}$ Low Gate Charge (Typ. 48 nC) resistance, and to provide superior switching performance • Low Crss (Typ. 85 pF) and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power • 100% Avalanche Tested factor correction (PFC), and electronic lamp ballasts.

Features

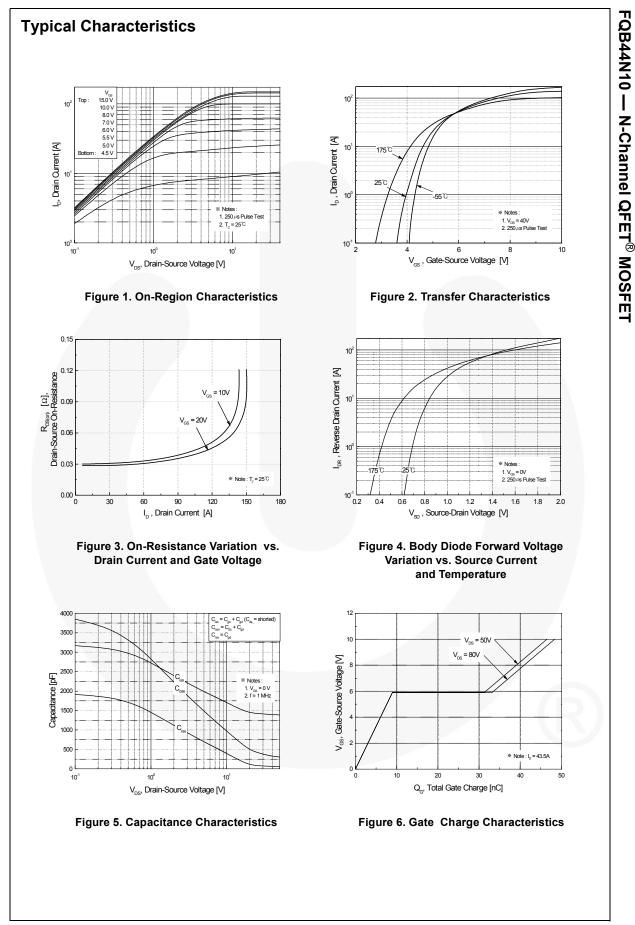
- I_D = 21.75 A

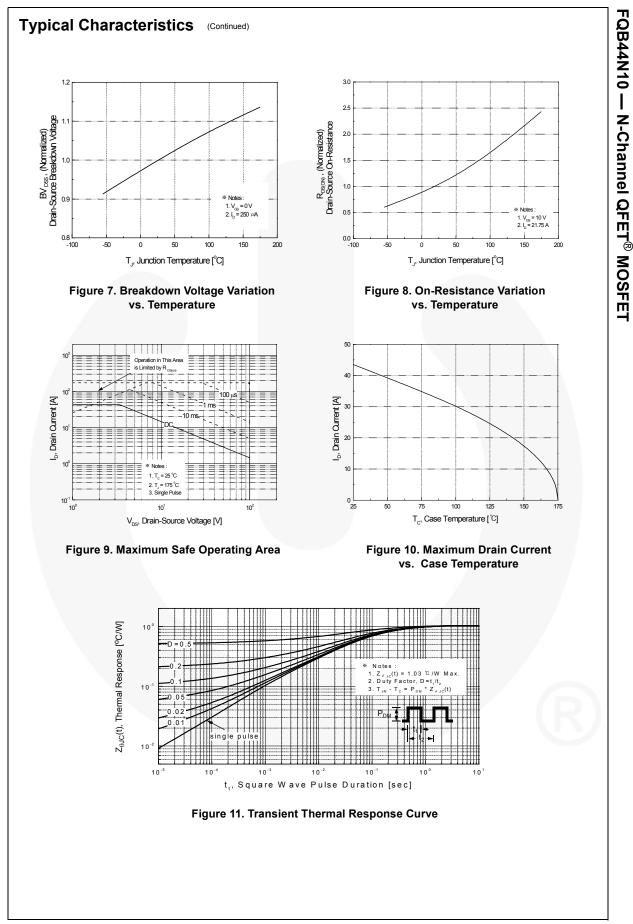
- 175°C Maximum Junction Temperature Rating

Absolute Maximum Ratings T_c = 25°C unless otherwise noted.

