MOSFET – Power, Single P-Channel

-60 V, -100 A, 7.7 $m\Omega$

Features

noted) (Notes 1, 2, 3)

Symbol

V_{DSS}

V_{GS}

 I_D

 P_D

In

 P_{D}

 I_{DP}

T_J, T_{STG}

ls

E_{AS}

 T_{L}

- Small Footprint (5 x 6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- NVMFS5A160PLZWF: Wettable Flank Option for Enhanced Optical Inspection

SPECIFICATION MAXIMUM RATINGS (T_J = 25°C unless otherwise

Steady

Steady State

Operating Junction and Storage Temperature

Single Pulse Drain to Source Avalanche En-

Lead Temperature for Soldering Purposes

Stresses exceeding those listed in the Maximum Ratings table may damage the

device. If any of these limits are exceeded, device functionality should not be

Source Current (Body Diode)

 $ergy (L= 1.0 \text{ mH}, I_{L(pk)} = -26 \text{ A})$

assumed, damage may occur and reliability may be affected.

(1/8" from case for 10 s)

PW \leq 10 μ s,

duty cycle $\leq 1\%$

State

Parameter

• AEC-Q101 Qualified and PPAP Capable

Drain to Source Voltage

Gate to Source Voltage

Continuous Drain,

Power Dissipation

Current R_{0.IC},

R_{0JC} (Note 1)

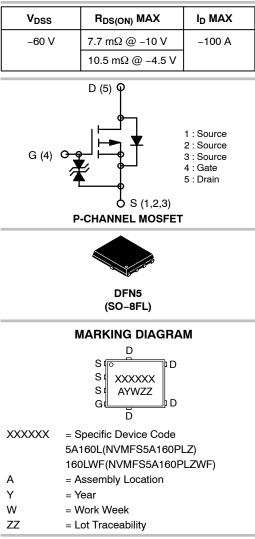
Current $R_{\theta JA}$ (Notes 1, 2, 3)

Power Dissipation

R_{0JA} (Note 1, 2)

Pulsed Drain

Current


(Notes 1, 3)

• These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION See detailed ordering and shipping information on page 7 of

this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter		Unit
$R_{\theta JC}$	Junction to Case Steady State	0.75	0 0 AN
$R_{\theta JA}$	Junction to Ambient Steady State (Note 3)	39	°C/W

Value

-60

±20

-100

200

-15

3.8

-400

–55 to

+175

-100

335

260

 $T_C = 25^{\circ}C$

 $T_{\rm C} = 25^{\circ}{\rm C}$

T_A = 25°C

 $T_A = 25^{\circ}C$

Unit

V

V

А

W

Α

W

А

°C

А

mJ

°C

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Surface mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
OFF CHARA	CTERISTICS						
V _{(BR)DSS}	Drain to Source Breakdown Volt- age	I _D = -1 mA, V _{GS} = 0 V		-60			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	$T_J = 25^{\circ}C$			-1.0	μA
			T _J = 100°C (Note 4)			-100	μΑ
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±16 V, V_{DS} = 0 V				±10	μA

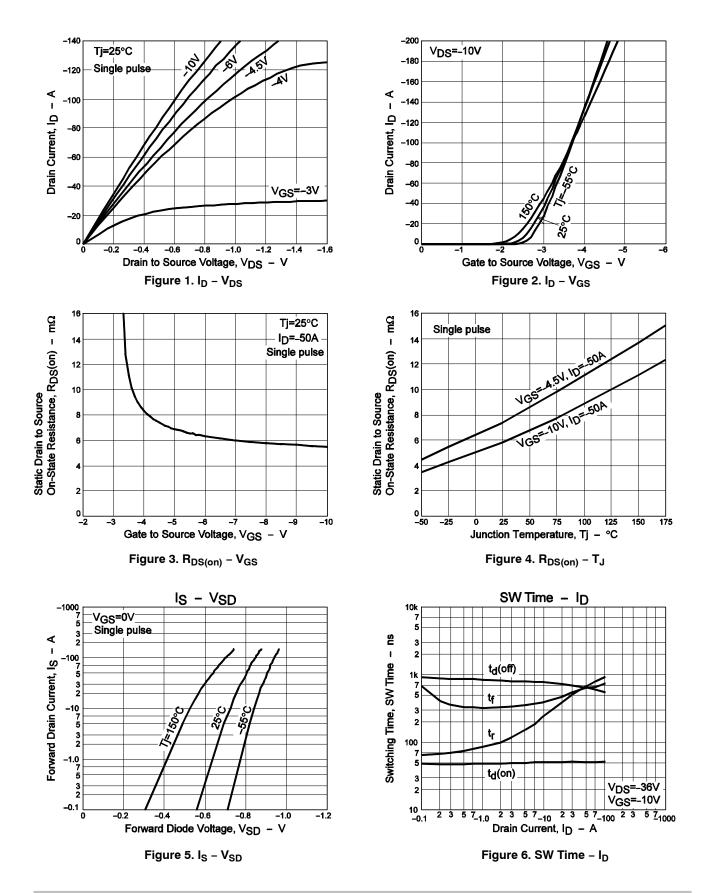
ON CHARACTERISTICS (Note 5)

V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ mA}$		-1.2		-2.6	V
R _{DS(on)}	Drain to Source On Resistance	V _{GS} = -10 V	I _D = -50 A		5.8	7.7	
		V _{GS} = -4.5 V	I _D = -50 A		7.3	10.5	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = -10 V, I _D = -50 A			119		S

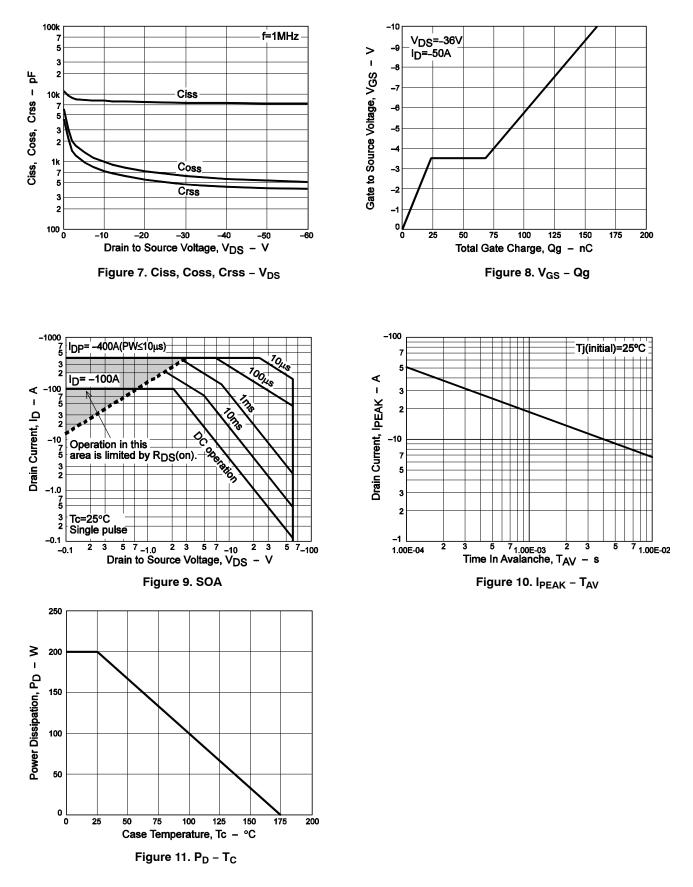
CHARGES, CAPACITANCES & GATE RESISTANCE

C _{iss}	Input Capacitance	V _{GS} = 0 V, f = 1 MHz		7700	
C _{oss}	Output Capacitance	V _{DS} = -20 V,		720	pF
C _{rss}	Reverse Transfer Capacitance			540	
Q _{g(tot)}	Total Gate Charge	V _{GS} = -10 V, I _D = -50 A		160	
Q _{gs}	Gate to Source Charge	V _{DS} = -36 V,		24	nC
Q _{gd}	Gate to Drain Charge			45	

SWITCHING CHARACTERISTICS (Note 6)


t _{d(on)}	Turn-On Delay Time	$V_{DS} = -36 \text{ V}, \text{ I}_{D} = -50 \text{ A},$		50	
t _r	Rise Time	$V_{GS} = -10 V,$ $R_G = 50 \Omega$		690	
t _{d(off)}	Turn-Off Delay Time			645	ns
t _f	Fall Time			643	

