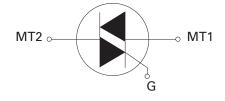


QJxx30LH4 series


Agency Recognitions

Agency	Agency File Number
71	E71639

Main Features

Symbol	Value	Unit
I _{T(RMS)}	30	А
V _{DRM} /V _{RRM}	600 or 800	V
_{GT (Q1)}	35	mA

Schematic Symbol

Description

This 30A high temperature Alternistor TRIAC, offered in TO-220 isolated package has 150°C maximum junction temperature and 350A I_{TSM}(60Hz). This series enables easier thermal management and higher surge handling capability in AC power control applications such as heater control, motor speed control, lighting controls, and static switching relays. Alternistor TRIAC operates in quadrants I, II, & III and offers high performance in applications requiring high commutation capability.

Features & Benefits

- High T, of 150°C
- Voltage capability up to 800V
- Surge capability of 350A at 60Hz half cycle
- Mechanically and thermally robust TO-220 clip-attach assembly
- Electrically isolated for 2500Vrms
- UL Recognized to UL 1557 as an Electrically Isolated Semiconductor Device.
- Halogen free and RoHS compliant

Applications

TRIAC is an excellent AC switch in applications such as heating, lighting, and motor speed controls.

Typical applications are

- Heater control such as coffee brewer, tankless water heater and infrared heater
- AC solid-state relavs
- Light dimmers including incandescent and LED lighting
- Motor speed control in kitchen appliances, power tools, home/brow/white goods and light industrial applications as compressor motor control

Alternistor TRIAC is used with high inductive loads requiring the high commutation capability. Internally isolated packages offer better heat sinking with higher isolation voltage.

Thyristors30 Amp High Temperature Alternistor Triacs

Absolute Maximum Ratings — Alternistor Triac (3 Quadrants)

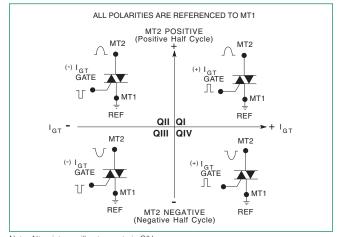
Symbol	Paramete	Value	Unit		
V _{DSM} /V _{RSM}	Peak non-repetitive blocking voltage	pulse width	ı = 100 μs	V _{DRM} +200V	V
I _{T(RMS)}	RMS on-state current (full sine wave)	$T_{\rm C} = 10$	05 °C	30	А
	Non repetitive surge peak on-state current	f = 50Hz	t = 20 ms	290	А
TSM	(Single half cycle, T _J initial = 25°C)	f = 60Hz	t = 16.7 ms	350	Α
l²t	I ² t Value for fusing	$t_p = 8.3 \text{ ms}$	508	A ² s	
di/dt	Critical rate of rise of on-state current	T _J = 150 °C	100	A/µs	
I _{GTM}	Peak gate trigger current	T _J = 150°C	4.0	А	
P _{G(AV)}	Average gate power dissipation	1.0	W		
T _{stg}	Storage temperature range	-40 to 150	°C		
T	Operating junction temperature range			-40 to 150	°C

y = sensitivity

Electrical Characteristics (T_J = 25°C, unless otherwise specified) — Alternistor Triac (3 Quadrants)

Symbol	Test Conditions	Quadrant		Value	Unit
I _{GT}	V 12V B COO	1 – 11 – 111	MAX.	35	mA
V _{GT}	$V_D = 12V R_L = 60\Omega$	1 – 11 – 111	MAX.	1.0	V
V _{GD}	$V_D = V_{DRM} R_L = 3.3k\Omega T_J = 150$ °C	1 – 11 – 111	MIN.	0.2	V
I _H	$I_{T} = 100 \text{mA}$		MAX.	60	mA
dv/dt	$V_D = 2/3 V_{DRM}$ Gate Open $T_J = 150$ °C		MIN.	1500	V/µs
(dv/dt)c	$(di/dt)c = 18.9 \text{ A/ms } T_J = 150^{\circ}\text{C}$	MIN.	20	V/µs	
t _{gt}	$I_{G} = 2 \times I_{GT} \text{ PW} = 15 \mu \text{s} I_{T} = 42.4 \text{ A(pk)}$	TYP.	3	μs	

Static Characteristics


Symbol	Test Co	Value	Unit		
V_{TM}	$I_{T} = 42.4A t_{p} = 380$	MAX	1.5	V	
1 /1	@V /V	T _J = 25°C	NAAV	5	μΑ
I _{DRM} / I _{RRM}	@V _{DRM} /V _{RRM}	T _J = 150°C	MAX	3	mA