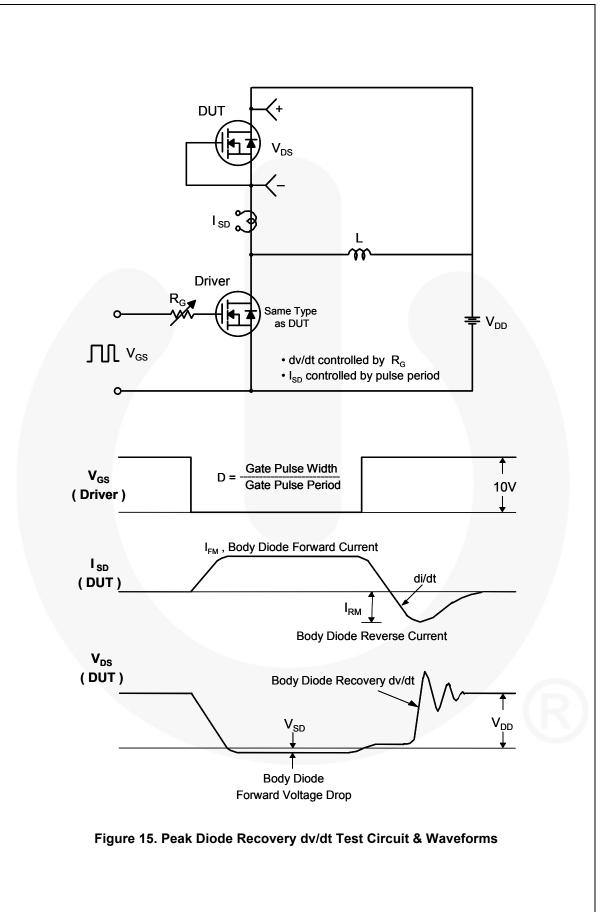
Symbol	Parameter		FQB44N10TM	Unit
V _{DSS}	Drain-Source Voltage		100	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		43.5	A
	- Continuous (T _C = 100°C)		30.8	A
I _{DM}	Drain Current - Pulsed	- Pulsed (Note 1)		
V _{GSS}	Gate-Source Voltage		± 25	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	530	mJ
I _{AR}	Avalanche Current	(Note 1)	43.5	A
E _{AR}	Repetitive Avalanche Energy	(Note 1)	14.6	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	6.0	V/ns
PD	Power Dissipation $(T_A = 25^{\circ}C)^{*}$		3.75	W
	Power Dissipation ($T_C = 25^{\circ}C$)		146	W
	- Derate above 25°C		0.97	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C
TL	Maximum lead temperature for soldering, 1/8" from case for 5 seconds.		300	°C

Thermal Characteristics


Symbol	Parameter	FQB44N10TM	Unit
R_{\thetaJC}	Thermal Resistance, Junction to Case, Max.	1.03	
P	Thermal Resistance, Junction to Ambient (Minimum Pad of 2-oz Copper), Max.	62.5	°C/W
	Thermal Resistance, Junction to Ambient (*1 in ² Pad of 2-oz Copper), Max.	40	