DRAIN-SOURCE DIODE CHARACTERISTICS

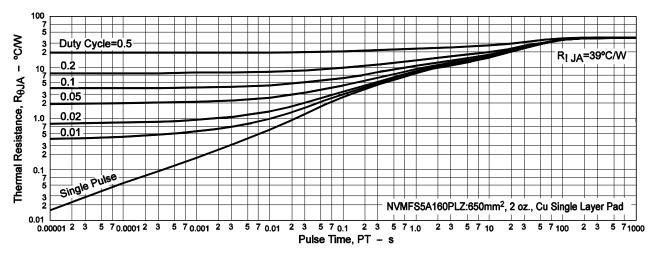
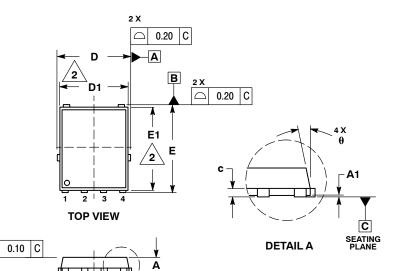

V _{SD}	Forward Diode Voltage	$V_{GS} = 0 V, I_{S} = -50 A$		-0.83	-1.5	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_{S} = -50 A$		93		ns
Q _{rr}	Reverse Recovery Charge	di/dt = 100 A/µs		218		nC

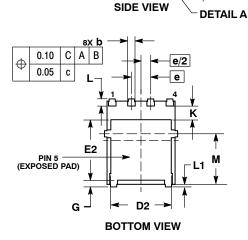
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. The maximum value is specified by design at $T_J = 100$ °C. Product is not tested to this condition in production. 5. Pulse Test: pulse width $\leq 300\mu$ s, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS


Figure 12. $R_{\theta JA}$ – Pulse Time

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA **ISSUE M**

NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION DI AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

	MILLIMETERS					
DIM	MIN	NOM	MAX			
Α	0.90	1.00	1.10			
A1	0.00		0.05			
b	0.33	0.41	0.51			
С	0.23	0.28	0.33			
D	5.00	5.15	5.30			
D1	4.70	4.90	5.10			
D2	3.80	4.00	4.20			
E	6.00	6.15	6.30			
E1	5.70	5.90	6.10			
E2	3.45	3.65	3.85			
е		1.27 BSC				
G	0.51	0.575	0.71			
к	1.20	1.35	1.50			
L	0.51	0.575	0.71			
L1	(0.125 REF	-			
М	3.00	3.40	3.80			
θ	0 °		12 °			

STYLE 1: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN

//

 \square

0.10 C

RECOMMENDED SOLDERING FOOTPRINT* 2X 0.495 - 4.560 2X 1.530 3.200 4.530 ¥ ۷ 1.330 2X 1 0.905 Å 1 0.965 4X 1.000 1.270 4X 0.750 -> PITCH DIMENSIONS: MILLIMETERS

ORDERING INFORMATION

Device	Marking	Package	Shipping (Qty / Packing) [†]
NVMFS5A160PLZT1G	5A160L	DFN5 5x6, 1.27P (SO-8FL) (Pb-Free)	1.500 / Tape & Reel
NVMFS5A160PLZWFT1G	160LWF	DFN5 5x6, 1.27P (SO-8FL) (Pb-Free, Wettable Flanks)	1.500 / Tape & Reel
NVMFS5A160PLZT3G	5A160L	DFN5 5x6, 1.27P (SO-8FL) (Pb-Free)	5.000 / Tape & Reel
NVMFS5A160PLZWFT3G	160LWF	DFN5 5x6, 1.27P (SO-8FL) (Pb-Free, Wettable Flanks)	5.000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. Coverage may be accessed at www.onsemi.com/site/pont/atent-Marking.por. ON Semiconductor reserves the right to make changes winnout further notice to any products nerein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor reservey any license under its patent rights nor the rights of others. ON semiconductor products are not designed intended or submicined for uppen or explicit for uppen or explicit for uppen or explicit disclassing ore explicit disclassing or explicit disclassing or explic designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative