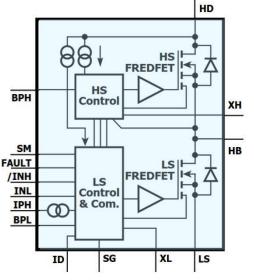


Cristian Ionescu-Catrina

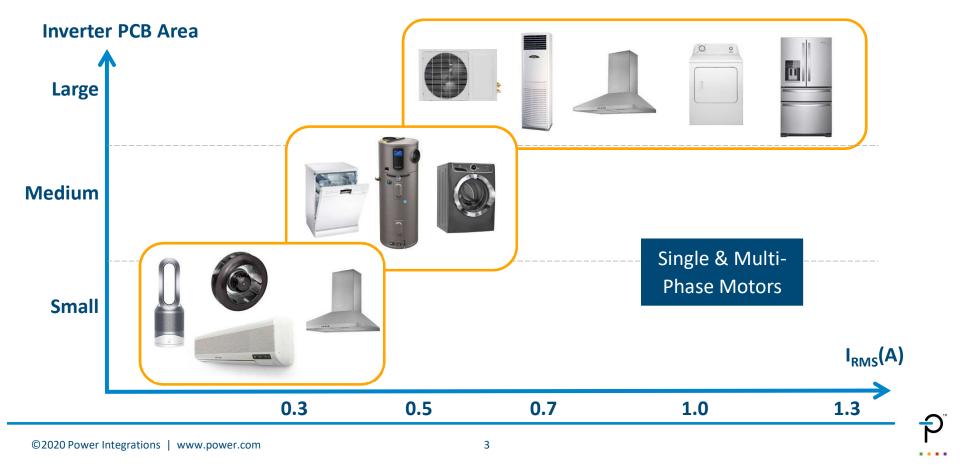
BridgeSwitch: Smart Integrated Motor Driver IC


Up to 400 W inverter output power

600 V power FREDFETs, low R_{DS(ON)}

- Unique lossless current sense simplifies motor control and system protection
- Optimized body diode for low loss, reduced EMI

Current trimmed gate drivers deliver consistent performance


- Minimizes losses and reduces EMI
- Self-biased simplifies system power requirements
- HW device and system protection IEC 60730-1 Class A ready
- Single-wire predictive maintenance interface
 - Supports any control algorithm
- Thermally optimized SMD package
 - No heatsinks

Ideal for Fans, Pumps and Compressors

The BridgeSwitch Family Provides a Platform Solution

Product Family				
Product ³	FREDFET DC Output Current ¹	Continuous Phase RMS Current ²		
BRD1160C / BRD1260C	1.0 A	0.22 A		
BRD1161C / BRD1261C	1.7 A	0.50 A		
BRD1163C / BRD1263C	3.0 A	0.75 A		
BRD1165C / BRD1265C	5.5 A	1.00 A		
BRD1167C / BRD1267C	11.5 A	1.33 A		

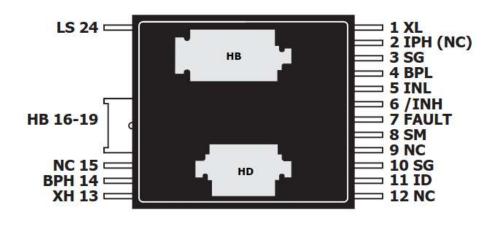
Table 1. Product Family.

Notes:

- 1. Continuous DC output current per FREDFET, calculated at 25 °C case and 125 °C junction temperature. Normally limited by internal circuitry
- Continuous phase RMS current, internal self-supply, 340 V bus, trapezoidal commutation with 12 kHz high-side PWM, PCB heat sinking with 50 °C case temperature rise.