Faiti	•		Pack	kage Packing Method R		Reel	Size	Tape Width		Quantity	
FQB44			PAK Tape and Reel 330			mm	24 mm		800 units		
Electri	cal Chai	racteristics	T _C = 25°0	C unless oth	nerwise noted.						
Symbol		Parameter			Test Con	ditions		Min.	Тур.	Max.	Unit
Off Cha	aracteristi	ice									
BV _{DSS}	Drain-Source Breakdown Voltage		Vcs =	$0 V l_{\rm D} = 2!$	100			V			
ΔBV _{DSS}	5		$V_{GS} = 0 V, I_D = 250 \mu A$			100					
$/\Delta T_{J}$	Coefficient	Breakdown Voltage Temperature Coefficient		I_D = 250 µA, Referenced to 25°C					0.1		V/°C
IDSS			_	V _{DS} = 100 V, V _{GS} = 0 V					1	μA	
000	Zero Gate	Voltage Drain Curr	ent	$V_{DS} = 80 \text{ V}, \text{ T}_{C} = 150^{\circ}\text{C}$						10	μΑ
I _{GSSF}	Gate-Body	Gate-Body Leakage Current, Forward		-	25 V, V _{DS} -			100	nA		
I _{GSSR}	,	Leakage Current,			-25 V, V _{DS}					-100	nA
									1		
	racteristi	cs									
V _{GS(th)}	Gate Three	shold Voltage	_	$V_{DS} = 1$	V _{GS} , I _D = 2	250 μA		2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance		V _{GS} = 10 V, I _D = 21.75 A				0.03	0.039	Ω		
9 _{FS}	Forward T	ransconductance		V _{DS} =	40 V, I _D = 2	21.75 A			30		S
Dynam	ic Charac	toristics									
bynann		ici istics									
C _{iss}	Input Capa		-	V _{DS} =	25 V, V _{GS} :	= 0 V,			1400	1800	pF
C _{iss}	1	acitance	-	V _{DS} = f = 1.0	25 V, V _{GS} : MHz	= 0 V,			1400 425	1800 550	pF pF
	Input Capa Output Ca	acitance	e			= 0 V,					
C _{iss} C _{oss} C _{rss}	Input Capa Output Ca Reverse T	acitance pacitance ransfer Capacitanc	e			= 0 V,			425	550	pF
C _{iss} C _{oss} C _{rss} Switchi	Input Capa Output Ca Reverse Ti ing Chara	acitance pacitance ransfer Capacitanc I cteristics	e			= 0 V,			425 85	550 110	pF
C _{iss} C _{oss} C _{rss} Switchi	Input Capa Output Ca Reverse Ti ing Chara Turn-On D	acitance pacitance ransfer Capacitanc Icteristics lelay Time	e	f = 1.0					425 85 19	550 110 45	pF pF ns
$\frac{C_{iss}}{C_{oss}}$ $\frac{C_{rss}}{C_{rss}}$ Switchi $t_{d(on)}$ t_r	Input Capa Output Ca Reverse Tr ing Chara Turn-On D Turn-On R	acitance pacitance ransfer Capacitanc acteristics elay Time ise Time	e	f = 1.0	MHz 50 V, I _D = 4				425 85 19 190	550 110 45 390	pF pF ns ns
C_{iss} C_{oss} C_{rss} Switchi $t_{d(on)}$ t_r $t_{d(off)}$	Input Capa Output Ca Reverse Tr ing Chara Turn-On D Turn-On R Turn-Off D	acitance pacitance ransfer Capacitanc Icteristics elay Time ise Time elay Time	e	f = 1.0	MHz 50 V, I _D = 4	43.5 A,	(Note 4)	 	425 85 19 190 90	550 110 45 390 190	pF pF ns ns ns
$\frac{C_{iss}}{C_{oss}}$ C_{rss} Switchi $t_{d(on)}$ t_{r} $t_{d(off)}$ t_{f}	Input Capa Output Ca Reverse T ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off F	acitance pacitance ransfer Capacitanc Icteristics elay Time elay Time elay Time all Time	e	f = 1.0	MHz 50 V, I _D = 4 5 Ω	43.5 A,	(Note 4)	 	425 85 19 190 90 100	550 110 45 390 190 210	pF pF ns ns ns ns
$\begin{array}{c} \hline C_{iss} \\ \hline C_{oss} \\ \hline C_{rss} \\ \hline \\ $	Input Capa Output Ca Reverse Tr ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off Fa Total Gate	acitance pacitance ransfer Capacitanc acteristics elay Time elay Time elay Time all Time Charge	e	f = 1.0 V _{DD} = R _G = 2 V _{DS} =	MHz 50 V, I _D = 4 5 Ω 80 V, I _D = 4	43.5 A,	(Note 4)	 	425 85 19 190 90 100 48	550 110 45 390 190 210 62	pF pF ns ns ns ns nc
$\begin{array}{c} \hline C_{iss} \\ \hline C_{oss} \\ \hline C_{rss} \\ \hline \\ $	Input Capa Output Ca Reverse Tr ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off Fa Total Gate Gate-Sour	acitance pacitance ransfer Capacitanc acteristics elay Time elay Time elay Time all Time Charge ce Charge	e	f = 1.0	MHz 50 V, I _D = 4 5 Ω 80 V, I _D = 4	13.5 A, 13.5 A,		 	425 85 19 190 90 100 48 9.0	550 110 45 390 190 210 62 	pF pF ns ns ns ns nC nC
$\begin{array}{c} \hline C_{iss} \\ \hline C_{oss} \\ \hline C_{rss} \\ \hline \\ $	Input Capa Output Ca Reverse Tr ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off Fa Total Gate	acitance pacitance ransfer Capacitanc acteristics elay Time elay Time elay Time all Time Charge ce Charge	e	f = 1.0 V _{DD} = R _G = 2 V _{DS} =	MHz 50 V, I _D = 4 5 Ω 80 V, I _D = 4	13.5 A, 13.5 A,	(Note 4) (Note 4)	 	425 85 19 190 90 100 48	550 110 45 390 190 210 62	pF pF ns ns ns ns nc
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \end{array}$	Input Capa Output Ca Reverse Tr ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off Fa Total Gate Gate-Sour Gate-Drair	acitance pacitance ransfer Capacitanc acteristics elay Time elay Time elay Time all Time Charge ce Charge n Charge		$f = 1.0$ $V_{DD} =$ $R_{G} = 2$ $V_{DS} =$ $V_{GS} =$	MHz 50 V, I _D = 4 5 Ω 80 V, I _D = 4 10 V	43.5 A, 13.5 A,		 	425 85 19 190 90 100 48 9.0	550 110 45 390 190 210 62 	pF pF ns ns ns ns nC nC
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \\ \end{array} \\ \begin{array}{c} \textbf{Switchi} \\ t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \\ \end{array} \\ \begin{array}{c} \textbf{Drain-S} \end{array}$	Input Capa Output Ca Reverse T ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off Fa Total Gate Gate-Sour Gate-Drair	acitance pacitance ransfer Capacitance acteristics elay Time elay Time all Time Charge ce Charge the Charge ode Character	stics ar	$f = 1.0$ $V_{DD} =$ $R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $N_{GS} = 2$	MHz 50 V, I _D = 4 5 Ω 80 V, I _D = 4 10 V	43.5 A, 43.5 A, 43.5 A,		 	425 85 19 190 90 100 48 9.0 24	550 110 45 390 190 210 62 	pF pF ns ns ns nC nC nC
$\begin{array}{c} \hline C_{iss} \\ \hline C_{oss} \\ \hline C_{rss} \\ \hline \\ $	Input Capa Output Ca Reverse Tr ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off Fa Total Gate Gate-Sour Gate-Drair Cource Dia Maximum	acitance pacitance ransfer Capacitanc acteristics elay Time elay Time elay Time all Time Charge ce Charge ce Charge ode Character Continuous Drain-5	istics ar	$f = 1.0$ $V_{DD} =$ $R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ Max Max $Max = 0$ $Max = 0$	MHz $50 \text{ V}, \text{ I}_{\text{D}} = 4$ 5Ω $80 \text{ V}, \text{ I}_{\text{D}} = 4$ 10 V kimum R rard Curren	43.5 A, 43.5 A, 43.5 A,		 	425 85 19 190 90 100 48 9.0 24	550 110 45 390 190 210 62 43.5	PF pF ns ns ns nC nC nC A
Ciss Coss Crss Switchi td(on) tr td(off) tr Qg Qgs Qgd Drain-S Is	Input Capa Output Ca Reverse Tr ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off Fa Total Gate Gate-Sour Gate-Drair Cource Did Maximum	acitance pacitance ransfer Capacitanc acteristics elay Time elay Time elay Time all Time Charge ce Charge ce Charge ode Character Continuous Drain-S	i stics ar Source Dic ce Diode F	$f = 1.0$ $V_{DD} =$ $R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $M_{GS} =$	MHz $50 \text{ V}, \text{ I}_{\text{D}} = 4$ 5Ω $80 \text{ V}, \text{ I}_{\text{D}} = 4$ 10 V kimum R rard Current	43.5 A, 43.5 A, 43.5 A, atings t		 	425 85 19 190 90 100 48 9.0 24 	550 110 45 390 190 210 62 43.5 174	PF pF ns ns ns nC nC nC nC A A
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \end{array}$	Input Capa Output Ca Reverse Tr ing Chara Turn-On D Turn-Off D Turn-Off Fa Total Gate Gate-Sour Gate-Drair Source Di d Maximum Drain-Sour	acitance pacitance ransfer Capacitanc acteristics elay Time elay Time elay Time all Time Charge ce Charge ce Charge ode Character Continuous Drain-5	i stics ar Source Dic ce Diode F	$f = 1.0$ $V_{DD} =$ $R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $M Max$ $M Max$ $M Max$ $M Max$ $M M Max$	MHz $50 \text{ V}, \text{ I}_{\text{D}} = 4$ 5Ω $80 \text{ V}, \text{ I}_{\text{D}} = 4$ 10 V kimum R rard Curren	43.5 A, 43.5 A, 43.5 A, 43.5 A		 	425 85 19 190 90 100 48 9.0 24	550 110 45 390 190 210 62 43.5	PF pF ns ns ns nC nC nC A

Notes:


1. Repetitive rating : pulse-width limited by maximum junction temperature. 2. L = 0.42 mH, I_{AS} = 43.5 Å, V_{DD} = 25 V, R_G = 25 Ω , starting T_J = 25°C. 3. $I_{SD} \le 43.5$ Å, di/dt $\le 300 \text{ A/}\mu\text{s}$, $V_{DD} \le BV_{DSS}$ starting T_J = 25°C. 4. Essentially independent of operating temperature.

FQB44N10 — N-Channel QFET[®] MOSFET

Figure 16. TO263 (D²PAK), Molded, 2-Lead, Surface Mount

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT263-002

FQB44N10 — N-Channel QFET[®] MOSFET

Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. I66

QB44N10 — N-Channel QFET[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC