Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download) Marshalling patchboard, without actuation lever, nom. voltage: 500 V, nominal current: 17.5 A, cross section: 0.14 mm² - 2.5 mm², AWG: 14 - 26, connection method: Push-in connection, number of positions: 1, number of connections: 6, width: 11 mm, length: 12.2 mm, color: gray, color of connection elements: white, mounting: for snapping onto a DIN rail adapter, for snapping onto a cover flange ### Your advantages - ☑ Color configuration possible according to VDE 0812, VDE 0815, DIN 47100 or unlimited. - ☑ Individual color assignment of cable and terminal point to ensure error-free, safe operation - High contact quality thanks to push-in technology as a replacement for Wire-Wrap®, TERMI-POINT®, etc. - Suitable for DIN rail mounting and panel cutouts with corresponding accessories - ☑ Individual setup thanks to modular principle ### **Key Commercial Data** | Packing unit | 10 pc | |--------------------------------------|--------------------------------| | Minimum order quantity | 10 pc | | GTIN | 4 055626 058504 | | GTIN | 4055626058504 | | Weight per Piece (excluding packing) | 4.190 g | | Custom tariff number | 85369010 | | Country of origin | Poland | | Note | Made to Order (non-returnable) | ### Technical data ### General | Number of positions | 1 | |-----------------------|---------| | Number of levels | 1 | | Number of connections | 6 | | Nominal cross section | 1.5 mm² | | Color | gray | ### Technical data ### General | Color of connection elements | white | |-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------| | Insulating material | PA | | Flammability rating according to UL 94 | V0 | | Rated surge voltage | 6 kV | | Degree of pollution | 3 | | Overvoltage category | III | | Insulating material group | I | | Maximum power dissipation for nominal condition | 0.56 W | | Ambient temperature (operation) | -60 85 () | | Ambient temperature (storage/transport) | -25 55 | | Ambient temperature (assembly) | -5 70 | | Ambient temperature (actuation) | -5 70 | | Maximum load current | 24 A (in case of a 2.5 mm² conductor cross section, the maximum load current must not be exceeded by the total current of all connected conductors.) | | Nominal current I _N | 17.5 A | | Nominal voltage U _N | 500 V | | Open side panel | No | | Shock protection test specification | DIN EN 50274 (VDE 0660-514):2002-11 | | Back of the hand protection | guaranteed | | Finger protection | guaranteed | | Result of surge voltage test | Test passed | | Surge voltage test setpoint | 7.3 kV | | Result of power-frequency withstand voltage test | Test passed | | Power frequency withstand voltage setpoint | 1.89 kV | | Result of the test for mechanical stability of terminal points (5 x conductor connection) | Test passed | | Result of bending test | Test passed | | Bending test rotation speed | 10 rpm | | Bending test turns | 135 | | Bending test conductor cross section/weight | 0.14 mm² / 0.2 kg | | | 1.5 mm² / 0.4 kg | | | 2.5 mm² / 0.7 kg | | Tensile test result | Test passed | | Conductor cross section tensile test | 0.14 mm² | | Tractive force setpoint | 10 N | | Conductor cross section tensile test | 1.5 mm² | | Tractive force setpoint | 40 N | | Conductor cross section tensile test | 2.5 mm ² | | Tractive force setpoint | 50 N | | Result of tight fit on support | Test passed | ### Technical data ### General | Setpoint 1 N Result of voltage-drop test Test passed Requirements, voltage drop < 3.2 mV | Tight fit on carrier | NS 35 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------| | Requirements, voltage drop < 3.2 mV | Setpoint | 1 N | | Result of temperature-rise test | Result of voltage-drop test | Test passed | | Short circuit stability result Test passed Conductor cross section short circuit testing 1.5 mm² Short-time current 0.18 kA Conductor cross section short circuit testing 2.5 mm² Short-time current 0.3 kA Result of thermal test Test passed Ageing test for screwless modular terminal block temperature cycles 192 Proof of thermal characteristics (needle flame) effective duration 30 s Result of aging test Test passed Oscillation, broadband noise test result Test passed Test specification, oscillation, broadband noise test result Test passed Test specification, oscillation, broadband noise DIN EN 50156 (VDE 0115-200):2008-03 Test steps frequency f ₁ = 5 Hz to f ₂ = 150 Hz ASD level 0.964 (m/s²)²/Hz Acceleration 0.58 g Test duration per axis 5 h Test directions X, Y and Z-axis Shock form Helf-sine Acceleration 5g Shock form Helf-sine Acceleration 3 Shock duration 30 ms | Requirements, voltage drop | ≤ 3.2 mV | | Conductor cross section short circuit testing 1.5 mm² Short-time current 0.18 kA Conductor cross section short circuit testing 2.5 mm² Short-time current 0.3 kA Result of thermal test Test passed Ageing test for screwless modular terminal block temperature