3. Package: InSOP-24C.

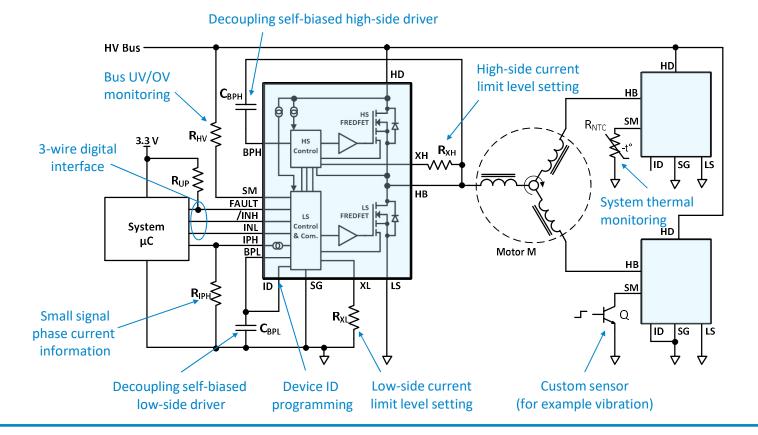
Feature	BRD116X	BRD126X
Market leading FREDFET diode characteristic	~	✓
No heatsink required Compact surface mount package	~	✓
Self-supplied operation	✓	✓
HS/LS cycle-by-cycle current limit protection	~	✓
Device dual level thermal protection	✓	✓
DC link UV/OV monitoring	~	✓
System level over-temperature monitoring	~	✓
Single wire FAULT-bus communication	\checkmark	✓
Positive low-side phase current output	-	✓



Thermally Optimized Package

- InSOP-24C package with two exposed pads
 - ▶ Low profile: 1.35 mm
- Small PCB footprint: 13.6 x 9.4 mm
- Pinout (bottom view):

Pin	Function		
LS	Low-side SOURCE		
НВ	Half-bridge center-point		
ВРН	Bypass (high-side)		
ХН	Sets high-side current limit		
ID	Device ID		
SG	Signal ground		
SM	System monitor		
FAULT	Fault communication		
/INH	Driver control input (high-side)		
INL	Driver control input (low-side)		
BPL	Bypass (low-side)		
XL	Sets low-side current limit		
IPH (NC)	Phase current output (BRD126X) / NC: (BRD116X)		
HD	High-side DRAIN (exposed pad)		

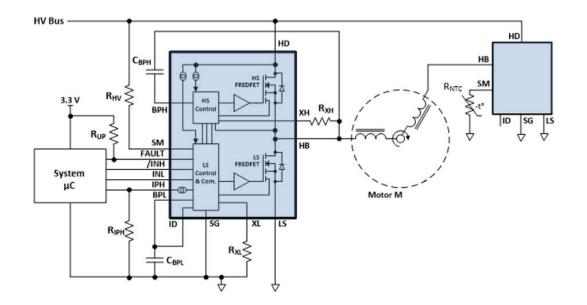

Extended Creepage and Clearance

Potential			Creepage	
1.	High-side drain	>2.2 mm		
2.	2. Half Bridge center-point Low-side source		>2.2 mm	
3.	High-side drain	> 3.2 mm		
	LS 24 2 HB 16-19 NC 15 BPH 14 XH 13	нв нв 3 SG 4 BPL 5 INL 6 /INI 7 FAU 8 SM 9 NC 10 SG 11 XL 2 IPH 3 SG 4 BPL 5 INL 11 ID 12 NC	H LT	

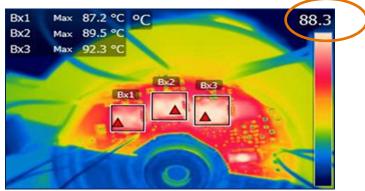
©2020 Power Integrations | www.power.com

Ð

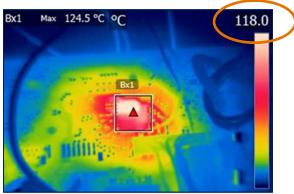
Typical 3-Phase Inverter Architecture


1-Phase BLDC is More Cost Effective Than 3-Phase BLDC

	1-Phase BLDC	3-Phase BLDC	
Speed Control	Yes	Yes	
Motor Size	Smaller Smallest		
Efficiency	High	High	
Noise	Low	Lowest	
Drive Algorithm	Average/Complex	Complex	
Protection	Yes	Yes	



BridgeSwitch Advantage for 1-Phase Applications


- Saves BOM and PCB space
- No heatsink
- Self biased
- Enables HW-based protection
- SMD for easy assembly
- Scalable solution can be easily adapted to 3-phase designs

Integrated Half-Bridge (IHB) Structure Eliminates Hot Spots

IHB allows distributed thermal architecture

IPM creates hot spots

Separating Half-Bridge switches efficiently spreads heat

- Permits use of PCB for cooling
 - Reduces system cost by eliminating heatsink
 - Eliminates assembly cost for mounting heatsink
- Reduces size of power stage

PI FREDFETs are Ideal for Motor Drives

Low gate charge

Reduces switching losses

Trimmed current-source for gate-drive controls slew rate

- 2.5 V/ns V_DS turn-on slew rate
 - Reduces stress on commutating diode in half-bridge leg
- ▶ 3 V/ns V_{DS} turn-off slew rate
 - Reduces cross-over loss

Ultra-soft, fast recovery diode

- ▶ Low Q_{RR} increases efficiency
- Reverse Recovery Softness Factor (RRSF) > 1 for reduced EMI

$$RRSF = \frac{di/dt_{FWD}}{di/dt_{REC}}$$

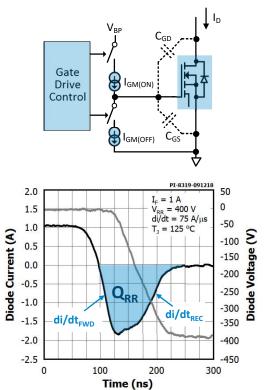
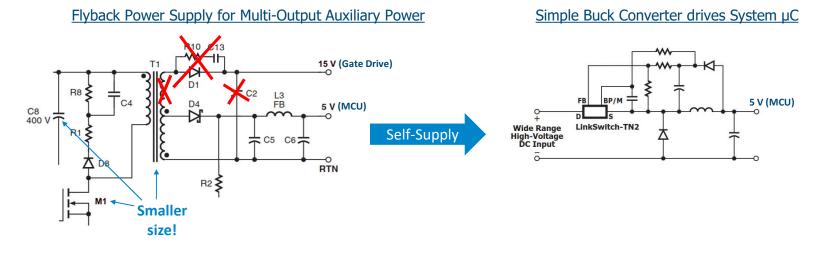


Figure 30. Typical Diode Reverse Recovery (BRD1X65).



Self-supply Reduces Auxiliary Power Requirements

BridgeSwitch supplies itself from high-voltage bus

Eliminates Gate drive power requirement from auxiliary power supply

Single output permits use of simpler auxiliary power topology

BridgeSwitch Monitors and Protects the Entire System

High-side and low-side lossless cycle-by-cycle current limit

Provides hardware based motor and inverter fault protection

High-voltage DC bus UV/OV monitor

▶ Four distinct UV thresholds and one OV threshold

Two level low-side FREDFET over-temperature monitoring and protection

Sense-input (SM) pin on each BridgeSwitch IC allows monitoring of PCB and/or motor-winding temperature

Detects low-side and high-side driver faults

Includes supply voltage and pin-connection faults

Additional monitoring node

- System level thermal monitor
- Motor vibration sensor etc.

Prevents simultaneous FREDFET conduction

Extra layer of protection

FAULT output (single wire bus) provides status updates

Informs system micro-controller about abnormal operation or BridgeSwitch protection actions

Hardware Based Motor Fault Protection Saves Certification Time and Cost

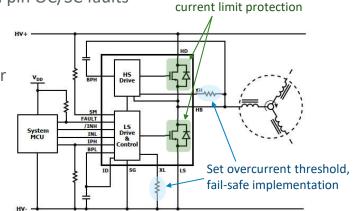
Low-side and high-side cycle-by-cycle current limit protects inverter & motor

- ▶ Independent high-side and low side programming with 43-100% range
- ▶ Fail-safe implementation BridgeSwitch also monitors for XL/XH pin OC/SC faults

Hardware protection against motor fault conditions

- Stalled motor, disconnected motor-phase, running over load
- ▶ Inherent redundancy two BridgeSwitch ICs in series with motor

No software interaction required to trigger protection


- Simplifies system level safety certification
- Means that Class A rated control software can be used

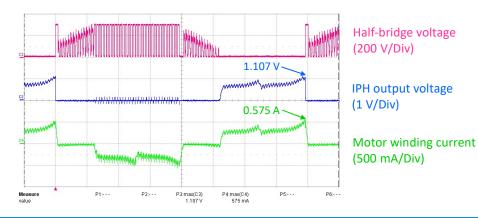
IEC 60335-1 & 60730-1 compliance confirmed

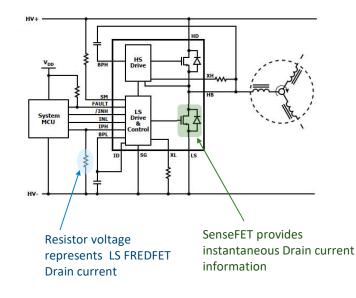
UL Report 4788685352

FAULT interface reports over-current faults

Informs MCU that BridgeSwitch hardware based motor protection is engaged

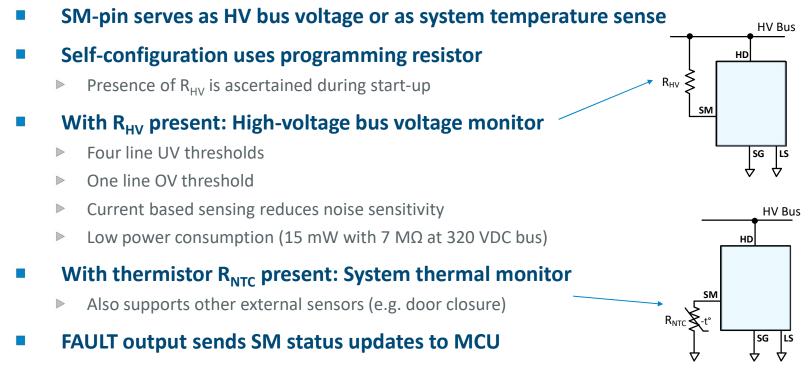
SenseFET provide cycle-by-cycle





Phase Current Output Simplifies Motor Control

- IPH output mirrors instantaneous low-side FREDFET Drain current (BRD126X devices)
- Eliminates current shunt resistors and associated circuitry
- Driven by small signal current source with fixed gain
 - R_{IPH} sets desired signal amplitude
 - No external signal amplification needed

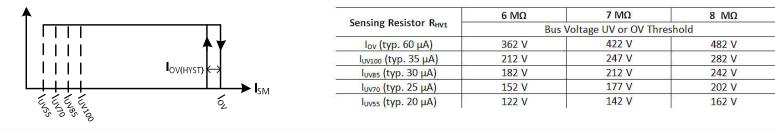

Supports individual sensing or composite signal sensing

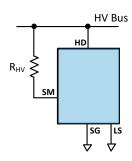
System Monitor Pin Provides Inverter Telemetry Information

High Voltage Bus Monitoring

SM-pin configured as bus voltage sense input

Four bus UV thresholds – one bus OV threshold

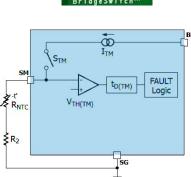

- Resistor R_{HV} determines bus OV and UV thresholds
- Increase resolution by using the SM pin on multiple devices (for example 8 thresholds with 2 BridgeSwitch devices)
- FAULT bus sends bus UV or OV status change updates


FREDFET turn-on signals are ignored if bus over-voltage exceeds threshold

Provides hard-wired protection

FAULT output reports OV fault to system μ C – enables entire inverter shutdown through μ C

Switching is re-enabled after HB bus drops below OV threshold hysteresis (7%)


Device and System Temperature Monitoring

BridgeSwitch monitors low-side FREDFET temperature and provides two thresholds

- ▶ +125 °C warning threshold (OTW) allows system MCU to react
 - Enables monitoring of PCB temperature (junction temperature correlates to PCB)
- ▶ +150 °C protection threshold (OTP) inhibits switching (latch-off)
 - System MCU can re-enable switching by sending latch-reset command via the FAULT bus
- ▶ FAULT output reports reaching-and-clearing of OTW or OTP thresholds

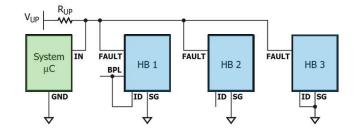
External NTC allows temperature monitoring of system devices

- **•** To reduce power consumption I_{TM} is pulsed with a 1% duty ratio
- R₂ allows fine-tuning of desired shutdown temperature T_{SD}
- FAULT output pin reports exceeding set-temperature-threshold
 - Also reports clearing of system temperature fault

FAULT Bus Reports Device & Inverter Status

Single wire bus using open Drain outputs

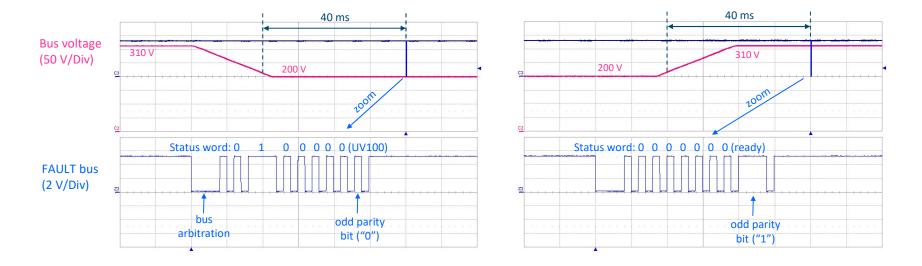
- Reduces resources requirement for system micro-controller
- 3.3 V and 5 V compatible


Bus architecture allows instantaneous fault reporting

- No master and slave operation
- Reports any status update only once reduces activity on bus

Enables system μC to react to abnormal conditions

- For example reduce inverter output power during AC brownout or elevated temperatures
- **ID-pin sets device ID enables system μC to locate physical location of a fault**
- Bidirectional communication
 - BridgeSwitch transmits status updates with a 7-bit word followed by an odd parity bit
 - System μC can query status updates or reset over-temperature fault latch



Example: Bus UV Condition Status Update

BridgeSwitch detects bus voltage drop <212 V and sends a status update</p>

- \triangleright 6 M Ω bus sense resistance sets UV100 threshold to 212 V
- Clearing UV condition also triggers status update
- ▶ 40 ms UV fault deglitch filter prevents false reporting due to noise

Support Material

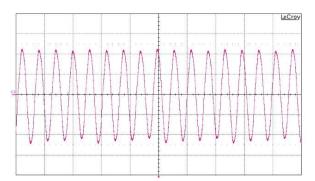
Wide Range of Inverter Reference Designs

⁽¹⁾Available March 2020

Example Design	Motor	PI Part Number	DC Current	Control	Full Load Efficiency	Microcontroller
DER-653	3-Phase	BRD1165C	5.5 A	Sensorless FOC	98%	Toshiba TMP375FS
DER-654	3-Phase	BRD1265C	5.5 A	Any	98.3%	Wide selection of Microcontroller
DER-749	3-Phase	BRD1260C	1 A	Sinusoidal with Hall Sensor	94%	Princeton PT2505
RDR-851 ¹	3-Phase	BRD1260C	1 A	Trapezoidal or Sinusoidal	95%	Wide selection of Microcontroller
RDR-852 ¹	3-Phase	BRD1263C	3 A	Sensorless FOC	97.5%	Wide selection of Microcontroller
RDR-853 ¹	3-Phase	BRD1265C	5.5 A	Sensorless FOC	98.2%	Wide selection of Microcontroller
DER-870 ¹	3-Phase	BRD1267C	11.5 A	Sensorless FOC	99.2%	Wide selection of Microcontroller
DER-872 ¹	1-Phase	BRD1260C	1 A	Block commutation	94%	Wide selection of Microcontroller
DER-873 ¹	1-Phase	BRD1260C	1 A	Sinusoidal	98.2%	Wide selection of Microcontroller

DER-749: 40 W AC Fan Drive

3-phase inverter using BRD1160C


- Inverter >94% efficient at 40 W motor output
- Self-supplied operation
- 20 kHz commutation frequency
- No heatsinks
- Motor stall protection via composite IPH signal

Employs Princeton Technology PT2505

Stand-alone sinusoidal BLDC motor controller

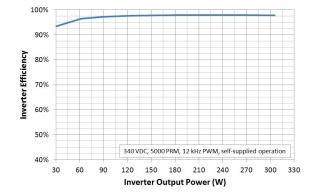
High-voltage buck converter with LinkSwitch-TN2 LNK3202D

Supplies microcontroller and associated circuitry

Phase current at 40 W motor load

DER-653: Sensorless FOC Development Platform

3-phase 0.9 A_{RMS} inverter example using BRD1165C

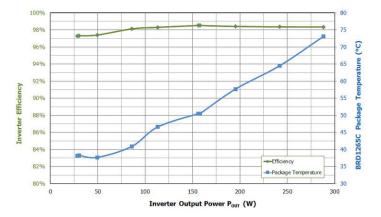

- ▶ >97% efficient at 305 W output
- Self-supplied operation
- No heatsinks
- Sensorless field-oriented control (FOC)
- Employs Toshiba TMPM375 vector engine

Fully implemented FAULT interface

Control algorithm uses device and system level telemetry data

Provide microcontroller and associated circuitry with power

- ▶ High-voltage buck converter using LinkSwitch[™]-TN2 IC (LNK3204D)
- Passes motor-abnormal-operation tests per IEC 60335-1
 - No software interaction required

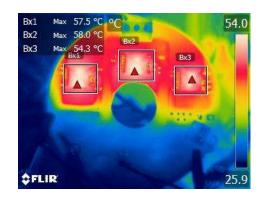


DER-654: 300 Watt Inverter

3-phase design example using BRD1265C

- ▶ >98% efficient at 300 W output
- 0.37 W no-load input power
- ▶ Self-powered no auxiliary power supply needed
- Instantaneous phase-current output
- System monitoring HV bus and temperature
- Single-wire status communication bus
- Supports trapezoidal or sinusoidal control
- Small size: 140 x 42 mm
- No heatsinks
- Passes motor abnormal operation tests per IEC 60335-1 w/o software action

Efficiency & Temperature Over Load


RDK-851: 50 W DC Fan Drive

3-phase inverter example using BRD1260C

- 270-365 VDC input
- 96.2% efficient at 50 W (0.22 A_{RMS}) output using external supply
 - 95% efficient using internal supply
- Supports self-supplied or external-power operation
- ▶ Up to 20 kHz commutation frequency
- No-load input power <50 mW (with external supply)</p>

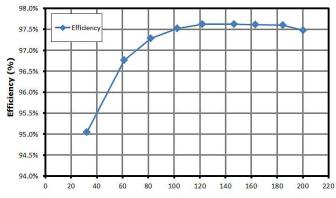
Less than 35° C temperature rise without heatsink

- 0.22 A_{RMS} continuous phase current
- Self-supplied or external supply
- Single wire status communication interface
- Supports any microcontroller via single header connector

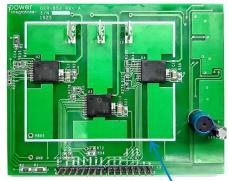
88 mm outer diameter

RDK-852: 200 W Pump Motor Drive

3-phase inverter example using BRD1263C


- 270-365 VDC input
- ▶ 97.5% efficient at 200 W (0.6 A_{RMS}) output
- Supports either self-supplied or external power
- ▶ 40 °C rise above ambient (self-supplied) without heatsinks