Thermal Resistances

Symbol	Parameter	Value	Unit
$R_{\theta(JC)}$	Junction to case (AC)	3.2	°C/W

Figure 1: Definition of Quadrants

Note: Alternistors will not operate in QIV

Figure 3: Normalized DC Holding Current vs. Junction Temperature

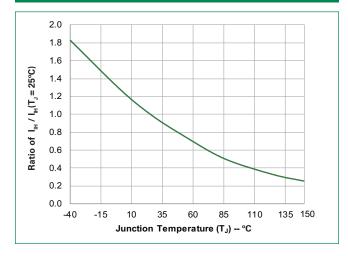


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

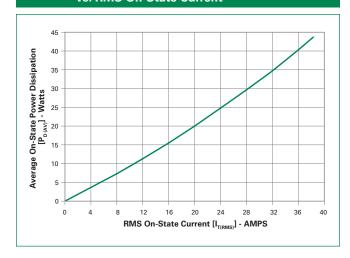


Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature

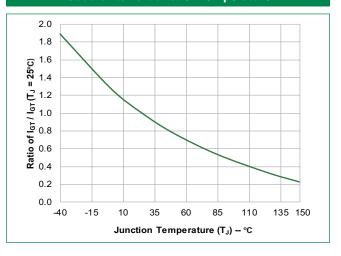


Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

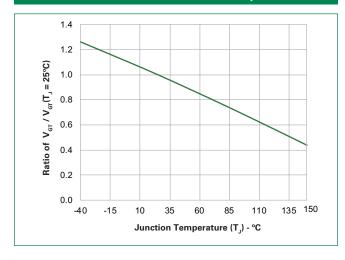


Figure 6: On-State Current vs. On-State Voltage (Typical)

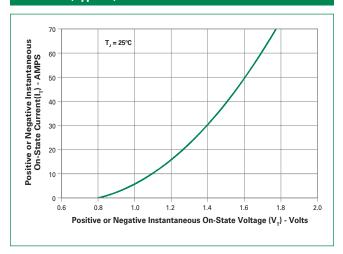


Figure 7: Maximum Allowable Case Temperature vs. RMS On-State Current

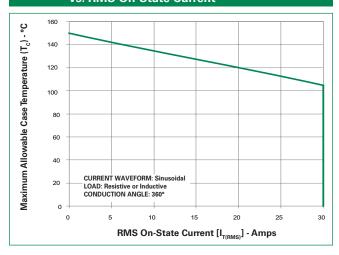
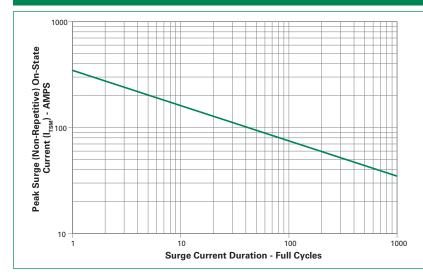
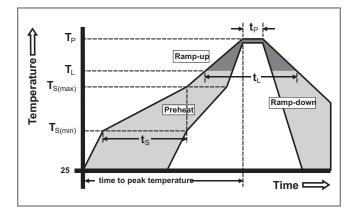



Figure 8: Surge Peak On-State Current vs. Number of Cycles


Supply Frequency: 60Hz Sinusoidal Load: Resistive RMS On-State $[I_{\text{TiRMSI}}]$: Max Rated Value at Specific Case Temperature

Notes:

- Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

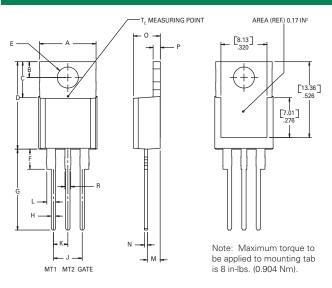
Soldering Parameters

Reflow Co	ndition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ra	amp up rate (LiquidusTemp) k	5°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max	
Defless	-Temperature (T _L) (Liquidus)	217°C	
Reflow	-Time (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time with Temperatu	in 5°C of actual peak ıre (t _p)	20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peakTemperature (T _p)		8 minutes Max.	
Do not exc	ceed	280°C	

Thyristors30 Amp High Temperature Alternistor Triacs

Physical Specifications

Terminal Finish	100% Matte Tin-plated
Body Material	UL Recognized compound meeting flammability rating V-0
Terminal Material	Copper Alloy


Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 150°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E
Moisture Sensitivity Level	Level 1, JEDEC-J-STD-020

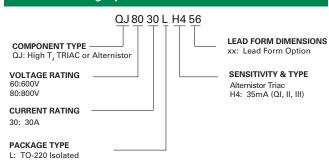
Dimensions — TO-220AB (L-Package) — Isolated Mounting Tab

Dimension	Inc	hes	Millimeters		
Dimension	Min Max		Min	Max	
А	0.380	0.420	9.65	10.67	
В	0.105	0.115	2.67	2.92	
С	0.230	0.250	5.84	6.35	
D	0.590	0.620	14.99	15.75	
Е	0.142	0.147	3.61	3.73	
F	0.110	0.130	2.79	3.30	
G	0.540	0.575	13.72	14.60	
Н	0.025	0.035	0.64	0.89	
J	0.195	0.205	4.95	5.21	
K	0.095	0.105	2.41	2.67	
L	0.060	0.075	1.52	1.91	
М	0.085	0.095	2.16	2.41	
N	0.018	0.024	0.46	0.61	
0	0.178	0.188	4.52	4.78	
Р	0.045	0.060	1.14	1.52	
R	0.038	0.048	0.97	1.22	

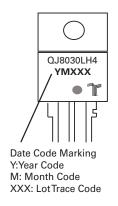
Thyristors30 Amp High Temperature Alternistor Triacs

Product Selector

Dowt Name box	Voltage			Gate Sensitivity			Time	Dooleana	
Part Number	400V	600V	800V	1000V	1-11-111	IV	T(RMS)	Туре	Package
QJxx30LH4	-	×	×	-	35mA		30A	Alternostor Triac	TO-220L


Note: xx = Voltage/10

Packing Options


Part Number	Marking	Weight	Packing Mode	Base Quantity
QJxx30LH4	QJxx30LH4	2.2	Tube	500(50 per tube)

y = Sensitivity

Part Numbering System

Part Marking System

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littlefuse.com/disclaimer-electronics.