cycles 192 Proof of thermal characteristics (needle flame) effective duration 30 s Result of aging test Test passed Oscillation, broadband noise test result Test passed Sellation, proadband noise test result Test passed Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test specification, socillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test specification 5.5 ASD level 0.984 (m/s²)²/Hz Acceleration 0.58 g Test directions X-, Y- and Z-axis Test directions X-, Y- and Z-axis Shock fresult Test passed Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 | Result of temperature-rise test | Test passed | | Short-time current 0.18 kA Conductor cross section short circuit testing 2.5 mm² Short-time current 0.3 kA Result for thermal test Test passed Ageing test for screwless modular terminal block temperature cycles 192 Proof of thermal characteristics (needle flame) effective duration 30 s Result of aging test Test passed Oscillation, broadband noise test result Test passed Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test sfrequency f; = 5 Hz to f; = 150 Hz Acceleration 0.58 g Test directions X. Y. and Z-axis Shock test seutit Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 Test specification, shock test Shock form Half-sine Acceleration 5g Shock form Shock duration present servi | Short circuit stability result | Test passed | | Conductor cross section short circuit testing 2.5 mm² Short-time current 0.3 kA Result of thermal test Test passed Ageing test for screwless modular terminal block temperature cycles 192 Proof of thermal characteristics (needle flame) effective duration 30 s Result of aging test Test passed Oscillation, broadband noise test result Test passed Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200) 2008-03 Test specification, oscillation, broadband noise Service life test category 1, class B, body mounted Test specification, oscillation, broadband noise Service life test category 1, class B, body mounted Test specification oscillation broadband noise Service life test category 1, class B, body mounted Test specification oscillation broadband noise 0.964 (m/s³)*/Hz ASD level 0.964 (m/s³)*/Hz Acceleration 5.5 Test duration per axis 5.5 Test directions X., Y- and Z-axis Shock test result Test passed Test directions, shock test DIN EN 50155 (VDE 0115-200) 2008-03 Shock duration 30 ms N | Conductor cross section short circuit testing | 1.5 mm ² | | Short-time current 0.3 kA Result of thermal test Test passed Ageing test for screwless modular terminal block temperature cycles 192 Proof of thermal characteristics (needle flame) effective duration 30 s Result of aging test Test passed Oscillation, broadband noise test result Test passed Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test spectrum Service life test category 1, class B, body mounted Test frequency f, = 5 Hz to f, = 150 Hz Asc level 0.984 (m/s² /Hz Acceleration 0.58 g Test duration per axis 5 h Test specification, shock test Test passed Nock form Half-sine Acceleration 5g Shock form Half-sine Acceleration 30 ms Number of shocks per direction 3 Test directions X, Y- and Z-axis (pos. and neg.) Relative insulation material temperature index (Elec., UL 746 B) 130 °C Temperature index of insulation material (DIN EN 60216-1 (VDE 0.2 Leas I) 125 °C S | Short-time current | 0.18 kA | | Result of thermal test Test passed Ageing test for screwless modular terminal block temperature cycles 192 Proof of thermal characteristics (needle flame) effective duration 30 s Result of aging test Test passed Oscillation, broadband noise test result Test passed Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test spectrum Service life test category 1, class B, body mounted Test spectrum 0.964 (m/s³)²/Hz ASD level 0.964 (m/s³)²/Hz Acceleration 0.58 g Test duration per axis 5 h Test directions X-, Y and Z-axis Shock test result Test passed Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 Shock duration Bolts (VDE 0115-200):2008-03 Acceleration 5g Acceleration 30 ms Acceleration 30 ms Acceleration 30 ms Number of shocks per direction 3 Relative insulation material temperature index (Elec, UL 746 B) 130 °C Test directions X-, Y | Conductor cross section short circuit testing | 2.5 mm² | | Ageing test for screwless modular terminal block temperature cycles Proof of thermal characteristics (needle flame) effective duration Result of aging test Oscillation, broadband noise test result Test passed Oscillation, broadband noise test result Test spassed DIN EN 50155 (VDE 0115-200):2008-03 Test spectrum Service life test category 1, class B, body mounted fi = 5 Hz to f₂ = 150 Hz ASD level le | Short-time current | 0.3 kA | | Proof of thermal characteristics (needle flame) effective duration 30 s Result of aging test Test passed Oscillation, broadband noise test result Test passed Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test specification, oscillation, broadband noise Service life test category 1, class B, body mounted Test specification 0.964 (m/s²)²/Hz ASD level 0.964 (m/s²)²/Hz Acceleration 0.58 g Test duration per axis 5 h Test directions X., Y- and Z-axis Shock test result Test passed Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 Shock form Half-sine Acceleration 5g Shock duration 30 ms Number of shocks per direction 3 Relative insulation material temperature index (Elec., UL 746 B) 130 °C Temperature index of insulation material (DIN EN 60216-1 (VDE 0.042 m) 125 °C Static insulating material application in cold -60 °C < | Result of thermal test | Test passed | | Result of aging test Test passed Oscillation, broadband noise test result Test passed Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test spectrum Service life test category 1, class B, body mounted Test frequency f, = 5 Hz to f ₂ = 150 Hz ASD level 0.964 (m/s³)²/Hz Acceleration 0.58 g Test duration per axis 5 h Test directions X., Y- and Z-axis Shock test result Test passed Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 Shock form Half-sine Acceleration 5g Shock duration 30 ms Number of shocks per direction 3 Test directions X., Y- and Z-axis (pos. and neg.) Relative insulation material temperature index (Elec., UL 746 B) 130 °C Temperature index of insulation material (DIN EN 60216-1 (VDE 030-2) 125 °C Static insulating material application in cold -60 °C Behavior in fire for rail vehicles (DIN 5510-2) <td>Ageing test for screwless modular terminal block temperature cycles</td> <td>192</td> | Ageing test for screwless modular terminal block temperature cycles | 192 | | Oscillation, broadband noise test result Test passed Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test spectrum Service life test category 1, class B, body mounted Test frequency f, = 5 Hz to f₂ = 150 Hz ASD level 0.964 (m/s²)²/Hz Acceleration 0.58 g Test duration per axis 5 h Test duration per axis 5 h Shock test result Test passed Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 Shock form Half-sine Acceleration 5g Shock duration 30 ms Number of shocks per direction 3 Test directions X-, Y- and Z-axis (pos. and neg.) Relative insulation material temperature index (Elec., UL 746 B) 130 °C Relative insulation material application in cold -60 °C Behavior in fire for rail vehicles (DIN EN 60695-11-10) V0 Oxygen index (DIN EN 180 4589-2) >32 % NF F16-101, NF F10-102 Class F 2 Surface flammability NFPA 130 (ASTM E 162) passed Specific optical density of smoke NFPA 130 (ASTM E 662) passed | Proof of thermal characteristics (needle flame) effective duration | 30 s | | Test specification, oscillation, broadband noise DIN EN 50155 (VDE 0115-200):2008-03 Test spectrum Service life test category 1, class B, body mounted Test frequency $f_1 = 5$ Hz to $f_2 = 150$ Hz ASD level 0.964 (m/s³)²/Hz Acceleration 0.58 g Test duration per axis 5 h Test duration per axis 5 h Test directions X , Y- and Z-axis Shock test result Test passed Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 Shock form Half-sine Acceleration 5 g Shock duration 30 ms Number of shocks per direction 3 ms Test directions X , Y- and Z-axis (pos. and neg.) Relative insulation material temperature index (Elec., UL 746 B) 130 °C Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) 125 °C Static insulating material application in cold -60 °C Behavior in fire for rail vehicles (DIN 5510-2) Test passed Flame test method (DIN EN 60695-11-10) V0 Oxygen index (DIN EN 160695-11-10) V0 Oxygen index (DIN EN 160695-11-10) | Result of aging test | Test passed | | Test spectrum Service life test category 1, class B, body mounted Test frequency f₁ = 5 Hz to f₂ = 150 Hz ASD level 0.964 (m/s²²²/Hz Acceleration 0.58 g Test duration per axis 5 h Test directions X-, Y- and Z-axis Shock test result Test passed Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 Shock form Half-sine Acceleration 5g Shock duration 30 ms Number of shocks per direction 3 Test directions X-, Y- and Z-axis (pos. and neg.) Relative insulation material temperature index (Elec., UL 746 B) 130 °C Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) 125 °C Static insulating material application in cold -60 °C Behavior in fire for rail vehicles (DIN 5510-2) Test passed Flame test method (DIN EN 6089-11-10) V0 Oxygen index (DIN EN 6089-11-10) V0 Oxygen index (DIN EN 150 4589-2) >32 % NF F16-101, NF F10-102 Class I 2 Surface flammability NFPA 130 (ASTM E 162) </td <td>Oscillation, broadband noise test result</td> <td>Test passed</td> | Oscillation, broadband noise test result | Test passed | | Test frequency f, = 5 Hz to f, = 150 Hz ASD level 0.964 (m/s²)²/Hz Acceleration 0.58 g Test duration per axis 5 h Test directions X-, Y- and Z-axis Shock test result Test passed Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 Shock form Half-sine Acceleration 5g Shock duration 