Passes motor abnormal operation tests per IEC 60335-1


No software interaction required, Class A ready

Aux. power for current sensing amplifiers and BridgeSwitch

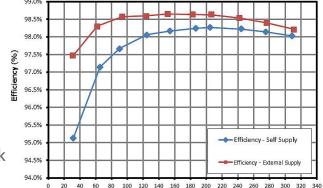
- High-voltage buck converter using LinkSwitch-TN2 IC (LNK3204D)
- Single wire Status communication interface
- Supports any microcontroller via single header connector

Output Power (W)

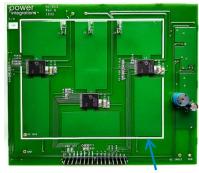
65 x 50 copper area mm

RDK-853: 300 W Compressor Drive

3-phase inverter example using BRD1265C


- 270-365 VDC input
- 98.2% efficient at 310 W output (12 kHz PWM)
 - 98.3% efficient at 62 W output (12 kHz PWM)
- Support self-supplied or external-supply operation
- ▶ 43 °C temperature rise (12 kHz, external supply) without heatsink
- 50 mW no-load input power (external supply)

Passes motor abnormal operation tests per IEC 60335-1

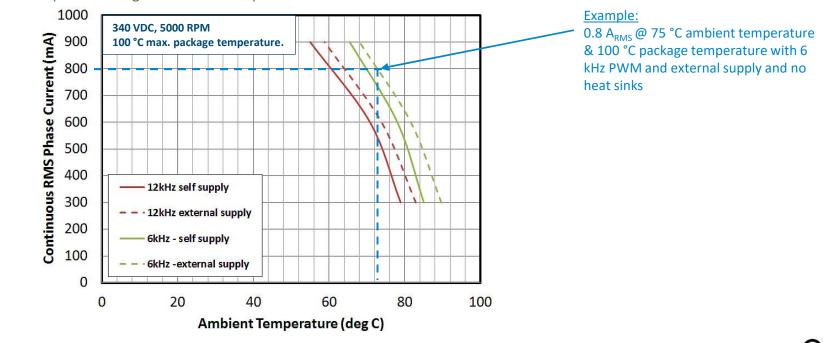

No software interaction required

Aux. power for current sensing amplifiers and BridgeSwitch

- ▶ High-voltage buck converter using LinkSwitch-TN2 IC (LNK3204D)
- Single wire status communication interface
- Supports any microcontroller via single header connector

Output Power (W)

95 x 75 copper area mm



RDK-853 Current Capability

Governed by ambient temperature, PWM frequency, and device supply

Curves represent BridgeSwitch case temperature of 100 °C

Support Documentation

- AN-80 describes the BridgeSwitch FAULT Status Communication Interface
 - Includes sample code-library
- AN-83 BridgeSwitch Design Tips, Techniques and Troubleshooting Guide

UL Informative Report (IEC 60335-1 and IEC 60370-1 Compliance)

Includes AN-76 failure mode and effect analysis for the BridgeSwitch Family

Whitepapers

- Impact of PCB Layout on Device Temperature in 3-Phase Inverters using BridgeSwitch ICs
- Direct Use of BridgeSwitch Current Sense Signal Output in Field Oriented Control of Brushless DC Motors
- Simplified Product Safety Certification through Hardware based Motor fault Protection

Design Example Engineering Reports

Available at <u>https://bit.ly/BridgeSwitch</u>

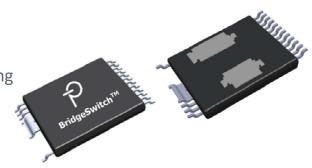
BridgeSwitch Summary

- Integrated, flexible half-bridge drives up to 400 W without heatsinks
 - Drives single-phase or three-phase motors
- Highest efficiency
 - Integrated FREDFETs with fast, ultra-soft diode and lossless current sensing

Hardwired protection and monitoring of entire inverter

Simple single-wire interface communicates with system MCU

Simplifies auxiliary power requirements


Internal self-supply removes need for gate drive power and level shifting

Supports all common motor control schemes

Trapezoidal (6-step), sinusoidal, and field oriented (FOC)

Small low-profile surface mount package

No heatsink due to high efficiency and heat distributed across multiple BridgeSwitch parts

power.com