30 ms Number of shocks per direction 3 Relative insulation material temperature index (Elec., UL 746 B) 130 °C Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) 125 °C Static insulating material application in cold -60 °C Behavior in fire for rail vehicles (DIN 5510-2) Test passed Flame test method (DIN EN 60695-11-10) V0 Oxygen index (DIN EN ISO 4589-2) >32 % NF F16-101, NF F10-102 Class I 2 Surface flammability NFPA 130 (ASTM E 162) passed Specific optical density of smoke NFPA 130 (ASTM E 662) passed | Test specification, oscillation, broadband noise | DIN EN 50155 (VDE 0115-200):2008-03 | | ASD level 0.964 (m/s²)²/Hz Acceleration 0.58 g Test duration per axis 5 h Test directions X-, Y- and Z-axis Shock test result Test spassed Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 Shock form Half-sine Acceleration 5g Shock duration 30 ms Number of shocks per direction 30 ms Number of shocks per direction 3. X-, Y- and Z-axis (pos. and neg.) Relative insulation material temperature index (Elec., UL 746 B) 130 °C Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) Static insulating material application in cold 60 °C Behavior in fire for rail vehicles (DIN 5510-2) Test passed Flame test method (DIN EN 60695-11-10) V0 Oxygen index (DIN EN 180 4589-2) >32 % NF F16-101, NF F10-102 Class I 2 Surface flammability NFPA 130 (ASTM E 162) passed Specific optical density of smoke NFPA 130 (ASTM E 662) passed | Test spectrum | Service life test category 1, class B, body mounted | | Acceleration 0.58 g Test duration per axis 5 h Test directions X-, Y- and Z-axis Shock test result Test passed Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 Shock form Half-sine Acceleration 5g Shock duration 30 ms Number of shocks per direction 3 Test directions X-, Y- and Z-axis (pos. and neg.) Relative insulation material temperature index (Elec., UL 746 B) 130 °C Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) 125 °C Static insulating material application in cold -60 °C Behavior in fire for rail vehicles (DIN 5510-2) Test passed Flame test method (DIN EN 60695-11-10) V0 Oxygen index (DIN EN ISO 4589-2) >32 % NF F16-101, NF F10-102 Class I 2 Surface flammability NFPA 130 (ASTM E 162) passed Specific optical density of smoke NFPA 130 (ASTM E 662) passed | Test frequency | $f_1 = 5 \text{ Hz to } f_2 = 150 \text{ Hz}$ | | Test duration per axis Test directions X-, Y- and Z-axis Shock test result Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 Shock form Half-sine Acceleration Shock duration Shock sper direction 30 ms Number of shocks per direction Relative insulation material temperature index (Elec., UL 746 B) Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) Static insulating material application in cold Behavior in fire for rail vehicles (DIN 5510-2) Flame test method (DIN EN 60695-11-10) Oxygen index (DIN EN ISO 4589-2) NF F16-101, NF F10-102 Class I Surface flammability NFPA 130 (ASTM E 162) Specific optical density of smoke NFPA 130 (ASTM E 662) Passed DIN EN 50155 (VDE 0115-200):2008-03 Test passed JN F S16-101, NF F10-102 Class F Specific optical density of smoke NFPA 130 (ASTM E 662) passed | ASD level | 0.964 (m/s²)²/Hz | | Test directions X-, Y- and Z-axis Shock test result Test passed Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 Shock form Half-sine Acceleration 5g Shock duration 30 ms Number of shocks per direction 3 Test directions X-, Y- and Z-axis (pos. and neg.) Relative insulation material temperature index (Elec., UL 746 B) 130 °C Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) 125 °C Static insulating material application in cold -60 °C Behavior in fire for rail vehicles (DIN 5510-2) Test passed Flame test method (DIN EN 60695-11-10) V0 Oxygen index (DIN EN ISO 4589-2) >32 % NF F16-101, NF F10-102 Class I 2 NF F16-101, NF F10-102 Class F 2 Surface flammability NFPA 130 (ASTM E 162) passed Specific optical density of smoke NFPA 130 (ASTM E 662) passed | Acceleration | 0.58 g | | Shock test resultTest passedTest specification, shock testDIN EN 50155 (VDE 0115-200):2008-03Shock formHalf-sineAcceleration5gShock duration30 msNumber of shocks per direction3 msTest directionsX-, Y- and Z-axis (pos. and neg.)Relative insulation material temperature index (Elec., UL 746 B)130 °CTemperature index of insulation material (DIN EN 60216-1 (VDE 0304-21))125 °CStatic insulating material application in cold-60 °CBehavior in fire for rail vehicles (DIN 5510-2)Test passedFlame test method (DIN EN 60695-11-10)V0Oxygen index (DIN EN ISO 4589-2)>32 %NF F16-101, NF F10-102 Class I2Surface flammability NFPA 130 (ASTM E 162)passedSpecific optical density of smoke NFPA 130 (ASTM E 662)passed | Test duration per axis | 5 h | | Test specification, shock test DIN EN 50155 (VDE 0115-200):2008-03 Shock form Half-sine Acceleration 5g Shock duration 30 ms Number of shocks per direction Test directions Relative insulation material temperature index (Elec., UL 746 B) Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) Static insulating material application in cold Behavior in fire for rail vehicles (DIN 5510-2) Flame test method (DIN EN 60695-11-10) Oxygen index (DIN EN 60695-12 NF F16-101, NF F10-102 Class I Sufface flammability NFPA 130 (ASTM E 162) Specific optical density of smoke NFPA 130 (ASTM E 662) DIN EN 50155 (VDE 0115-200):2008-03 Malf-sine 5g Specific optical density of smoke NFPA 130 (ASTM E 662) | Test directions | X-, Y- and Z-axis | | Shock formHalf-sineAcceleration5gShock duration30 msNumber of shocks per direction3Test directionsX-, Y- and Z-axis (pos. and neg.)Relative insulation material temperature index (Elec., UL 746 B)130 °CTemperature index of insulation material (DIN EN 60216-1 (VDE 0304-21))125 °CStatic insulating material application in cold-60 °CBehavior in fire for rail vehicles (DIN 5510-2)Test passedFlame test method (DIN EN 60695-11-10)V0Oxygen index (DIN EN ISO 4589-2)>32 %NF F16-101, NF F10-102 Class I2NF F16-101, NF F10-102 Class F2Surface flammability NFPA 130 (ASTM E 162)passedSpecific optical density of smoke NFPA 130 (ASTM E 662)passed | Shock test result | Test passed | | Acceleration 5g Shock duration 30 ms Number of shocks per direction 3 Test directions X-, Y- and Z-axis (pos. and neg.) Relative insulation material temperature index (Elec., UL 746 B) 130 °C Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) Static insulating material application in cold -60 °C Behavior in fire for rail vehicles (DIN 5510-2) Test passed Flame test method (DIN EN 60695-11-10) V0 Oxygen index (DIN EN 180 4589-2) >32 % NF F16-101, NF F10-102 Class I 2 Surface flammability NFPA 130 (ASTM E 162) passed Specific optical density of smoke NFPA 130 (ASTM E 662) passed | Test specification, shock test | DIN EN 50155 (VDE 0115-200):2008-03 | | Shock duration30 msNumber of shocks per direction3Test directionsX-, Y- and Z-axis (pos. and neg.)Relative insulation material temperature index (Elec., UL 746 B)130 °CTemperature index of insulation material (DIN EN 60216-1 (VDE 0304-21))125 °CStatic insulating material application in cold-60 °CBehavior in fire for rail vehicles (DIN 5510-2)Test passedFlame test method (DIN EN 60695-11-10)V0Oxygen index (DIN EN ISO 4589-2)>32 %NF F16-101, NF F10-102 Class I2NF F16-101, NF F10-102 Class F2Surface flammability NFPA 130 (ASTM E 162)passedSpecific optical density of smoke NFPA 130 (ASTM E 662)passed | Shock form | Half-sine | | Number of shocks per direction Test directions X-, Y- and Z-axis (pos. and neg.) Relative insulation material temperature index (Elec., UL 746 B) 130 °C Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) Static insulating material application in cold 54 cho °C Behavior in fire for rail vehicles (DIN 5510-2) Flame test method (DIN EN 60695-11-10) Coxygen index (DIN EN ISO 4589-2) NF F16-101, NF F10-102 Class I NF F16-101, NF F10-102 Class F Surface flammability NFPA 130 (ASTM E 162) Specific optical density of smoke NFPA 130 (ASTM E 662) passed | Acceleration | 5g | | Test directions X-, Y- and Z-axis (pos. and neg.) Relative insulation material temperature index (Elec., UL 746 B) 130 °C Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) Static insulating material application in cold -60 °C Behavior in fire for rail vehicles (DIN 5510-2) Test passed Flame test method (DIN EN 60695-11-10) V0 Oxygen index (DIN EN ISO 4589-2) >32 % NF F16-101, NF F10-102 Class I 2 NF F16-101, NF F10-102 Class F 2 Surface flammability NFPA 130 (ASTM E 162) passed Specific optical density of smoke NFPA 130 (ASTM E 662) passed | Shock duration | 30 ms | | Relative insulation material temperature index (Elec., UL 746 B) Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) Static insulating material application in cold 60 °C Behavior in fire for rail vehicles (DIN 5510-2) Flame test method (DIN EN 60695-11-10) Oxygen index (DIN EN ISO 4589-2) NF F16-101, NF F10-102 Class I Surface flammability NFPA 130 (ASTM E 162) Specific optical density of smoke NFPA 130 (ASTM E 662) 125 °C | Number of shocks per direction | 3 | | Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) Static insulating material application in cold Behavior in fire for rail vehicles (DIN 5510-2) Flame test method (DIN EN 60695-11-10) Oxygen index (DIN EN ISO 4589-2) NF F16-101, NF F10-102 Class I NF F16-101, NF F10-102 Class F Surface flammability NFPA 130 (ASTM E 162) Specific optical density of smoke NFPA 130 (ASTM E 662) 125 °C ° | Test directions | X-, Y- and Z-axis (pos. and neg.) | | Static insulating material application in cold Static insulating material application in cold Flame test method (DIN EN 60695-11-10) Oxygen index (DIN EN ISO 4589-2) NF F16-101, NF F10-102 Class I Surface flammability NFPA 130 (ASTM E 162) Specific optical density of smoke NFPA 130 (ASTM E 662) Static insulating material application in cold -60 °C Test passed V0 2 2 Suppose the passed 2 Suppose the passed passed passed | Relative insulation material temperature index (Elec., UL 746 B) | 130 °C | | Behavior in fire for rail vehicles (DIN 5510-2) Flame test method (DIN EN 60695-11-10) Oxygen index (DIN EN ISO 4589-2) NF F16-101, NF F10-102 Class I NF F16-101, NF F10-102 Class F 2 Surface flammability NFPA 130 (ASTM E 162) Specific optical density of smoke NFPA 130 (ASTM E 662) Test passed 2 2 32 % Passed 2 Surface flammability NFPA 130 (ASTM E 162) passed | | 125 °C | | Flame test method (DIN EN 60695-11-10) Oxygen index (DIN EN ISO 4589-2) NF F16-101, NF F10-102 Class I NF F16-101, NF F10-102 Class F 2 Surface flammability NFPA 130 (ASTM E 162) Specific optical density of smoke NFPA 130 (ASTM E 662) passed passed | Static insulating material application in cold | -60 °C | | Oxygen index (DIN EN ISO 4589-2) NF F16-101, NF F10-102 Class I NF F16-101, NF F10-102 Class F 2 Surface flammability NFPA 130 (ASTM E 162) Specific optical density of smoke NFPA 130 (ASTM E 662) passed passed | Behavior in fire for rail vehicles (DIN 5510-2) | Test passed | | NF F16-101, NF F10-102 Class I 2 NF F16-101, NF F10-102 Class F 2 Surface flammability NFPA 130 (ASTM E 162) passed Specific optical density of smoke NFPA 130 (ASTM E 662) passed | Flame test method (DIN EN 60695-11-10) | V0 | | NF F16-101, NF F10-102 Class F 2 Surface flammability NFPA 130 (ASTM E 162) passed Specific optical density of smoke NFPA 130 (ASTM E 662) passed | Oxygen index (DIN EN ISO 4589-2) | >32 % | | Surface flammability NFPA 130 (ASTM E 162) passed Specific optical density of smoke NFPA 130 (ASTM E 662) passed | NF F16-101, NF F10-102 Class I | 2 | | Specific optical density of smoke NFPA 130 (ASTM E 662) passed | NF F16-101, NF F10-102 Class F | 2 | | · · · · · · · · · · · · · · · · · · · | Surface flammability NFPA 130 (ASTM E 162) | passed | | Smoke gas toxicity NFPA 130 (SMP 800C) passed | Specific optical density of smoke NFPA 130 (ASTM E 662) | passed | | , , , , , , , , , , , , , , , , , , , , | Smoke gas toxicity NFPA 130 (SMP 800C) | passed | ### Technical data ### General | Calorimetric heat release NFPA 130 (ASTM E 1354) | 27,5 MJ/kg | |--------------------------------------------------------|-------------| | Fire protection for rail vehicles (DIN EN 45545-2) R22 | HL 1 - HL 3 | | Fire protection for rail vehicles (DIN EN 45545-2) R23 | HL 1 - HL 3 | | Fire protection for rail vehicles (DIN EN 45545-2) R24 | HL 1 - HL 3 | | Fire protection for rail vehicles (DIN EN 45545-2) R26 | HL 1 - HL 3 | ### **Dimensions** | Width | 11 mm | |--------|---------| | Length | 12.2 mm | | Height | 30 mm | ### Connection data | Connection method | Push-in connection | |----------------------------------------------------------------------------|--------------------| | Stripping length | 8 mm 10 mm | | Connection in acc. with standard | IEC 60947-7-1 | | Conductor cross section solid min. | 0.14 mm² | | Conductor cross section solid max. | 2.5 mm² | | Conductor cross section AWG min. | 26 | | Conductor cross section AWG max. | 14 | | Conductor cross section flexible min. | 0.14 mm² | | Conductor cross section flexible max. | 1.5 mm² | | Min. AWG conductor cross section, flexible | 26 | | Max. AWG conductor cross section, flexible | 14 | | Conductor cross section flexible, with ferrule without plastic sleeve min. | 0.14 mm² | | Conductor cross section flexible, with ferrule without plastic sleeve max. | 1.5 mm² | | Conductor cross section flexible, with ferrule with plastic sleeve min. | 0.14 mm² | | Conductor cross section flexible, with ferrule with plastic sleeve max. | 1.5 mm² | | Internal cylindrical gage | A1 | ### Standards and Regulations | Connection in acc. with standard | IEC 60947-7-1 | |----------------------------------------|---------------| | Flammability rating according to UL 94 | V0 | ### **Environmental Product Compliance** | China RoHS | Environmentally friendly use period: unlimited = EFUP-e | |------------|---------------------------------------------------------| | | No hazardous substances above threshold values | ### Drawings Circuit diagram ### Classifications ### eCl@ss | eCI@ss 4.0 | 27141100 | |------------|----------| | eCl@ss 4.1 | 27141100 | | eCl@ss 5.0 | 27141100 | | eCl@ss 5.1 | 27141100 | | eCl@ss 6.0 | 27141100 | | eCl@ss 7.0 | 27141120 | | eCl@ss 8.0 | 27141120 | | eCl@ss 9.0 | 27141120 | ### **ETIM** | ETIM 5.0 | EC000897 | |----------|----------| | ETIM 6.0 | EC000897 | | ETIM 7.0 | EC000897 | ### **UNSPSC** | UNSPSC 13.2 | 39121410 | |-------------|----------| | UNSPSC 18.0 | 39121410 | | UNSPSC 19.0 | 39121410 | | UNSPSC 20.0 | 39121410 | | UNSPSC 21.0 | 39121410 | ### Approvals Approvals Approvals CSA / UL Recognized / cUL Recognized / EAC / EAC / cULus Recognized Ex Approvals Approval details ### Approvals | CSA | http://www.csagroup.org/services-industries/product-listing/ 13631 | | | | |--------------------|--------------------------------------------------------------------|---|-------|-------| | | В | С | | D | | Nominal voltage UN | 300 V | 3 | 300 V | 300 V | | Nominal current IN | 10 A | 1 | 0 A | 10 A | | mm²/AWG/kcmil | 24-16 | 2 | 24-16 | 24-16 | | UL Recognized | http://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/index.htm FILE E 60425 | | |--------------------|----------------------------------------------------------------------------------|-------| | | В | С | | Nominal voltage UN | 300 V | 300 V | | Nominal current IN | 10 A | 10 A | | mm²/AWG/kcmil | 24-16 | 24-16 | | cUL Recognized | http://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/index.htm FILE E 60425 | | |--------------------|----------------------------------------------------------------------------------|-------| | | В | С | | Nominal voltage UN | 300 V | 300 V | | Nominal current IN | 10 A | 10 A | | mm²/AWG/kcmil | 24-16 | 24-16 | | EAC | EAC | RU C-
DE.A*30.B.01742 | |-----|-----|--------------------------| | EAC | EAC | RU C-
DE.BL08.B.00682 | ### Accessories Accessories Insulating sleeve ### Accessories Insulating sleeve - MPS-IH WH - 0201663 Insulating sleeve, color: white Insulating sleeve - MPS-IH RD - 0201676 Insulating sleeve, color: red Insulating sleeve - MPS-IH BU - 0201689 Insulating sleeve, color: blue Insulating sleeve - MPS-IH YE - 0201692 Insulating sleeve, color: yellow Insulating sleeve - MPS-IH GN - 0201702 Insulating sleeve, color: green ### Accessories Insulating sleeve - MPS-IH GY - 0201728 Insulating sleeve, color: gray Insulating sleeve - MPS-IH BK - 0201731 Insulating sleeve, color: black #### Labeled terminal marker Zack marker strip - ZB 10 CUS - 0824941 Zack marker strip, can be ordered: Strip, white, labeled according to customer specifications, mounting type: snap into tall marker groove, for terminal block width: 10.2 mm, lettering field size: 10.15 x 10.5 mm, Number of individual labels: 10 ### Zack marker strip - ZB10,LGS:FORTL.ZAHLEN - 1053014 Zack marker strip, Strip, white, labeled, can be labeled with: CMS-P1-PLOTTER, printed horizontally: consecutive numbers 1 ... 10, 11 ... 20, etc. up to 91 ... 100, mounting type: snap into tall marker groove, for terminal block width: 10.2 mm, lettering field size: 10.15 x 10.5 mm, Number of individual labels: 10 ### Zack marker strip - ZB10,QR:FORTL.ZAHLEN - 1053027 Zack marker strip, Strip, white, labeled, can be labeled with: CMS-P1-PLOTTER, Printed vertically: consecutive numbers 1 ... 10, 11 ... 20, etc. up to 91 ... 100, mounting type: snap into tall marker groove, for terminal block width: 10.2 mm, lettering field size: 10.15 x 10.5 mm, Number of individual labels: 10 ### Accessories Marker for terminal blocks - ZB10,LGS:L1-N,PE - 1053412 Marker for terminal blocks, Strip, white, labeled, can be labeled with: CMS-P1-PLOTTER, Horizontal: L1, L2, L3, N, PE, L1, L2, L3, N, PE, mounting type: snap into tall marker groove, for terminal block width: 10.2 mm, lettering field size: 10.15 x 10.5 mm, Number of individual labels: 10 Marker for terminal blocks - ZB10,LGS:U-N - 1053438 Marker for terminal blocks, Strip, white, labeled, can be labeled with: CMS-P1-PLOTTER, Horizontal: U, V, W, N, GND, U, V, W, N, GND, mounting type: snap into tall marker groove, for terminal block width: 10.2 mm, lettering field size: 10.15 x 10.5 mm, Number of individual labels: 10 Marker for terminal blocks - UC-TM 10 CUS - 0824605 Marker for terminal blocks, can be ordered: by sheet, white, labeled according to customer specifications, mounting type: snap into tall marker groove, for terminal block width: 10.2 mm, lettering field size: 9.6 x 10.5 mm, Number of individual labels: 48 Marker for terminal blocks - UCT-TM 10 CUS - 0829623 Marker for terminal blocks, can be ordered: by sheet, white, labeled according to customer specifications, mounting type: snap into tall marker groove, for terminal block width: 10.2 mm, lettering field size: 8.9 x 9.6 mm, Number of individual labels: 36 Zack Marker strip, flat - ZBF10 CUS - 0825031 Zack Marker strip, flat, can be ordered: Strip, white, labeled according to customer specifications, mounting type: snap into flat marker groove, for terminal block width: 10 mm, lettering field size: 5.15 x 10 mm, Number of individual labels: 10 ### Accessories Zack Marker strip, flat - ZBF10,LGS:FORTL.ZAHLEN - 0810009 Zack Marker strip, flat, Strip, white, labeled, printed horizontally: consecutive numbers 1 ... 10, 11 ... 20, etc. up to 91 ... 100, mounting type: snap into flat marker groove, for terminal block width: 10 mm, lettering field size: 5.15 x 10 mm, Number of individual labels: 10 ### Zack Marker strip, flat - ZBF10,QR:FORTL.ZAHLEN - 0810025 Zack Marker strip, flat, Strip, white, labeled, Printed vertically: consecutive numbers 1 ... 10, 11 ... 20, etc. up to 91 ... 100, mounting type: snap into flat marker groove, for terminal block width: 10 mm, lettering field size: 5.15 x 10 mm, Number of individual labels: 10 #### Marker for terminal blocks - UC-TMF 10 CUS - 0824662 Marker for terminal blocks, can be ordered: by sheet, white, labeled according to customer specifications, mounting type: snap into flat marker groove, for terminal block width: 10.2 mm, lettering field size: 9.6 x 5.1 mm, Number of individual labels: 48 #### Marker for terminal blocks - UCT-TMF 10 CUS - 0829679 Marker for terminal blocks, can be ordered: by sheet, white, labeled according to customer specifications, mounting type: snap into flat marker groove, for terminal block width: 10.2 mm, lettering field size: 9.4 x 4.7 mm, Number of individual labels: 36 ### Marker for terminal blocks - TMT 10 R CUS - 0824500 Marker for terminal blocks, can be ordered: by line, white, labeled according to customer specifications, mounting type: snap into universal marker groove, snap into flat marker groove, for terminal block width: 10.2 mm, lettering field size: 6.35 x 10.15 mm ### Mounting material ### Accessories Flange cover - DF-PTMC-O - 3270400 Flange cover, for direct mounting on top and for accommodating the marking, length: 30 mm, width: 22 mm, height: 13 mm, color: gray Flange cover - DF-PTMC-U - 3270401 Flange cover, for direct mounting below, length: 29.1 mm, width: 22 mm, height: 12.8 mm, color: gray Adapter - DF-PTMC-NS - 3270403 Adapter, for mounting on a DIN rail, length: 64 mm, width: 22 mm, color: gray Marker adapter - DF-PTMC-ZB - 3270410 Marker adapter, for direct mounting on top and for accommodating the marking, length: 30 mm, width: 11 mm, height: 13 mm, color: gray #### Screwdriver tools Screwdriver - SZF 0-0,4X2,5 - 1204504 Actuation tool, for ST terminal blocks, also suitable for use as a bladed screwdriver, size: $0.4 \times 2.5 \times 75$ mm, 2-component grip, with non-slip grip ### Accessories Actuation tool - ST-BW 0 - 1200135 Actuation tool, for all 1.5 mm² spring cages from PT 1,5/S and FT 1,5/S ### Terminal marking Zack marker strip - ZB 10:UNBEDRUCKT - 1053001 Zack marker strip, Strip, white, unlabeled, can be labeled with: PLOTMARK, CMS-P1-PLOTTER, mounting type: snap into tall marker groove, for terminal block width: 10.2 mm, lettering field size: 10.5 x 10.15 mm, Number of individual labels: 10 Marker for terminal blocks - UC-TM 10 - 0818069 Marker for terminal blocks, Sheet, white, unlabeled, can be labeled with: BLUEMARK ID COLOR, BLUEMARK ID, BLUEMARK CLED, PLOTMARK, CMS-P1-PLOTTER, mounting type: snap into tall marker groove, for terminal block width: 10.2 mm, lettering field size: 9.6 x 10.5 mm, Number of individual labels: 48 Marker for terminal blocks - UCT-TM 10 - 0829142 Marker for terminal blocks, Sheet, white, unlabeled, can be labeled with: TOPMARK NEO, TOPMARK LASER, BLUEMARK ID COLOR, BLUEMARK ID, BLUEMARK CLED, THERMOMARK PRIME, THERMOMARK CARD 2.0, THERMOMARK CARD, mounting type: snap into tall marker groove, for terminal block width: 10.2 mm, lettering field size: 8.9 x 9.6 mm, Number of individual labels: 36 Zack Marker strip, flat - ZBF10:UNBEDRUCKT - 0809997 Zack Marker strip, flat, Strip, white, unlabeled, can be labeled with: CMS-P1-PLOTTER, PLOTMARK, mounting type: snap into flat marker groove, for terminal block width: 10 mm, lettering field size: 5.15 x 10 mm, Number of individual labels: 10 #### Accessories Marker for terminal blocks - UC-TMF 10 - 0818124 Marker for terminal blocks, Sheet, white, unlabeled, can be labeled with: BLUEMARK ID COLOR, BLUEMARK ID, BLUEMARK CLED, PLOTMARK, CMS-P1-PLOTTER, mounting type: snap into flat marker groove, for terminal block width: 10.2 mm, lettering field size: 9.6 x 5.1 mm, Number of individual labels: 48 Marker for terminal blocks - UCT-TMF 10 - 0829204 Marker for terminal blocks, Sheet, white, unlabeled, can be labeled with: TOPMARK NEO, TOPMARK LASER, BLUEMARK ID COLOR, BLUEMARK ID, BLUEMARK CLED, THERMOMARK PRIME, THERMOMARK CARD 2.0, THERMOMARK CARD, mounting type: snap into flat marker groove, for terminal block width: 10.2 mm, lettering field size: 9.4 x 4.7 mm, Number of individual labels: 36 Marker for terminal blocks - TMT 10 R - 0816210 Marker for terminal blocks, Roll, white, unlabeled, can be labeled with: THERMOMARK ROLL 2.0, THERMOMARK ROLL, THERMOMARK ROLL X1, THERMOMARK ROLLMASTER 300/600, THERMOMARK X1.2, THERMOMARK S1.1, perforated, mounting type: snap into universal marker groove, snap into flat marker groove, for terminal block width: 10.2 mm, lettering field size: 6.35 x 10.15 mm, Number of individual labels: 10000 Test plug terminal block Reducing plug - RPS - 0201647 Reducing plug, color: gray Test plugs - MPS-MT - 0201744 Test plugs, with solder connection up to 1 mm² conductor cross section, color: gray Phoenix Contact 2020 © - all rights reserved http://www.phoenixcontact.com